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Abstract—Although the infrared (IR) range and motor force
sensors have been rarely applied to the surface recognition of
mobile robots, they are fused in this paper with accelerometer
and ground contact force sensors to distinguish six indoor
surface types. Their sensor values are affected by the crawling
gait period, therefore, certain components of the fast Fourier
transform over these data are included in the feature vectors as
well as remarkable discriminative power is observed for the
same scalar statistics of different sensing modalities. The
machine learning aspects are analyzed with random forests (RF)
because of their stable performance and some inherent,
beneficial properties for the model development process. The
robustness is evaluated with unseen data after the model
accuracy is estimated with cross-validation (CV), and regardless
whether a Sony ERS-7 walks barefoot or wears socks, the forests
achieve 94% accuracy. This result outperforms the state of the
art techniques for indoor surfaces in the literature and the
classification execution is real-time on the robot. The above
mentioned model development process with RF is documented to
create new models for other robots more quickly and efficiently.

Index Terms—Surface Recognition; Random Forests; AIBO

l. INTRODUCTIONAND RELATED WORK

HE wheels are better options on even surfaces while t
legged robots traverse on more difficult terrains. With

detected with higher accuracies by fused modalities outside
compared to the indoor floorings [5] and the vision models
suit better in natural environments [4, 17]. These experimental
conditions are examined in this paper.

Ojeda and Borenstein [11] experimented with a four-
wheeled Pioneer 2-AT on six outdoor terrains and different
sensors were explored during the classification process with
one training and one testing set. Their neural network
produced reasonable performance for the inertial sensors
(82.7% accuracy), but the cross-validation was not applicable
with their small sample set.

Hoepflinger et al [6] extracted the features from joint
motor currents and ground contact force measurements to
estimate different terrain shapes and surface properties. A
robot leg was fixed to a table in their testbed thus the sensor
readings were not affected by robot body oscillations. The
model performance of their AdaBoost classifier was not
estimated with cross-validation and there is a high chance that
these models were overfitted.

By fusing tactile, depth sensors and camera, a six-legged
walking robot [15] recognized 12 surfaces with a success rate

h%f 95%. Since only one testing and one training set were

evaluated, cross-validation was not performed to estimate the
odel performance. The feature vector size (174) was much

knowledge about the underlying surface, a legged robot ¢
switch to an efficient gait or adapt its walk speed for optimal
locomotion. This paper focuses on the context awareness
domestic robots by predicting six surfaces based with built-in  Unlike the previous examples, several researches executed
sensors of a Sony ERS-7. Besides the focus on the indoappropriate estimations about the model performance with k-
setting and evaluating the machine learning aspects of pgsid CV. Hoffman et al [8] explored the terrain discrimination
researches, the literature review touches the other conditiomgth inertial, tactile, and proprioceptive sensors of a crawling
in outdoor environments and the use of vision sensors. legged robot. Two classifiers (support vector machine (SVM),
naive Bayes) were cross-validated and the performance was

The surface recognition is less challenging for outdoot is,timated at 96.3% with four surfaces (plastic foil, cardboard,

robots because the vibration-based solutions perform bett%t rofoam and rubber). This result can be compared to the
with higher irregularities while the indoor floorings challenge r()e/vious work of the éuthor [10] where 93% acrz:uracy was

the image classifiers with wider variety of colors and textures ' :
Learning visual cues in a house can enhance a vibrati stimated with 10-fold CV when a Sony ERS-7 walked on

model, but creating a generic texture or color based classifiilye surfaces (wood, short carpet, carpet, foam mats, vinyl).

for all kinds of carpets, tiles and other floorings is an The Sony robots were equipped with noisy, low-end
overwhelming task. By these reasons, the terrains wergccelerometers (120 Hz) while high-end devices were used in
some earlier studies with a sampling rate of 44.1 kHz in [2]
and 4 kHz in [5]. A C4.5 decision tree was implemented for
Manuscript received: August, 31, 2015; Revised November, 14, 2015;AIBO in [13] where the single and pair-joint variances of the
Accepted January, 4, 2016. three accelerometer dimensions (x, vy, z, Xy, Y-z, X-2)
This paper was recommended for publication by Francois ChaumettecOMpPOsed the feature vector and a large sample database was
upon evaluation of the Associate Editor and Reviewers’ comments. Thiscollected. The accuracy of 84.9% was estimated for a model
work is supported by the competence development bonuses of Vincit Oy. of three surfaces (cement, field, carpet) by 10-fold CV.

The author is with University of Tampere and Vincit Oy, Tampere,
Finland, csaba.kertesz@ieee.org.

igher than the sample set size (84), therefore, the real
ggcuracy of this method is uncertain with possible overfitting.

OctoROACH went on three surfaces in [1] and the feature
vectors were extracted from inertial measurement unit and

Digital Object Identifier (DOI): see top of this page. force sensor readings. Bermudez et al studied the shortest
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Fig. 1. The images show the following indoor suefaérom top-left: a) Wood flooring ar;d'eidshort (;nriln) Wood flooring
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a soft carpet, c) Normall

d) 8x8cm porcelain tiles, e) Carpeted floor, fpBkry vinyl, g) 2x2cm porcelain tiles, h) Laminéit®ring and a shag carpet.

sampling window (350 msec) to maximize the classifi
performance for a running gait. The SVM hyperparanse
were optimized by 10-fold CV on a training set &@818%
accuracy was estimated.

The model accuracy is calculated properly with an

evaluation step of unseen data, like in the follmyvivorks.
Degrave et al [3] researched different sensing fitaafor
supervised and unsupervised classification witle furfaces
(blue foil, styrofoam, linoleum, cardboard and ratb Their
experiments found that non-linear sensor fusion dasisifier
are necessary for good results. The reservoir ctngpmodel
of tactile and proprioceptive sensors achieved 4.6
accuracy with a validation set.

Tick et al [12] run a wheeled robot on five surfa¢gled
linoleum, ceramic tiles A/B, short carpeted floodderrazzo).
After many statistics were extracted from accelert@mnand
angular velocity measurements, they studied theiesdil
forward floating feature selection to build featwextors for a
Linear Bayes classifier. The cross-validation wasexecuted
in this research, however, the built model wasetksinder
practical conditions and the robot achieved 89%ui@my on
unseen sensor recordings.

The reviewed literature solved the surface recagnit
challenges with machine learning methods, but Hobns et
al applied experience based models to the problen [
Specific gaits were evolved by a genetic algorifoma Sony
AIBO robot to walk on plywood board, thin foam, shcarpet

and shag carpet. After they found some optimal mode

parameters empirically, tap-delay Adaline neuratwoeks
modeled the experience of the leg joints for egiy-surface
combination and the robot predicted a surface augito the
actual gait. Though a limited sample set was ctdt&ctheir
initial experiments showed promising results ane thodel
accuracy was estimated to 92% with 5-fold crosgiasibn.

Various locomotion options and sensor combinatimange
been examined in the past works: wheeled [11, §2,17],
quadruped [3, 4, 8, 9, 10, 13], six-legged robais].[
Although some studies analyzed a few sensors [Pprthe
body oscillations [18], this paper does not go irtos
direction, but the focus is on the classifier mduoiglding and
the evaluation to provide a better interpretatidnthe past
results from machine learning point of view. Mostiewed

studies evaluated their models properly [1, 3,,8® 12, 13],
but some did not employed (cross-)validation to @ddetter
estimate of the real accuracy [6, 11, 15]. Thisepagses a
four-legged Sony ERS-7 robot and the feature veddor
composed by the readings of four sensors to trenrodels.
Nine classifiers are examined and random foregschosen
as they have some unique properties for the fudheatysis.
After the features are extracted with fast Fouri@nsform and
statistics, the model accuracy is estimated witfiold CV on
a training set, and finally, RF is evaluated orabdation set.

Il.  EXPERIMENTAL SETUP

A. Gait and Surfaces

A Sony ERS-7 walked with singular crawling durirget
experiments to protect the weak servomotors andtaiaithe
stability by having three legs always on the gro{t@]. The

walk period §) was 2400 msec (2.4 Hz) and the speed was

around 2cm/sec. The robot traversed on six diffe@mmon
surface types found in households (Fig. 1):

e 8x8cm porcelaitiles and 2x2cm porcelain tiles.

e Lacquer coatedood flooring and laminate flooring.

e Abitless rigid normal and slippexynyl flooring.
Carpeted floors with 0.5-1mm thick plastic foam.

e 2-3mm thickshort carpets.

e 13mm thicksoft carpet and shag carpet.

Unlike when the robots walked on one example per

domestic surface type in [5, 8, 9, 10, 13, 15], @IBun on
multiple examples per type to gather samples in aem
generic manner in this paper. The intraclass viitialin the
dataset were higher in this way and the interataseelation
had a higher chance tough these properties werstudied.
Although the body oscillations were mainly influedcby the
rigidity and the slipperiness, the surfaces weassified here
by the first criterion; for example, soft and stegpets were
placed in the same class. To make the problem eware
challenging, the samples were collected with soeksl
walking barefoot. (The robot worn dog socks witlffegtent
anti-slip patterns in the experiments, their exastallation
can be found in [10].) The idea behind the mixedgesof
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socks was invented when the author did not find anyataset (ISRD - DOI: 10.13140/RG.2.1.3877.5764).e Th

significant effect on the recognition accuracy withvo
classifiers trained with no socks/socks cases atgigrand
when the samples were merged together in a sitagsifier
during the initial experimentation. On one hande th
complexity was reduced with collapsed samples,hencther
hand, half of the AIBO owners draw anti-slip socks their
robots and the remaining do not use socks at @]l [Lis a
clear advantage to use one machine learning medetdless
of the owner preference.

B. Sensors

The tactile sensors have been widely used for cairfa
classification [1, 2, 3, 5, 8, 10, 11, 12, 13, i&bmeasure the
body oscillations during locomotion, and in AIBDgte is a
low-cost accelerometer in the torso with a 120 Hmling
rate.

To the best knowledge of the author, the infraradge
sensors were considered by Ojeda and Borensteinf¢tl
terrain discrimination of mobile robots in the pastd they
proposed the frequency domain components of thexssoss
to complement other devices. A built-in IR sensdathva 25
Hz sampling rate on the chest of AIBO was utilizacthis
paper which was directed to the flooring by 30 degr

The advanced force sensors have been often attélties
tip of the robot legs to measure the ground coritaces [3, 6,
8, 15], but the paws in this experiment had a sntplo-state
contact force sensor with a 10 Hz sampling rate.il&vh
proprioceptive sensors (e.g potentiometers) wesearehed in
[1, 3, 6, 8, 9], the ERS-7 model has a force seimseach leg
joint. The previously mentioned papers combinedadtits in
the sensor readings, however, the author found
discriminative power for the hip joints of the hikes during
the initial experiments. After these hip joints eéncluded in
the feature extraction, any other joint had nou@fice on the
classifier performance.

C. Sample Collection

The initial body oscillations (first two walk peds) have
an undesired effect on the extracted features dse,no
therefore, they were omitted. In [14], the duratafrthe first
step was excluded with similar purpose for a hedapo

The sampling frequency of the operating system IBQA
is 31.25Hz and the crawl gait is slow, thereforgo twalk
periods (4.8 seconds) of sensor data were usegtrtactthe
feature vectors. This sliding window size is enotmlcontain
a full walk period all the time to catch all bodgailations
relevant to the current surface. The author vattiedwindow
size in the initial experiments, but the shorteglh increased
the classifier complexity (random forest size) withany gain
in the accuracy. Similar to the this size, Hoffmetnal [7]
found the 6 seconds-long sensor readings the nuostrate
with their four-legged robot and an other work §gjncluded
the 4 seconds-long window over 1 second. Howeverter
windows can suit better for different robots ongiaiBermudez
et al [1] found a 350 msec time window enough fourmning
hexapod robot to maximize the model accuracy.

30709 samples were collected for the dataset what t
author opened under the name of Indoor Surface gRétmn

real

corpus was split into a training) and a validation setS()
randomly in 40%/60% partitions. The training setl I2026
wood flooring, 2109 vinyl, 2214 tiles, 1402 carpktioor,
2510 short carpet and 2112 soft carpet sampleantiag all
classes around 2000 samples. The validation set2iia8
wood flooring, 2809 vinyl, 3128 tiles, 1970 carpktioor,
2276 short carpet and 5355 soft carpet samplesfifgheole

of St was to estimate the classifier accuracy with cross
validation and the second was to build the finatieie for the
evaluation ofS,. Such a large validation set has not been
reported in the literature, 75%/25% split was dedirin [1]
and 84%/16% in [12]. Note that the less fraction thé
samples are included for training the more diffictdr a
classifier to predict the validation set.

I1l.  FEATUREVECTOR

Before the classifiers are trained, a featureorettust be
defined. This chapter describes how the featurese we
extracted from the sensor data streams.

The feature vectors of surface models contain tegec
components and statistical descriptors which anapeed
from a time window over the raw sensor data. Thatufe
vector size (48) in this paper is on the averagepared to
previous works:

* Vail and Veloso [13] used 6 features derived from
the accelerometer data.

* Bermudez et al [1] suggested 15 statistical feature

Hoepflinger et al [6] defined 20 features from mioto
currents and ground contact forces.

« Tick et al [12] selected 68 features out of 864.

* Weiss et al [16] generated 128 FFT components from
accelerometer data.

e Walas [15] had 174 features generated from tactile,
depth sensors and camera.

The feature extraction is a crucial part of thessification
process because the models must comprehend disativei
features to provide good predictions. In the liera, either
the researchers selected some scalar statistibsuvitieeper
analysis [13, 15] or many features were generataatder to
run through feature selection. These practicesleaah to the
usage of non-relevant features in the first casenaling up
different optimal statistics for every sensor ie gecond case.
The author of this paper considered many statisticeach
sensor and the best were selected manually aftéeiative
examination of the feature importances in the ahiti
experimentation. The automated feature selectiatearup
with various statistics for tactile sensors in [I@jwever the
same were optimal for all sensing modalities is thiork.

Albeit the statistical moments have lower compotal
costs than fast Fourier transform (FFT) analyst they were
preferred in [1], the experiments in this paper dat find
these moments sufficient to distinguish the sudas@hout
the FFT magnitudes. The author believe that Bermedeal
found the moments suitable as their surfaces weng v
distinct.
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Some past works used all components of the Four
transform [11, 16], some reduced the dimensionsh wi
principal component analysis [2] or similar methoc
Holmstrom et al [9] calculated the FFT on the tisezies of
the proprioceptive sensors in AIBO and the thirdnanic
peak (~4.5Hz) showed significant difference for tipls
surfaces. The Flourier analysis of tactile sensoes hexapod
robot [15] showed varying magnitudes for more sefa
below 9 Hz and the frequency range 0-4Hz contamedt
differences, similar to [9]. The author of this pafound that
the useful frequency bands were in relation tovthék period,
namely, its overtones and the inharmonic partigfe) hold
most information for surface classification where=k{1/16,
1/8, 1/4, 1/2, 1, 3/2, 2}. These frequencies werafiemed
with feature selection when the first 20 FFT amolds of
several sensors were added to the feature vectomgdthe
initial experiments and the same bands had remkfehture
importances while other bands had negligible. Tfhiging
needs a detailed theoretical analysis in the futowé it is not
part of the current study.

Every sensor had 150 measurements in two walk gerio
and the feature vectors were computed over this twimdow.
Six frequency bands contained the proposed ovestamel
inharmonic partials in the following FFT componeri§ 2",
39 6" 9" and 13. Although these bands had good
discriminative power for one sensor, but after $hee bands
were added to the feature vector for new sensindalit@s,
the gained overall improvements had a decreasiagdir
While all six components were worth for the acaatester (z-
axis), the IR sensor had five and the force sertboee. This
result may suggest that the FFT analysis of differe
modalities capture similar discriminative capapiliaused by
the body oscillations from the classifier pointvaéw which
implies these oscillations as main influence onIfResensor
readings unlike the surface reflections. This phesa
requires further analysis as well.

A. Accelerometer Sensor

Median, maximum, skewness and root mean squar%

(RMS) amplitude were computed over the sliding weinvcof
the accelerometer angles (x, y, z). The robot veaikrigid
flooring produces vertical body oscillations, whiclan be
detected in the z dimension [16, 18], while softfates
absorb these anomalies. The time series from z \agi®
transformed to the frequency domain by FFT and dixe
proposed components were added to the feature rvek@o
features were generated in overall from the acoaieter.

B. Infrared Range Sensor

The IR range sensor on the chest operates witlinqa
cm] and the robot body oscillations alter theseussl The
interquartile range (IQR), maximum, skewness,
amplitude statistics, the first five proposed amel targest FFT
components were added to the feature vector. 10ré=awere
originated from this sensor.

C. Leg Force Sensors

The force sensors in the hip joints of the hindslegre
chosen (see Chapter I1.B) for feature extractiohe Bame
statistics (IQR, maximum, skewness, RMS amplitudeje
calculated again along with the first three progloaed the
largest FFT amplitudes. These sensors contribldddtures.
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Fig. 2. Every first two barsQVnes, CVs) show the classifier performances
in cross-validation and latter twd/dlnog, Valg) for unseen data. Feature
standardization was employed for the even barsthed was no feature
preprocessing in the odd bars. Classifiers: maxineatnopy (ME), support
vector machine with linear kernel (S\(), support vector machine with
radial basis function (SVMy), k-nearest neighbor (KNN), decision tree
(DT), random forest (RF) and kernel ridge regrasgiKkRR).

D. Ground Contact Force Sensors

The four paws of the Sony ERS-7 are two-state hstto
They are pressed more likely when the robot watks oigid
surface compared to a carpet. Therefore, the iehsmtions
in a walk period provide a good metric about thgdity. A
simple sum was calculated from these sensors vghimiuced
the last four values to the feature vector.

IV. CLASSIFIER SELECTION

According to the well-known no free lunch theorem i
machine learning, there is no universal “best” sifees for all
problems in the world and different methods canieagh
similar, satisfactory results. Nine classifiers @eompared in
this study (Fig. 2) and the effects of feature dtadization
were examined during cross-validation and validepbases.
(The classifier hyperparameters can be looked (ipGh) The
relevance vector machines and naive Bayes (NB}ifikrs
chieved low accuracies (< 25%) thus they were tethiin
ig. 2. The latter was unexpected as the Bayesifitas has
been performed remarkable in the literature [8,170,16].

Similar to a previous work of the author [10], Weet al
studied several algorithms with 10-fold cross-vatiion [16].
Although the decision tree (J4.8 variant) did nild/ good
results, SVM, KNN and NB had the highest model sacy
estimations in [16]. The author found that NB, S\&vd DT
were ahead of KNN in [10], but in this paper, SVDT, RF,
KNN and ME were over 80% in the CV phase.

SVM classifiers are sensitive to the missing featur
standardization what is reflected on Fig. 2. SVMad h

RrMSmproved accuracies over 80% in almost every cdsenvihe

data was standardized. On the other hand, the réeatu
preprocessing caused performance losses in sonmeiits
(CV of SVMggr, validation of KRR). Although the SVM
classifiers had reasonable accuracies in the \alid@hases,
the random forest delivered the most stable pedanes (91-
96%), regardless of applied or absent feature pogssing.
Other classifiers had varying, lower results.

Though neural networks [3, 5, 11, 16], SVMs [118, 15,
16] and decision trees [10, 13, 16] have broadalitee in
surface classification, the random forests have be¢n
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examined at all. As a consequence of the missipgranents,
the potentials of this classifier family have neeh exploited
because the decision trees have limited learnipglilties

compared to RF. The random forests were choserthfor
further experiments in this paper to investigat thcovered
topics and benefit from the built-in variable imfzorce

measures of RF for feature ranking.

A common practice in machine learning to remove the

outliers from the database as they can confusel#ssifiers,
but the author did not find any impact on the aacyrin the
initial experiments hence they were left.

Usually it is not expressed in the robotics papkut,the
CV results of a classifier can not be matched dirdo the
model accuracies calculated on unseen data siredirgi
gives only an estimation about the latter. For epamthere
was C\, >> Valg; for ME, DT and KNN (Fig. 2). Therefore,
the cross-validation results are compared to thev&Mes of
the literature in Chapter V.A and the model accu@hapter
V.B) is presented against the relevant works.

V. MODELANALYSIS WITH RANDOM FOREST

and it was better from [5] by 5.7%:
e 3 surfaces: 84.9% in [13].
e 4 surfaces: 92% in [9], 96.3% in [8].
e 5 surfaces: 93% in [10], 96.2% in [3].
» 6 surfaces: 90.5% in [5].

Note that the evaluation above excludes the eatligties
for outdoor terrains [1, 2, 11, 17] since the stefeecognition
must distinguish more subtle details in the bodyllasions on
domestic floorings (see in Chapter 1) with less feue
irregularities. [6, 12, 15] were also omitted by tfeason of
the missing cross-validation step.

B. Model Accuracy

The cross-validation estimates the model accuraspine
extent, but the results for KNN and DT were famirthe real
performances in Fig. 2 what warns about the linadtet The
models must be built with training samples andettsbn
unseen data to get a proper measure hence themgodests
in this subchapter were constructed witha8d evaluated with

The random forests have been implemented for manyv (S€€ in Chapter II.C).

problems except surface recognition. This papés tilis gap
by examining the RF models closely as previous widr&ve
not been went into details about the effects ofssifeer
hyperparameters [1, 5, 6, 8, 10, 13, 16], only thature
selections have been researched [3, 11, 12, 15].

The forest dimensions depend on the maximum trpéhde
and the forest sizef,, defines a random forest with maximum
tree depthx and forest sizg. The minimum sample count on a
leaf for splitting is an other important parameterd it is
recommended to set around||5100. It was fixed to 100 in
these experiments to avoid overfitting.

A. Model Accuracy Estimation

Depending on the random forest parameters, a nuzatel
underfit the data if the forest is too small or wiveng
happens when too large. Fig. 3 represents hgwddels (i,je
[4, ..., 80]) were evaluated for their accuracy andnrary
usage in the function of the maximum forest sizd tee
depth. The blue-green area on Fig. 3.a shows tHerfitting
models and the red-orange-green area on Fig. 3ifaios the
overfitting models. The area ofd{10,..., 80]; je [20,..., 30])

TABLE I. CONFUSION MATRIX OF AN RE ,  MODEL

THE ROWS SHOW THE REAL SURFACES AND THE COLUMNS HOWAEY WERE

CLASSIFIED.

The k-fold cross-validation does not replace thedeho .
verification on unseen data, but it gives a realsienastimate % w ‘ SC ‘ c ‘ v ‘ T ‘ CF
about the model performance. 10-fold cross-valishativas w 91,57 061 054 268 450 0.11
run with an rfy, on the training set to estimate the model -

Shel . SC 0.7¢ 90.9¢ 3.21 1.4¢ 2.0 1.5¢
performance in this paper and 96.2% accuracy whe\eed - - ‘
with six classes. The surface recognition getslehging by C 01t 22z 90.6€ 077 211 = 4.0¢
increasing the surfaces as the model must disshgmore Vv 415 3.8¢ 0.61 87.8¢ 2.8t 0.6¢
and more classes correctly. This novel approacheoigrmed C = :
other methods in the literature because the peece is T 067 09: 12 211 EEE 0.3°
similar or higher than the estimations of less ordsurfaces CF 03¢ 0.3C 1.07 0.8 0.61 96.8C
Floor Surface Model Performance Floor Surface Model Memory Usage
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Fig. 3. The diagrams show the random forest madalracies (3.a) and memory usages (3.b) in tretifumof the maximum tree depths and forest sizes.
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THE ODD COLUMI:II—SAE;\IJETQ\.IN THE EEI:TF?JEEIS’\#EI(E)?\-/ETICCEOSLUMNS SHOW THE features had low ranks. This result was againsexectation
RELATIVE IMPORTANCES FROMH;0 MACHINE SOFTWARE(SCALE: 107) IN that this axis contains the most descriptive corepésof the
DECREASING ORDER body oscillations [16, 18].
(ACCELEROMETER A, Ay, A,; INFRARED RANGE SENSORIR; FORCE . ; - .
SENSORS OF HIP JOINTS IN HIND LEG® , Fri; GROUND CONTACT FORCE The maximum and'3statistical momentum over multiple
SENSORSGR ¢, GR 1, GFrr, GFri) sensors are in the middle columns of Table I, theyide a

: stable, average discrimination. The new RMS amqditu
iqr(Fun) (491 fftmad(Fry) | 116] skew(Rv) | 56 jrmsa(A) | 27 statistics (blue) have good performance among ttiero
rmsa(fry) | 147|sum(Ghy) | 111] ft(Fuy) | 56| fitg(A,) | 24 features and the ground force sensors (yellowpatstanding
despite they are simple two-state sensors. The BESt
med(4) |147) max(Fy) |107] skew(IR) | 55| fito(A,) | 24 features (orange) are principal and maximal coeffits,
fit2(IR) [146] ffts(IR) | 99| igr(Fzy) | 53| fft1(A,) | 23 generated by the infrared range and the motor feeresors.
These sensors have been underutilized in the surfac
sum(Gh) [146] max(4) | 98| max(A) | 52] ffts(A) | 22 recognition, Ojeda et al proposed the infrared easensors as
rmsa(A) [141| rmsa(ky) | 75| ffts(Fre) | 51| igr(IR) |22 complementary for inertial sensors [11] what coulé
originated in more irregularities of the outdoorrfaoes.
Sum(Ghey) | 185) fita(Fun) || 74 | skew(A) | 48| fits(A;) | 22 Bermudez et al attached the force sensor to defdema
sum(Ghg) | 125| skew(fy) | 72 | max(A) | 33| ffte(A,) | 22 polymeric legs [1] while the force sensors are @thin each

fit,(Fer) | 124] max(IR) | 61| fft(IR) | 33| fit,(IR) | 21 leg joints of AIBO.
Table Il shows the s, model accuracy when different

fitma(IR) [124] skew(sy) | 60 | max(fry) | 30| fita(Fip) | 20 feature subsets were used for training and vatidatiThe
rmsa(IR) | 123| fft maf(Fir) | 59 | fito(IR) | 30| ffto(Fry) | 17 accelerometer (18 features) had the lowest scomngrthe

individual sensor features and the leg based fesi@CF, F)
med(A) [128] rmsa(A) | 58 | skew(A) | 28| med(A) | 6 were strong, similar to [3], while proprioceptivanda feet
pressure features had higher rankings over theesooseter

e A e Sy SISGCDIES I [8] The accelerometer has been the most posalasor for
SENSORS OF HIP JOINTS IN HIND LEG, INFRARED RANGE SENSORIR) surface recognition, but this modality had the Istuelative

discriminative power in this paper and in [3, 8[CEsensors
A GCF F IR | A+GCF | A+GCF+F | All had good results again, similar to Table Il, altjftouthey
481! 627 | 69.7 | 552 75.¢ 872 92.¢ produced only four features. These latter sensdded the

biggest contribution to the sensor fusion (A+GCE7-7%),
force sensors 11.6% (A+GCF+F) and IR 4.1%. The auth
examined the joint angle sensors in the initialegipents as

in Fig. 3.a and Fig. 3.b provides an accuracy platef 91-  well, but that modality did not improve the RF misdkence
94%. The Table | shows the confusion matrix of &9326 they were not included in this work.

model (accuracy: 92.09%, precision: 92.31%) and tmos _ _

misclassifications (orange) happened between classth D. Computational Requirements

similar rigidity. The tiles and carpeted floor h#we highest The random forests were coded in C++ with the OpenC
accuracies, therefore, they caused unique bodifaikmris. library. A model was built in 1-4 seconds on atfgeneration
Core i7 (1.86Ghz) depending on the forest sizes Thsult
outperformed all training times in [16], consideyithe weaker
processor and the larger training set (12373 v@83 %2mples
in [16]) of this paper. The feature extraction withee FFT
analyses took 3 msec on a MIPS CPU (576 Mhz) inGA#d

a smaller forest (¥f) with 90.9% accuracy was selected
because of the trade-offs in embedded platformis 3rhaller
RF predicted a surface in 20-90 isec with 833KB RAM

Two earlier works reported model accuracies fore fiv
indoor surfaces. Degrave et al [3] achieved 84.68fb Tick
et al [12] 89%. The new method of this paper redlia
notable 94% for six surfaces and the model gerzexdlover a
mixed set of barefoot and sock samples while edabksc
contained several surface examples. This resufieofarms
[3] and [12] with more surfaces, generalization povand
higher accuracy.

C. Feature Importances of Different Sensing Modalities VI.~ SURFACEMODEL DESIGN

The variable importances describe the discrimieativ  After the author worked on the machine learningofem
contributions of the individual features to the mbaccuracy. Of surface recognition and reviewed the availakierdture,
A reason for choosing the random forests was theremt Some advices can be given for future researchesserh
capability to calculate these values after theningj phase as €xperiences were gathered with a quadruped SonDAkRIt
Table 11 shows for an 3§, model. The author experienced they may be applicable for other robots:

that a feature vector contained unnecessary weskqpors if 1. The FFT amplitudes have good discriminative pdiae
5+ features had their relative importances below atl  sensors of different sensing modalities. The FFmmanents
removing such variables did not effect the modeleacy. Al yith the overtones and the inharmonic partials hef walk
fe_atures in Tgble I had. 5|g.n|f|cant discriminatizkility, they period are advised (see Chapter IIl), but afterfilse sensor is
differed only in the relative importances to eadfeo. added to the feature vector, only the lower paripdithe other

It was interesting that every modality was sigrificon ~ S€nsors contribute improvements to the model pedace.
average, but the z-axis of the accelerometer pextivelative

e e ) 2. Ground force sensors (even simple ones) prebect
weak discrimination compared to other axes andosengs

surface rigidity very well (see Chapter V.C).
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3. Recommended statistics for feature extractiomSR
amplitude, IQR, median, skewness and maximum.

4. The applied machine learning is rather a “blatk than
exact science nowadays. The author proposes thdoman
forests for the initial experiments and featuresstbn, but
RFs are not the ultimate answer for the surfacssiflaation
as (legged) robots with different dynamics, sensors
modified feature extraction may need other optimelthod.
(Usually, powerful features produce similar accyragth
more classifiers.) Although the author selected feaegtures
manually, but he believes that the variable impurta
functions of RF are beneficial to execute this pescsemi-

this paper. One gait at a fixed speed was analifnesl more
experiments must be executed with varied conditisinge
several past studies focused on multiple gait9[812] and
speeds [10, 16]. The infrared range sensor wastdddo the
ground in this paper and the effects of small dkjge.g
LEGO bricks) on the floor have not been researgietd
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