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Abstract

A robot with a hand-mounted depth sensor scans a scene. When the robot’s joint angles are not 

known with certainty, how can it best reconstruct the scene? In this work, we simultaneously 

estimate the joint angles of the robot and reconstruct a dense volumetric model of the scene. In this 

way, we perform simultaneous localization and mapping in the configuration space of the robot, 

rather than in the pose space of the camera. We show using simulations and robot experiments that 

our approach greatly reduces both 3D reconstruction error and joint angle error over simply using 

the forward kinematics. Unlike other approaches, ours directly reasons about robot joint angles, 

and can use these to constrain the pose of the sensor. Because of this, it is more robust to missing 

or ambiguous depth data than approaches that are unconstrained by the robot’s kinematics.

I. INTRODUCTION

Uncertainty is a central problem in robotics. In order to understand and interact with the 

world, robots need to interpret signals from noisy sensors to reconstruct clear models not 

only of the world around them, but also their own internal state. For example, a mobile robot 

navigating an unknown space must simultaneously reconstruct a model of the world around 

it, and localize itself against that model using noisy sensor data from wheel odometry, lasers, 

cameras, or other sensors. This problem (called the Simultaneous Localization and Mapping 

(SLAM) problem) is very well-studied in the mobile robotics community.

Less well-studied is the equivalent problem for robot manipulators. That is, given a multi-

jointed robot arm with a noisy hand-mounted sensor, how can the robot simultaneously 

estimate its state and generate a coherent 3D model of the world? We call this the articulated 

SLAM problem. Solving it would allow the robot manipulator to plan around obstacles and 

locate objects of interest. If done online, the SLAM system would enable the robot to do 

eye-in-hand 3D visual servoing against the map.

At first glance, this problem appears trivial; because typically the joint angles of the robot 

are directly measurable from joint encoders, and the forward kinematic equations of the 

robot are known with certainty. Therefore, the pose of the sensor is known with certainty, 

and so mapping can be accomplished without simultaneously localizing the sensor. 

However, in practice, all robots are subject to some amount of actuator uncertainty. Their 

joint encoders do not perfectly capture the true geometric angles of the robot’s joints 

HHS Public Access
Author manuscript
IEEE Robot Autom Lett. Author manuscript; available in PMC 2019 January 11.

Published in final edited form as:
IEEE Robot Autom Lett. 2016 July ; 1(2): 1156–1163. doi:10.1109/LRA.2016.2518242.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



because of gear thrash, cable stretch, nonrigid deformities, and other unknown dynamics 

(see section III-B).

Given actuator uncertainty and sensor uncertainty, what is the correct way of simultaneously 

constructing a model of the world and estimating the robot’s state? In this work, we show 

that certain contemporary visual SLAM techniques can be mapped to the articulated SLAM 

problem by using the robot’s joint configuration space as the state space for localization, 

rather than the typical SE(3). We map one kind of visual SLAM technique, Kinect Fusion[9] 

to the robot’s configuration space, and show how the robot’s joint encoders can be used 

appropriately to inform the pose of the camera.

The idea that the configuration of the robot is not merely a sensor which informs the pose of 

the camera, but rather it is the underlying latent state of the system is critical to our analysis. 

Tracking the configuration of the robot directly allows us to build algorithms on top of the 

SLAM system which depend on knowledge of the joint angles (such as motion planners and 

control systems).

II. RELATED WORK

Our work combines ideas from two other related fields: visual SLAM, and articulated 

tracking. Visual SLAM is concerned with tracking the pose of a camera as it moves through 

an unknown scene. Articulated tracking (a subset of motion capture) is concerned with 

finding the joint angles of a robot or actor by use of an externally mounted camera. There is 

also some relation to robot arm state estimation in control theory, and to visual servoing.

A. Robot Arm State Estimation

In control theory, often the state of the system being controlled cannot be directly observed, 

but instead must be inferred from sensor measurements. Generalized filtering techniques 

(such as Kalman filters, and Particle filters) have long been applied to robot arms which 

have only partially observable state. For instance, recent works have tracked the state of 

flexible robot arms using inertial sensors on the end effector [1] and from motor voltage 

inputs alone using a learned dynamic model and particle filter [29].

State estimation literature from control theory provides a backdrop for our work, which is 

concerned with estimating the state of a robot arm. However, unlike these other works we 

wish to also simultaneously estimate a model of the scene using a visual sensor, and use this 

model to further inform the state of the robot.

B. Articulated Tracking

Tracking articulated bodies with known kinematic structure using externally-mounted visual 

sensors is a well-studied topic in computer vision. For instance, commercial motion capture 

systems [19] often use markers (such as fiducials or reflective spheres) attached to 

articulated bodies along with an external camera to track the pose of human actors and 

objects in the scene. The kinds of motion capture systems most related to our purposes are 

those which use actor-mounted sensor systems (most commonly inertial sensors [26]) to 

measure the actor’s joint angles.
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When only the kinematic structure of the body is known, but no markers are available, the 

problem is more difficult due to the unknown correspondences between sensor 

measurements and the body itself (i. e the segmentation problem). But even in this case, 

efficient solutions for tracking articulated bodies exist.

In general, the approach is to model the articulated body so as to simulate sensor 

measurements at a particular configuration. Then, a maximum likelihood estimate is 

obtained which causes the sensor measurements from the external camera to agree with the 

model of the articulated body.

For instance, one method intended for tracking humans in 2D images, Articulated Iterative 

Closest Point (ICP) [20], computes the posterior using image-based edge features, and 

maximizes the likelihood of a configuration by coordinate descent in configuration space.

Another algorithm, Real-time Markerless Articulated Tracking (RMAT) [15] tracks robots 

using a depth camera. It uses a simple posterior model that sensor measurements are near the 

robot’s surface as projected onto the depth image, and a simple motion model which 

assumes the robot’s configuration changes slowly between time-steps. Sensor measurements 

are matched to corresponding points on the robot’s body using an octree, and gradient 

descent is used to maximize the likelihood of the robot’s configuration given its previous 

configuration and depth image.

A related work, Dense Articulated Real Time Tracking (DART) [27], improves upon RMAT 

by using a signed distance field representation of the robot’s body rather than an octree, a 

more complex motion model that considers joint velocity, and an extended Kalman filter for 

tracking. DART has been shown to effectively track robots, human hands, and rigid bodies 

in real-time with commercial depth cameras.

Our work builds on some of the mathematical foundations of these approaches. The key 

difference is that we are concerned with eye-in-hand sensors which cannot see any part of 

the robot. This means we must simultaneously estimate the robot configuration and the 

structure of the scene; whereas in articulated tracking, only the robot configuration must be 

estimated.

C. Visual Servoing

When the camera is not mounted externally, but instead is mounted in-hand, it can be used to 

control the robot to achieve visual objectives (such as aligning points or shapes in an image). 

Visual servoing and control [4] expresses the robot’s objective in terms of positions and 

velocities in the camera image frame, and system state as the robot’s joint angles.

Visual servoing works are related to ours in the sense that they use a hand-mounted camera 

to inform the joint angles of a robot, but they typically rely on known models of the scene 

(in terms of image points or features), and do not explicitly consider actuator uncertainty; 

but in our case, we cannot assume any prior knowledge about the composition of the scene, 

and must consider actuator uncertainty.
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However, the underlying mathematics of visual servoing relating motions in the image space 

to joint angle displacements are used extensively in our work. Further, our work enables a 

kind of model-based 3D visual servoing by way of creating a 3D model of the scene while 

the robot localizes itself.

D. Visual SLAM

Visual SLAM involves determining the full 6 Degree of Freedom (DOF) trajectory of a 

camera as it moves through a scene as well as a geometric model of the (unknown) world 

online [8]. A broad range of techniques have been used in the literature depending on the 

type of the sensor and desired world model.

When only a single (monocular) camera is available, sparse feature-based techniques can be 

used to determine the camera pose. Feature-based techniques typically minimize the 

reprojection error of a global set of 3D feature landmarks shared between camera frames. 

Examples of this kind of approach include Parallel Tracking and Mapping (PTAM)[13], and 

ORB-SLAM [21]. Feature-based methods have very good performance due to their sparsity, 

but the reconstruction quality is limited to a sparse set of 3D points.

Dense or semi-dense monocular approaches to visual SLAM, in contrast, compute image 

intensity error for all (or most) pixels in each camera frame. Examples include LSD-SLAM 

[6] and DTAM [22]. These approaches are more memory intensive and computationally 

expensive than their sparse counterparts, but provide much more detailed world models that 

are suitable for robotics.

When a depth sensor is available, dense visual SLAM is made easier because the need to 

estimate the depth of visual features is eliminated. Fully dense geometric methods, such as 

Kinect Fusion [9], Point Fusion [10] and Elastic Fusion [30] generate a full geometric 3D 

model of the world, which is in turn used to estimate the pose of the depth sensor using 

mainly geometric techniques, such as point-to-plane ICP. Fully dense methods enable very 

high quality pose estimation and scene reconstruction within a small area, but they tend to 

drift over time, and are unable to track the sensor against scenes without much geometric 

structure.

Our work makes use of SLAM techniques and terminology. But, unlike the pure visual 

SLAM problem, we are not concerned with a free-floating camera, but rather a camera 

attached to an articulated robot arm. Because of this, we have an extremely strong prior on 

the allowable motion of the camera from the robot’s kinematics, and have a very strong 

indication of the sensor’s pose from the joint encoders.

In this sense, our work is related to other SLAM works which fuse visual SLAM together 

with other sensors, such as inertial sensors. State of the art examples include Li et. al [17], 

Leutteneger et. al [16] and Forster et. al [3]. These techniques harness the advantages of both 

visual and inertial sensors to provide much more robust pose estimation in the presence of 

missing or ambiguous visual data. However, unlike these works, we do not treat the robot’s 

kinematics as a mere sensor to inform the camera pose, but rather treat it as the true latent 

state of the system, and directly estimate it.
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In this work, we present a fully-dense geometric visual SLAM technique which estimates 

the robot configuration (rather than camera pose) from an online 3D model produced with 

depth images. As in Kinect Fusion [9], we construct a volumetric model of the scene, and 

localize against it using a geometric objective function.

III. BACKGROUND

A. Robot Kinematics

A kinematic linkage [18] consists of a series of rigid bodies (called links) attached to one 

another through mechanisms (called joints) that constrain their motion. A joint has between 

1 and 6 degrees of freedom (DOF) which define how it constrains the motion of its attached 

links. The joint which constrains link A to link B, and which has configuration qi has the 

transformation:

TB
A(qi) ∈ SE(3) (1)

and as qi changes, so does the transformation between links A and B.

The transformation of any link Li with respect to a fixed reference frame W can be 

calculated by traversing the kinematic tree and appending the transformations implied by 

each joint from the root of the tree (a process called forward kinematics):

TLi
W = TLi

Li − 1(qi − 1)…TL2

L1(q1)TL1
W (2)

A robot’s configuration q ∈ ℝℕ is a vector which concatenates all of its joints’ degrees of 

freedom:

q = [q1…qN]T (3)

The partial derivative of link i’s reference frame with respect to q:

Ji(q) = ∂
∂q TLi

W (4)

is called the link’s kinematic Jacobian, and for simple kinematic chains it can be computed 

in closed-form efficiently.

B. Actuator Uncertainty

Robots usually have motor encoders which measure the number of rotations that each of 

their motors make. Motor encoders can be used to indirectly infer the angle of the robot’s 

joints. However, intervening mechanisms (such as gear trains, non rigid links, elastic bands, 
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cables, etc.) make the mapping between the joint encoder reading and the robot’s true joint 

angles unclear.

For instance, in the case of the Barrett WAM robot arm, motors drive a series of pulleys and 

cables which in turn rotate the joints. Depending on the amount of torque applied to the 

cables, they can stretch and deform, introducing hysteresis into the system. Boots et. al [2] 

found the end effector error on this robot due to cable stretch to be over 8 cm, and 

Klingensmith et. al [15] found it to be over 10 cm. Worse, the error is nonlinear, and 

depends mostly on the torque applied to the robot along its trajectory.

We sent our robot, a Kinova Mico [12] to ten inverse kinematics solutions, and measured the 

resulting end effector pose with an Optitrack [24] motion capture system Fig. 2. Even 

though mathematically, the end effector should be in exactly the same place each time, we 

found the end effector pose to differ by as much as 5cm. According to the manufacturer 

specifications [11], the robot’s actuators have a resolution of 0.055°; and we found the 

numerical error from our inverse kinematics solver to account for less than a millimeter of 

end effector error. These factors are thus too small to account for the error we see. Instead, 

non-rigid deformation of the plastic links under gravity, and off-axis motion of the joint 

seems to account for this error.

In our work, we do not attempt to model the actuator uncertainty directly, and instead simply 

assume it follows a simple Gaussian Process model. Define the joint encoder readings as a 

random variable drawn from the distribution

qe q + 𝒩(μq, Σq) (5)

where μq is the mean of the distribution at q, and Σq is its covariance. Since we anticipate 

the uncertainty to be more like an unmodeled dynamic effect and less like a random process, 

Σq is likely to be small, while μq is a function representing an offset in configuration space 

due to the dynamic effect.

C. Depth Sensors

In this work, we will assume access to a depth camera mounted to the robot’s hand. Depth 

cameras work by either projecting a pattern onto a scene and reading with an infrared 

camera, or with active time-of-flight pulses. Call the depth image ID, it is a function with 

domain Ω ∈ ℝ2. The relationship between 3D points in the scene and 2D points on a camera 

image can be modeled using the simple pinhole camera intrinsic [8] model:

Proj(x, y, z) = [u, υ] =
f xx
z + cx,

f yy
z + cy (6)

where u, υ are the 2D images coordinates, x, y, z are the 3D point’s coordinates in the 

camera’s frame of reference (with x to the right, y down, and z forward), and fx, fy, cx, cy are 

the intrinsic parameters of the camera. We can also define the inverse projection model, 
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which takes a camera coordinate u, υ and depth measurement z, and converts it into a 3D 

vector relative to the camera’s focal point. The resulting 3D points are called the point cloud 
of the depth image. For a particular pixel u, υ with depth z, its point in the point cloud is 

given by:

Proj−1(u, υ, z) = z
u − cx

f x
,

υ − cy
f y

, 1 (7)

Depth cameras measure the range (z) at each image pixel to points in the scene. The depth 

measured by depth cameras is noisy, incomplete, and contains systematic error.

D. Dense Fusion

When multiple depth images are given at known camera poses, it is possible to reconstruct 

an estimate of the 3D geometry of the scene. This process is called dense fusion. In this 

work, we use a method of dense fusion from Curless and Levoy [5], also used in Kinect 

Fusion [9] and variants, called Truncated Signed Distance Field (TSDF) fusion. The TSDF 

(Φ : ℝ3 → [−τ, τ]) stores a voxelized representation of the scene where each voxel encodes 

the distance to the nearest surface in meters, and has a weight. Positively signed distances 

correspond to points outside of surfaces, and negatively signed distances correspond to 

points inside of surfaces. Voxels with a distance of zero correspond implicitly to the surfaces 

of objects.

To fuse multiple depth images into a TSDF, we can simply compute a local linearization of 

the distance field around each depth pixel as projected into the scene. Overlapping 

linearizations are simply averaged. Curless and Levoy [5] provide an efficient means of 

doing this (Alg. 1), and show that the resulting implicit surface is a least squared minimizer 

of the point clouds from each depth image.

Kinect Fusion [9] and variants use the TSDF both for mapping and localization. New camera 

poses are computed by aligning the point cloud of the depth image to the previously 

constructed map using the gradients of the TSDF. Our work uses a similar approach to 

estimate the robot’s configuration.

IV. Articulated Robot Manipulator SLAM

The task is, given a series of joint encoder readings Qe = qe
(1), …, qe

(t) received online along 

with sensor measurements from a hand-mounted depth camera Z = z(1) … z(t), 

simultaneously reconstruct a TSDF of the scene Φ, and estimate the true joint angles Q = 

q(1), … q(t).

Formally, this can be expressed as a maximum likelihood estimate problem, first for 

localization:
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Algorithm 1

FuseTSDF

1 // Given a depth image, sensor pose,
  previous TSDF, previous voxel
  weights, a weighting function, a
  volume of interest, and a
  truncation distance

Input: ID, T, Φ(t−1), W(t−1),w, V, τ

2 T′ ← T−1

3 Φt ← Φt−1

4 Wt ← Wt−1

5 for v ∈ V do

6 // Depth of voxel v

7 vc ← T′v

8 di ← ID [Proj(vc)]

9 // Dist to camera plane.

10 dυ ← vc(z)

11 // Locally linear approximation.

12 u ← dυ − di

13 // If dist within τ

14 if |u| < τ then

15 // Weighted average

16

Φt(v)
Wt(v)Φt(v) + w(u)u

Wt(v) + w(u)

17 Wt(v) ← Wt(v) + w(u)

18 end

19 end

Output: Φt, Wt

Q* = argmax
Q

P(Q |Qe, Z) (8)

= argmax
Q

P(Z |Qe, Q)P(Q)
P(Qe, Z) (9)

= argmax
Q

 log P(Z |Qe, Q) + log P(Q |Qe) (10)

and for mapping
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Φ* = argmax
Φ

P(Φ|Q*, Z) (11)

As in Kinect Fusion [9], we neglect optimizing the entire trajectory and map simultaneously, 

and instead focus on alternatively optimizing the current pose estimate q(t) and the current 

map Φ(t). This implicitly assumes the problem has a Markov property, and makes the 

problem tractable at the expense of allowing drift over time. First, the localization step:

q(t) argmax
q

 log P z(t) |q, Φ(t − 1) (12)

+ log P q |q(t − 1), qe
(t) (13)

and the mapping step:

Φ(t) argmax
Φ

Φ|Φ(t − 1), z(t), q(t) (14)

Eq. 13 has two components: a sensor posterior, and a joint encoder prior. We will now 

analyze each term in detail.

A. Sensor Posterior

Kinect Fusion and variants [9] treat the sensor posterior geometrically, and align sensor 

points to the TSDF surface using point-to-plane ICP. This geometric argument can also be 

derived probabilistically, as in generalized ICP [28]. If we assume that the probability of 

some world-projected sensor point z ∈ R3 has probability proportional to its distance to the 

nearest surface,

P(z |ϕ) ∝ exp  − Φ[z]2 (15)

implying in a sense that all surfaces in the scene are “blurred” with uniform Gaussian noise, 

it becomes straightforward to derive the sensor posterior, assuming independence between 

all the points in the point cloud.

P z(t) |q, Φ(t − 1) = ∏
z ∈ z(t)

P(Tqz |Φ(t − 1)) (16)
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∝ ∏
z ∈ z(t)

 exp  − Φ[Tqz]2 (17)

where Tq = TLk
W (q) is the pose of the sensor implied by configuration q in the world frame. 

Admittedly this straightforward model is too simple to capture some important aspects of the 

depth sensor, such as the presence of occlusions and aniostropy in the sensor. More complex 

posteriors, like those used in DART [27], could be used in its place.

B. Joint Encoder Prior

The other term in Eq. 13 relates the probability of a robot’s configuration given its joint 

encoders. As discussed in Section III-B, we can model this as a Gaussian process so that the 

prior is given by

P(q |qe) ∝ exp[(q − μq − qe)
TΣq(q − μq − qe)] (18)

in our experiments, we simply use a prior that has a mean centered on zero, with uniform 

noise Σq = γI; but a more complicated prior learned from data could be used.

C. Algorithm

The sensor posterior and joint encoder prior together imply a cost function that can be 

minimized to localize the robot

C(q) = γεTε + 1
2 ∑

z ∈ Z(t)
Φ(t − 1)[Tqz]2 (19)

where ε = q − qe
(t), and γ is a regularization term. The gradient with respect to q can be 

obtained using the chain rule:

∇C = γε + ∑
z ∈ Z(t)

∇Φ(t − 1)[Tqz]Jq
T ∇Φ(t − 1)[Tqz] (20)

where Jq =
∂Tqz

∂q  is the manipulator Jacobian, as described in Section III-A. This cost 

function can be minimized by simple gradient descent. This leads to a filtering approach, 

wherein an offset between the joint encoders and true joint angles is tracked over time, 

subject to kinematic constraints such as joint limits.
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ε(t) ε(t − 1) − λ∇C qe
(t) + ε(t − 1) − γε(t − 1) (21)

Algorithm 2

ARM-SLAM

1
// Where qe

(t) are the motor encoders at
time t, λ is a learning rate, and γ
is a regularization parameter.

Input: Zt, qe
(t) , Φ(t − 1), λ, γ, ε(t − 1)

2 ε(t) ← ε(t − 1)

3 repeat

4
q(t) qe

(t) + ε

5 // The camera transform.

6
Tq TLk

W (q(t))

7 // Gradient of the sensor
   measurement posterior.

8

∇C ∑
z ∈ Z(t) Φ(t − 1)[Tqz]Jq

T ∇Φ(t − 1)[Tqz]

9 // Descend the gradient.

10 ε(t) ← ε(t) − λ∇C − γε(t)

11 until convergence;

12 // Mapping step.

13 Φ(t) ← FuseTSDF (Φ(t − 1), Z(t), q(t))

Output: ε(t), Φ(t)

For mapping, we can simply take the tracked joint encoder position as ground truth for 

fusing the depth image into the TSDF as in Curless and Levoy [5] (Alg. 1). Tracking and 

mapping are repeated in alternation.

V. EXPERIMENTS

We conducted three types of experiments to observe the behavior of this algorithm; 2D 

simulation experiments, 3D simulation experiments, and a real robot experiment.1

1Videos of these experiments are attached. High resolution videos are available at http://youtu.be/QrFyaxFUs9w
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A. 2D Simulation

In the simple 2D simulation experiment, a 3-link serial robot manipulator with a simulated 

1D depth sensor scans a scene. We added zero-centered Perlin [25] noise to its joint encoder 

readings. That is,

qe
(t) = q(t) + βnPERLIN snq(t) (22)

where sn, βn are parameters which control noise frequency and magnitude, respectively. In 

our experiments, sn = 1.0, βn = 0.2. The simulated depth image is noiseless.

For the world model, we constructed a simple 2D TSDF. We compare the performance of 

ARM-SLAM (Alg. 2) against a simple unconstrained descent algorithm which assumes the 

sensor can move and rotate freely, without considering the robot kinematics (Fig. 3). We 

found that ARM-SLAM managed to both reduce end effector error and dramatically reduce 

model error (Table I), whereas just using a 2D dense fusion technique without constraining 

using the robot’s kinematics resulted in severe, unrecoverable drift because of the scene’s 

self-similarity and the robot’s fast motion. Note that in the real experiments, there is 

comparatively much less actuator noise, and a much smaller scene than in the 2D 

experiments.

B. 3D Simulation

We developed a 3D simulation of a Kinova Mico robot with a hand-mounted Occipital 

Structure [23] depth sensor. In the simulation, the robot scans a simulated bookshelf. As in 

the 2D experiments, Perlin noise is added to the ground truth joint angles to simulate 

actuator uncertainty. We use the Open Chisel [14] chunked TSDF library for mapping. The 

simulated depth image is noiseless. Reconstructions were done at a resolution of 1.5 cm per 

voxel.

We found that ARM-SLAM was able to correct for very large actuator error (see Fig. 5), 

resulting in a final reconstruction near the ground truth (Fig. 4). By artificially increasing the 

actuator noise, we found that ARM-SLAM significantly reduced the end effector error even 

when the uncertainty in the camera’s pose was up to 12 cm (Fig. 5a), we also found ARM-

SLAM to be more robust to tracking failure from lost data than unconstrained Kinect Fusion 

(Fig. 5b) due to the very strong motion prior from the robot kinematics.

C. Bookshelf Scanning

Using the same framework as in the 3D simulation, we reconstructed a bookshelf with a 

Kinova Mico robot with a hand-mounted Occipital Structure sensor (Fig. 1). The robot was 

teleoperated using a joystick. Beforehand, the Structure sensor was extrinsically calibrated 

to the robot’s hand using the Tsai[7] method and a fiducial, though extrinsic calibration error 

cannot be ruled out. The end effector deviation was measured using an Optitrack motion 

tracking system. One challenge of working with the real robot data is that the joint encoders 

and depth sensor are not synchronized. The joint encoder data is emitted at ~ 500 Hz, 

whereas the camera data is produced at 30 Hz. To compensate for this, we store the robot’s 
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configuration space trajectory as a series of linearly interpolated, timestamped waypoints. 

Using this, we can infer the joint encoder readings at the time when the depth image was 

received.

The 3D reconstructions (Fig. 1) show that our method is able to recover 3D structure in the 

scene that is lost when only the (noisy) forward kinematics are used. This is especially 

apparent around the edges of the bookshelf and its adjacent walls. Our reconstructions are 

comparable to Kinect Fusion run at the same voxel resolution (1.5 cm). We measured end-

effector motion with an optical motion capture system (Fig. 5c) and found that Kinect fusion 

occasionally lost (and regained) tracking due to self-similar surfaces in the bookshelf and 

surrounding walls. Because of the strong motion prior from the robot’s joints ARM-SLAM 

did not have this issue. However, our data from the motion capture system is too noisy to 

conclude ARM-SLAM performed any better than forward kinematics at reporting the true 

pose of the end effector (ARM-SLAM had an end effector deviation of 1.2 ± 0.9cm while 

forward kinematics had a deviation of 1.4 ± 1.0cm). It may be that extrinsic calibration error 

between the sensor and rigid hand mount is dominating any error produced at the robot’s 

joints.

VI. DISCUSSION AND FUTURE WORK

In this work, we have introduced a framework for visual SLAM in a robot’s configuration 

space. We have shown that our approach is capable of reconstructing scenes and reducing 

actuator uncertainty simultaneously. Many questions remain to be answered about this 

problem domain, and it is clear that our work does not yet address some of its key 

components.

First, since it is a pure model-based dense SLAM approach (like Kinect Fusion[9]), it suffers 

from many of the problems that plague these approaches. The system requires clear 

geometric structure and a large field of view to localize correctly, and since it uses no global 

pose graph, it is susceptible to drift over longer trajectories. Further, we are only able to 

track the configuration of the robot when a depth image is available. Also like those 

approaches, the underlying tracking and mapping techniques are largely based on geometric 

arguments, making it difficult to incorporate probabilistic models. As a consequence, we 

don’t have a way of tracking the uncertainty in the predicted joint angles.

By committing to localization in the configuration space of the robot, rather than SE(3), we 

gain the benefit of only predicting physically plausible camera poses. We are also able to 

express costs and priors (such as joint limit and self-collision costs) on robot configuration 

trivially. On the other hand, error that can’t be expressed in the configuration space (such as 

error in the extrinsic calibration, or motion of the robot base) cannot be corrected for using 

our technique. Also, the more joints a robot has in comparison to SE(3), the more work our 

technique has to do to compute Jacobian terms, and the larger the camera motion null-space 

is (worsening susceptibility to local minima). For instance, a 2-jointed robot pan-tilt head 

would be comparatively easy to localize vs. a highly redundant 50-jointed snake robot.
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In spite of these limitations, our approach provides a good baseline for conducting further 

research. We are eager to re-express other visual SLAM techniques in the configuration 

space of the robot, and to explore other ways of correcting actuator noise through visual 

sensors.
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Fig. 1. 
Robot scans and reconstructions of a bookshelf at 1.5cm resolution using real depth and 

encoder data (Section V-C). Our approach (which estimates robot configurations rather than 

camera poses) results in preservation of fine detail and edges that are lost when only using 

the robot’s forward kinematics, with comparable reconstruction quality to Kinect Fusion.
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Fig. 2. 
The Kinova Mico robot was sent to 10 inverse kinematics solutions for a fixed pose (left). 

The solutions are overlaid on the right. Error at the end effector exceeds 5 cm.
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Fig. 3. 
2D simulation experiment (Section V-A). The robot is shown in red. The simulated depth 

image is shown as grey rays. The TSDf is shown as orange or blue pixels. Top left shows the 

ground truth TSDF, top right is with forward kinematics only (with actuator uncertainty). 

Bottom left corrects actuator noise using unconstrained dense fusion. Bottom right corrects 

using ARM-SLAM.
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Fig. 4. 
Results of the 3D simulation (Section V-B) with up to 0.8 radians of added noise per joint.
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Fig. 5. 
End effector error observed in the 3D simulation (Section V-B) experiments. Fig. 5a: 100 

trials with different noise seeds are run with increasing noise magnitude. Each trial lasts 60 

seconds. The median deviation of the end effector from ground truth is recorded. Fig. 5b: in 

a different simulation, the robot briefly looks away from the scene and then looks back. 

Kinect Fusion loses tracking. Fig. 5c: end-effector deviation in the real dataset as measured 

by an optical motion capture system, Kinect Fusion briefly loses and then regains tracking.

Klingensmith et al. Page 20

IEEE Robot Autom Lett. Author manuscript; available in PMC 2019 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Klingensmith et al. Page 21

TABLE I

Results for the 2D simulation experiments (Section V-A). The end effector error in pixels, joint angle error in 

radians, distance field error in 106 pixels, and occupancy classification error (the proportion of pixels 

misclassified as containing an obstacle) is shown for forward kinematics, unconstrained dense fusion, and 

ARM-SLAM for a dataset with 500 and 999 time-steps. Our approach (ARM-SLAM) reduces all three error 

terms.

t Fwd. Kin. Dense Fusion ARM-SLAM

500

EE Err. (pix.) 5.2 ± 5.9 3.4 ± 4.2 0.8 ± 0.7

Jnt. Err (rad.) 0.08 ± 0.06 – 0.06 ± 0.05

SDF Err (pix.) 1.4 ± 1.7 0.8 ± 0.8 0.5 ± 0.3

Class Err (%) 5.7 ± 3.2 4.7 ± 2.3 3.5 ± 0.6

999

EE Err. (pix.) 9.2 ± 6.7 14.7 ± 17.8 1.4 ± 1.9

Jnt. Err (rad.) 0.17 ± 0.07 – 0.08 ± 0.05

SDF Err. (pix.) 6.1 ± 5.3 12.2 ± 22.2 1.2 ± 0.8

Class Err. (%) 11.3 ± 6.2 9.5 ± 6.1 4.4 ± 1.1
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