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Rigidity-Based Surface Recognition for a Domestic 
Legged Robot

Csaba Kertész, Member, IEEE 

Abstract—Although the infrared (IR) range and motor force 
sensors have been rarely applied to the surface recognition of 
mobile robots, they are fused in this paper with accelerometer 
and ground contact force sensors to distinguish six indoor 
surface types. Their sensor values are affected by the crawling 
gait period, therefore, certain components of the fast Fourier 
transform over these data are included in the feature vectors as 
well as remarkable discriminative power is observed for the 
same scalar statistics of different sensing modalities. The 
machine learning aspects are analyzed with random forests (RF) 
because of their stable performance and some inherent, 
beneficial properties for the model development process. The 
robustness is evaluated with unseen data after the model 
accuracy is estimated with cross-validation (CV), and regardless 
whether a Sony ERS-7 walks barefoot or wears socks, the forests 
achieve 94% accuracy. This result outperforms the state of the 
art techniques for indoor surfaces in the literature and the 
classification execution is real-time on the robot. The above 
mentioned model development process with RF is documented to 
create new models for other robots more quickly and efficiently. 

Index Terms—Surface Recognition; Random Forests; AIBO 

I. INTRODUCTION AND RELATED WORK 

HE wheels are better options on even surfaces while the 
legged robots traverse on more difficult terrains. With 

knowledge about the underlying surface, a legged robot can 
switch to an efficient gait or adapt its walk speed for optimal 
locomotion. This paper focuses on the context awareness of 
domestic robots by predicting six surfaces based with built-in 
sensors of a Sony ERS-7. Besides the focus on the indoor 
setting and evaluating the machine learning aspects of past 
researches, the literature review touches the other conditions 
in outdoor environments and the use of vision sensors. 

The surface recognition is less challenging for outdoor 
robots because the vibration-based solutions perform better 
with higher irregularities while the indoor floorings challenge 
the image classifiers with wider variety of colors and textures. 
Learning visual cues in a house can enhance a vibration 
model, but creating a generic texture or color based classifier 
for all kinds of carpets, tiles and other floorings is an 
overwhelming task. By these reasons, the terrains were 

detected with higher accuracies by fused modalities outside 
compared to the indoor floorings [5] and the vision models 
suit better in natural environments [4, 17]. These experimental 
conditions are examined in this paper. 

Ojeda and Borenstein [11] experimented with a four-
wheeled Pioneer 2-AT on six outdoor terrains and different 
sensors were explored during the classification process with 
one training and one testing set. Their neural network 
produced reasonable performance for the inertial sensors 
(82.7% accuracy), but the cross-validation was not applicable 
with their small sample set. 

Hoepflinger et al [6] extracted the features from joint 
motor currents and ground contact force measurements to 
estimate different terrain shapes and surface properties. A 
robot leg was fixed to a table in their testbed thus the sensor 
readings were not affected by robot body oscillations. The 
model performance of their AdaBoost classifier was not 
estimated with cross-validation and there is a high chance that 
these models were overfitted. 

By fusing tactile, depth sensors and camera, a six-legged 
walking robot [15] recognized 12 surfaces with a success rate 
of 95%. Since only one testing and one training set were 
evaluated, cross-validation was not performed to estimate the 
model performance. The feature vector size (174) was much 
higher than the sample set size (84), therefore, the real 
accuracy of this method is uncertain with possible overfitting. 

Unlike the previous examples, several researches executed 
appropriate estimations about the model performance with k-
fold CV. Hoffman et al [8] explored the terrain discrimination 
with inertial, tactile, and proprioceptive sensors of a crawling 
legged robot. Two classifiers (support vector machine (SVM), 
naïve Bayes) were cross-validated and the performance was 
estimated at 96.3% with four surfaces (plastic foil, cardboard, 
Styrofoam and rubber). This result can be compared to the 
previous work of the author [10] where 93% accuracy was 
estimated with 10-fold CV when a Sony ERS-7 walked on 
five surfaces (wood, short carpet, carpet, foam mats, vinyl). 

The Sony robots were equipped with noisy, low-end 
accelerometers (120 Hz) while high-end devices were used in 
some earlier studies with a sampling rate of 44.1 kHz in [2] 
and 4 kHz in [5]. A C4.5 decision tree was implemented for 
AIBO in [13] where the single and pair-joint variances of the 
three accelerometer dimensions (x, y, z, x-y, y-z, x-z) 
composed the feature vector and a large sample database was 
collected. The accuracy of 84.9% was estimated for a model 
of three surfaces (cement, field, carpet) by 10-fold CV. 

OctoRoACH went on three surfaces in [1] and the feature 
vectors were extracted from inertial measurement unit and 
force sensor readings. Bermudez et al studied the shortest 
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sampling window (350 msec) to maximize the classifier 
performance for a running gait. The SVM hyperparameters 
were optimized by 10-fold CV on a training set and 93.8% 
accuracy was estimated. 

The model accuracy is calculated properly with an  
evaluation step of unseen data, like in the following works. 
Degrave et al [3] researched different sensing modalities for 
supervised and unsupervised classification with five surfaces 
(blue foil, styrofoam, linoleum, cardboard and rubber). Their 
experiments found that non-linear sensor fusion and classifier 
are necessary for good results. The reservoir computing model 
of tactile and proprioceptive sensors achieved 84.69% 
accuracy with a validation set. 

Tick et al [12] run a wheeled robot on five surfaces (tiled 
linoleum, ceramic tiles A/B, short carpeted floor and terrazzo). 
After many statistics were extracted from accelerometer and 
angular velocity measurements, they studied the sequential 
forward floating feature selection to build feature vectors for a 
Linear Bayes classifier. The cross-validation was not executed 
in this research, however, the built model was tested under 
practical conditions and the robot achieved 89% accuracy on 
unseen sensor recordings. 

The reviewed literature solved the surface recognition 
challenges with machine learning methods, but Holmstrom et 
al applied experience based models to the problem [9]. 
Specific gaits were evolved by a genetic algorithm for a Sony 
AIBO robot to walk on plywood board, thin foam, short carpet 
and shag carpet. After they found some optimal model 
parameters empirically, tap-delay Adaline neural networks 
modeled the experience of the leg joints for every gait-surface 
combination and the robot predicted a surface according to the 
actual gait. Though a limited sample set was collected, their 
initial experiments showed promising results and the model 
accuracy was estimated to 92% with 5-fold cross-validation. 

Various locomotion options and sensor combinations have 
been examined in the past works: wheeled [11, 12, 16, 17], 
quadruped [3, 4, 8, 9, 10, 13], six-legged robots [15]. 
Although some studies analyzed a few sensors [9, 11] or the 
body oscillations [18], this paper does not go into this 
direction, but the focus is on the classifier model building and 
the evaluation to provide a better interpretation of the past 
results from machine learning point of view. Most reviewed 

studies evaluated their models properly [1, 3, 8, 9, 10, 12, 13], 
but some did not employed (cross-)validation to get a better 
estimate of the real accuracy [6, 11, 15]. This paper uses a 
four-legged Sony ERS-7 robot and the feature vector is 
composed by the readings of four sensors to train the models. 
Nine classifiers are examined and random forests are chosen 
as they have some unique properties for the further analysis. 
After the features are extracted with fast Fourier transform and 
statistics, the model accuracy is estimated with 10-fold CV on 
a training set, and finally, RF is evaluated on a validation set. 

II. EXPERIMENTAL SETUP 

A. Gait and Surfaces 

A Sony ERS-7 walked with singular crawling during the 
experiments to protect the weak servomotors and maintain the 
stability by having three legs always on the ground [10]. The 
walk period (φ) was 2400 msec (2.4 Hz) and the speed was 
around 2cm/sec. The robot traversed on six different, common 
surface types found in households (Fig. 1): 

• 8x8cm porcelain tiles and 2x2cm porcelain tiles. 

• Lacquer coated wood flooring and laminate flooring. 

• A bit less rigid normal and slippery vinyl flooring. 

• Carpeted floors with 0.5-1mm thick plastic foam. 

• 2-3mm thick short carpets. 

• 13mm thick soft carpet and shag carpet. 

Unlike when the robots walked on one example per 
domestic surface type in [5, 8, 9, 10, 13, 15], AIBO run on 
multiple examples per type to gather samples in a more 
generic manner in this paper. The intraclass variability in the 
dataset were higher in this way and the interclass correlation 
had a higher chance tough these properties were not studied. 
Although the body oscillations were mainly influenced by the 
rigidity and the slipperiness, the surfaces were classified here 
by the first criterion; for example, soft and shag carpets were 
placed in the same class. To make the problem even more 
challenging, the samples were collected with socks and 
walking barefoot. (The robot worn dog socks with different 
anti-slip patterns in the experiments, their exact installation 
can be found in [10].) The idea behind the mixed usage of 

Fig. 1. The images show the following indoor surfaces from top-left: a) Wood flooring and a short carpet, b) Wood flooring and a soft carpet, c) Normal vinyl, 
d) 8x8cm porcelain tiles, e) Carpeted floor, f) Slippery vinyl, g) 2x2cm porcelain tiles, h) Laminate flooring and a shag carpet. 
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socks was invented when the author did not find any 
significant effect on the recognition accuracy with two 
classifiers trained with no socks/socks cases separately and 
when the samples were merged together in a single classifier 
during the initial experimentation. On one hand, the 
complexity was reduced with collapsed samples, on the other 
hand, half of the AIBO owners draw anti-slip socks on their 
robots and the remaining do not use socks at all [10]. It is a 
clear advantage to use one machine learning model regardless 
of the owner preference. 

B. Sensors 

The tactile sensors have been widely used for surface 
classification [1, 2, 3, 5, 8, 10, 11, 12, 13, 15] to measure the 
body oscillations during locomotion, and in AIBO, there is a 
low-cost accelerometer in the torso with a 120 Hz sampling 
rate. 

To the best knowledge of the author, the infrared range 
sensors were considered by Ojeda and Borenstein [11] for 
terrain discrimination of mobile robots in the past and they 
proposed the frequency domain components of these sensors 
to complement other devices. A built-in IR sensor with a 25 
Hz sampling rate on the chest of AIBO was utilized in this 
paper which was directed to the flooring by 30 degrees. 

The advanced force sensors have been often attached to the 
tip of the robot legs to measure the ground contact forces [3, 6, 
8, 15], but the paws in this experiment had a simple two-state 
contact force sensor with a 10 Hz sampling rate. While 
proprioceptive sensors (e.g potentiometers) were researched in 
[1, 3, 6, 8, 9], the ERS-7 model has a force sensor in each leg 
joint. The previously mentioned papers combined all joints in 
the sensor readings, however, the author found real 
discriminative power for the hip joints of the hind legs during 
the initial experiments. After these hip joints were included in 
the feature extraction, any other joint had no influence on the 
classifier performance. 

C. Sample Collection 

The initial body oscillations (first two walk periods) have 
an undesired effect on the extracted features as noise, 
therefore, they were omitted. In [14], the duration of the first 
step was excluded with similar purpose for a hexapod. 

The sampling frequency of the operating system in AIBO 
is 31.25Hz and the crawl gait is slow, therefore, two walk 
periods (4.8 seconds) of sensor data were used to extract the 
feature vectors. This sliding window size is enough to contain 
a full walk period all the time to catch all body oscillations 
relevant to the current surface. The author varied the window 
size in the initial experiments, but the shorter length increased 
the classifier complexity (random forest size) without any gain 
in the accuracy. Similar to the this size, Hoffman et al [7] 
found the 6 seconds-long sensor readings the most accurate 
with their four-legged robot and an other work [5] concluded 
the 4 seconds-long window over 1 second. However, shorter 
windows can suit better for different robots or gaits; Bermudez 
et al [1] found a 350 msec time window enough for a running 
hexapod robot to maximize the model accuracy. 

30709 samples were collected for the dataset what the 
author opened under the name of Indoor Surface Recognition 

Dataset (ISRD - DOI: 10.13140/RG.2.1.3877.5764). The 
corpus was split into a training (ST) and a validation set (SV) 
randomly in 40%/60% partitions. The training set had 2026 
wood flooring, 2109 vinyl, 2214 tiles, 1402 carpeted floor, 
2510 short carpet and 2112 soft carpet samples, balancing all 
classes around 2000 samples. The validation set had 2798 
wood flooring, 2809 vinyl, 3128 tiles, 1970 carpeted floor, 
2276 short carpet and 5355 soft carpet samples. The first role 
of ST was to estimate the classifier accuracy with cross-
validation and the second was to build the final models for the 
evaluation of SV. Such a large validation set has not been 
reported in the literature, 75%/25% split was defined in [1] 
and 84%/16% in [12]. Note that the less fraction of the 
samples are included for training the more difficult for a 
classifier to predict the validation set. 

III.  FEATURE VECTOR 

 Before the classifiers are trained, a feature vector must be 
defined. This chapter describes how the features were 
extracted from the sensor data streams. 

 The feature vectors of surface models contain spectral 
components and statistical descriptors which are computed 
from a time window over the raw sensor data. The feature 
vector size (48) in this paper is on the average compared to 
previous works: 

• Vail and Veloso [13] used 6 features derived from 
the accelerometer data. 

• Bermudez et al [1] suggested 15 statistical features. 

• Hoepflinger et al [6] defined 20 features from motor 
currents and ground contact forces. 

• Tick et al [12] selected 68 features out of 864. 

• Weiss et al [16] generated 128 FFT components from 
accelerometer data. 

• Walas [15] had 174 features generated from tactile, 
depth sensors and camera. 

The feature extraction is a crucial part of the classification 
process because the models must comprehend discriminative 
features to provide good predictions. In the literature, either 
the researchers selected some scalar statistics without deeper 
analysis [13, 15] or many features were generated in order to 
run through feature selection. These practices can lead to the 
usage of non-relevant features in the first case or ending up 
different optimal statistics for every sensor in the second case. 
The author of this paper considered many statistics for each 
sensor and the best were selected manually after an iterative 
examination of the feature importances in the initial 
experimentation. The automated feature selection ended up 
with various statistics for tactile sensors in [12] however the 
same were optimal for all sensing modalities in this work. 

Albeit the statistical moments have lower computational 
costs than fast Fourier transform (FFT) analysis and they were 
preferred in [1], the experiments in this paper did not find 
these moments sufficient to distinguish the surfaces without 
the FFT magnitudes. The author believe that Bermudez et al 
found the moments suitable as their surfaces were very 
distinct. 
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Some past works used all components of the Fourier 
transform [11, 16], some reduced the dimensions with 
principal component analysis [2] or similar method. 
Holmstrom et al [9] calculated the FFT on the time series of 
the proprioceptive sensors in AIBO and the third harmonic 
peak (~4.5Hz) showed significant difference for multiple 
surfaces. The F\ourier analysis of tactile sensors in a hexapod 
robot [15] showed varying magnitudes for more surfaces 
below 9 Hz and the frequency range 0-4Hz contained most 
differences, similar to [9]. The author of this paper found that 
the useful frequency bands were in relation to the walk period, 
namely, its overtones and the inharmonic partials (k*φ) hold 
most information for surface classification where k ∈ {1/16, 
1/8, 1/4, 1/2, 1, 3/2, 2}. These frequencies were confirmed 
with feature selection when the first 20 FFT amplitudes of 
several sensors were added to the feature vector during the 
initial experiments and the same bands had remarkable feature 
importances while other bands had negligible. This finding 
needs a detailed theoretical analysis in the future, but it is not 
part of the current study. 

Every sensor had 150 measurements in two walk periods 
and the feature vectors were computed over this time window. 
Six frequency bands contained the proposed overtones and 
inharmonic partials in the following FFT components: 1st, 2nd, 
3rd, 6th, 9th and 12th. Although these bands had good 
discriminative power for one sensor, but after the same bands 
were added to the feature vector for new sensing modalities, 
the gained overall improvements had a decreasing trend. 
While all six components were worth for the accelerometer (z-
axis), the IR sensor had five and the force sensors three. This 
result may suggest that the FFT analysis of different 
modalities capture similar discriminative capability caused by 
the body oscillations from the classifier point of view which 
implies these oscillations as main influence on the IR sensor 
readings unlike the surface reflections. This phenomena 
requires further analysis as well. 

A. Accelerometer Sensor 

Median, maximum, skewness and root mean square 
(RMS) amplitude were computed over the sliding window of 
the accelerometer angles (x, y, z). The robot walk on rigid 
flooring produces vertical body oscillations, which can be 
detected in the z dimension [16, 18], while soft surfaces 
absorb these anomalies. The time series from z axis were 
transformed to the frequency domain by FFT and the six 
proposed components were added to the feature vector. 18 
features were generated in overall from the accelerometer. 

B. Infrared Range Sensor 

The IR range sensor on the chest operates within [10; 90 
cm] and the robot body oscillations alter these values. The 
interquartile range (IQR), maximum, skewness, RMS 
amplitude statistics, the first five proposed and the largest FFT 
components were added to the feature vector. 10 features were 
originated from this sensor. 

C. Leg Force Sensors 

The force sensors in the hip joints of the hind legs were 
chosen (see Chapter II.B) for feature extraction. The same 
statistics (IQR, maximum, skewness, RMS amplitude) were 
calculated again along with the first three proposed and the 
largest FFT amplitudes. These sensors contributed 16 features. 

D. Ground Contact Force Sensors 

The four paws of the Sony ERS-7 are two-state buttons. 
They are pressed more likely when the robot walks on a rigid 
surface compared to a carpet. Therefore, the pressed durations 
in a walk period provide a good metric about the rigidity. A 
simple sum was calculated from these sensors which produced 
the last four values to the feature vector. 

IV.  CLASSIFIER SELECTION 

According to the well-known no free lunch theorem in 
machine learning, there is no universal “best” classifier for all 
problems in the world and different methods can achieve 
similar, satisfactory results. Nine classifiers were compared in 
this study (Fig. 2) and the effects of feature standardization 
were examined during cross-validation and validation phases. 
(The classifier hyperparameters can be looked up in [10].) The 
relevance vector machines and naïve Bayes (NB) classifiers 
achieved low accuracies (< 25%) thus they were omitted in 
Fig. 2. The latter was unexpected as the Bayes classifiers has 
been performed remarkable in the literature [8, 10, 12, 16]. 

Similar to a previous work of the author [10], Weiss et al 
studied several algorithms with 10-fold cross-validation [16]. 
Although the decision tree (J4.8 variant) did not yield good 
results, SVM, KNN and NB had the highest model accuracy 
estimations in [16]. The author found that NB, SVM and DT 
were ahead of KNN in [10], but in this paper, SVM, DT, RF, 
KNN and ME were over 80% in the CV phase. 

SVM classifiers are sensitive to the missing feature 
standardization what is reflected on Fig. 2. SVMs had 
improved accuracies over 80% in almost every case when the 
data was standardized. On the other hand, the feature 
preprocessing caused performance losses in some situations 
(CV of SVMRBF, validation of KRR). Although the SVM 
classifiers had reasonable accuracies in the validation phases, 
the random forest delivered the most stable performances (91-
96%), regardless of applied or absent feature preprocessing. 
Other classifiers had varying, lower results. 

Though neural networks [3, 5, 11, 16], SVMs [1, 8, 10, 15, 
16] and decision trees [10, 13, 16] have broad literature in 
surface classification, the random forests have not been 

Fig. 2. Every first two bars (CVNoSt, CVSt) show the classifier performances 
in cross-validation and latter two (ValNoSt, ValSt) for unseen data. Feature 
standardization was employed for the even bars and there was no feature 
preprocessing in the odd bars. Classifiers: maximum entropy (ME), support 
vector machine with linear kernel (SVMLin), support vector machine with 
radial basis function (SVMRbf), k-nearest neighbor (KNN), decision tree 
(DT), random forest (RF) and kernel ridge regression (KRR). 
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examined at all. As a consequence of the missing experiments, 
the potentials of this classifier family have not been exploited 
because the decision trees have limited learning capabilities 
compared to RF. The random forests were chosen for the 
further experiments in this paper to investigate the uncovered 
topics and benefit from the built-in variable importance 
measures of RF for feature ranking. 

A common practice in machine learning to remove the 
outliers from the database as they can confuse the classifiers, 
but the author did not find any impact on the accuracy in the 
initial experiments hence they were left. 

Usually it is not expressed in the robotics papers, but the 
CV results of a classifier can not be matched directly to the 
model accuracies calculated on unseen data since the first 
gives only an estimation about the latter. For example, there 
was CVSt >> ValSt for ME, DT and KNN (Fig. 2). Therefore, 
the cross-validation results are compared to the CV values of 
the literature in Chapter V.A and the model accuracy (Chapter 
V.B) is presented against the relevant works. 

V. MODEL ANALYSIS WITH RANDOM FOREST 

The random forests have been implemented for many 
problems except surface recognition. This paper fills this gap 
by examining the RF models closely as previous works have 
not been went into details about the effects of classifier 
hyperparameters [1, 5, 6, 8, 10, 13, 16], only the feature 
selections have been researched [3, 11, 12, 15]. 

The forest dimensions depend on the maximum tree depth 
and the forest size. rfx,y defines a random forest with maximum 
tree depth x and forest size y. The minimum sample count on a 
leaf for splitting is an other important parameter and it is 
recommended to set around |ST| / 100. It was fixed to 100 in 
these experiments to avoid overfitting. 

A. Model Accuracy Estimation 

The k-fold cross-validation does not replace the model 
verification on unseen data, but it gives a reasonable estimate 
about the model performance. 10-fold cross-validation was 
run with an rf20,20 on the training set to estimate the model 
performance in this paper and 96.2% accuracy was achieved 
with six classes. The surface recognition gets challenging by 
increasing the surfaces as the model must distinguish more 
and more classes correctly. This novel approach outperformed 
other methods in the literature because the performance is 
similar or higher than the estimations of less indoor surfaces 

and it was better from [5] by 5.7%: 

• 3 surfaces: 84.9% in [13]. 

• 4 surfaces: 92% in [9], 96.3% in [8]. 

• 5 surfaces: 93% in [10], 96.2% in [3]. 

• 6 surfaces: 90.5% in [5]. 

Note that the evaluation above excludes the earlier studies 
for outdoor terrains [1, 2, 11, 17] since the surface recognition 
must distinguish more subtle details in the body oscillations on 
domestic floorings (see in Chapter I) with less surface 
irregularities. [6, 12, 15] were also omitted by the reason of 
the missing cross-validation step. 

B. Model Accuracy 

The cross-validation estimates the model accuracy to some 
extent, but the results for KNN and DT were far from the real 
performances in Fig. 2 what warns about the limitations. The 
models must be built with training samples and tested on 
unseen data to get a proper measure hence the random forests 
in this subchapter were constructed with ST and evaluated with 
SV (see in Chapter II.C). 

Depending on the random forest parameters, a model can 
underfit the data if the forest is too small or overfitting 
happens when too large. Fig. 3 represents how rfi,j models (i,j ϵ 
[4, …, 80]) were evaluated for their accuracy and memory 
usage in the function of the maximum forest size and tree 
depth. The blue-green area on Fig. 3.a shows the underfitting 
models and the red-orange-green area on Fig. 3.b contains the 
overfitting models. The area of (i ϵ [10,…, 80]; j ϵ [20,…, 30]) 

  

TABLE I.  CONFUSION MATRIX OF AN RF
20,20

 MODEL 
THE ROWS SHOW THE REAL SURFACES AND THE COLUMNS HOW THEY WERE 

CLASSIFIED. 

% W SC C V T CF 

W 91.57 0.61 0.54 2.68 4.50 0.11 

SC 0.70 90.99 3.21 1.49 2.02 1.58 

C 0.15 2.22 90.66 0.77 2.11 4.09 

V 4.13 3.88 0.61 87.86 2.85 0.68 

T 0.67 0.93 1.28 2.11 94.66 0.35 

CF 0.36 0.30 1.07 0.86 0.61 96.80 

 

 
Fig. 3. The diagrams show the random forest  model accuracies (3.a) and memory usages (3.b) in the function of the  maximum tree depths and forest sizes. 
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TABLE II.             FEATURE IMPORTANCES 
THE ODD COLUMNS CONTAIN THE FEATURES, THE EVEN COLUMNS SHOW THE 

RELATIVE IMPORTANCES FROM H2O MACHINE SOFTWARE (SCALE: 102) IN 
DECREASING ORDER. 

(ACCELEROMETER: AX, AY, AZ; INFRARED RANGE SENSOR: IR; FORCE 
SENSORS OF HIP JOINTS IN HIND LEGS: FLH, FRH; GROUND CONTACT FORCE 

SENSORS: GFLF, GFLH, GFRF, GFRH) 

iqr(FLH) 191 fft max(FRH) 116 skew(FRH) 56 rmsa(Az) 27 

rmsa(FRH) 147 sum(GFRH) 111 fft 3(FLH) 56 fft 9(Az) 24 

med(Ay) 147 max(FLH) 107 skew(IR) 55 fft 2(Az) 24 

fft 1(IR) 146 fft 5(IR) 99 iqr(FRH) 53 fft 12(Az) 23 

sum(GFLF) 146 max(Ay) 93 max(Ax) 52 fft 1(Az) 22 

rmsa(Ax) 141 rmsa(FLH) 75 fft3(FRH) 51 iqr(IR) 22 

sum(GFLH) 135 fft 1(FLH) 74 skew(Ax) 48 fft 3(Az) 22 

sum(GFRF) 125 skew(FLH) 72 max(Az) 33 fft 6(Az) 22 

fft 1(FRH) 124 max(IR) 61 fft3(IR) 33 fft 4(IR) 21 

fft max(IR) 124 skew(Ay) 60 max(FRH) 30 fft 2(FLH) 20 

rmsa(IR) 123 fft max(FLH) 59 fft2(IR) 30 fft 2(FRH) 17 

med(Ax) 123 rmsa(Ay) 58 skew(Az) 28 med(Az) 6 

TABLE III.          ACCURACIES OF VARIOUS SENSING MODALITIES 
(ACCELEROMETER: A; GROUND CONTACT FORCE SENSORS: GCF; FORCE 
SENSORS OF HIP JOINTS IN HIND LEGS: F, INFRARED RANGE SENSOR: IR) 

A GCF F IR A+GCF A+GCF+F All  

48.1 62.7 69.7 55.2 75.8 87.4 92.0 
 

 

in Fig. 3.a and Fig. 3.b provides an accuracy plateau of 91-
94%. The Table I shows the confusion matrix of an rf20,20 
model (accuracy: 92.09%, precision: 92.31%) and most 
misclassifications (orange) happened between classes with 
similar rigidity. The tiles and carpeted floor had the highest 
accuracies, therefore, they caused unique body oscillations. 

Two earlier works reported model accuracies for five 
indoor surfaces. Degrave et al [3] achieved 84.69% and Tick 
et al [12] 89%. The new method of this paper realized a 
notable 94% for six surfaces and the model generalized over a 
mixed set of barefoot and sock samples while each class 
contained several surface examples. This result outperforms 
[3] and [12] with more surfaces, generalization power and 
higher accuracy. 

C. Feature Importances of Different Sensing Modalities 

The variable importances describe the discriminative 
contributions of the individual features to the model accuracy. 
A reason for choosing the random forests was the inherent 
capability to calculate these values after the training phase as 
Table II shows for an rf20,20 model. The author experienced 
that a feature vector contained unnecessary weak predictors if 
5+ features had their relative importances below 10 and 
removing such variables did not effect the model accuracy. All 
features in Table II had significant discriminative ability, they 
differed only in the relative importances to each other. 

It was interesting that every modality was significant on 
average, but the z-axis of the accelerometer produced relative 
weak discrimination compared to other axes and sensors, its 

features had low ranks. This result was against the expectation 
that this axis contains the most descriptive components of the 
body oscillations [16, 18]. 

The maximum and 3rd statistical momentum over multiple 
sensors are in the middle columns of Table II, they provide a 
stable, average discrimination. The new RMS amplitude 
statistics (blue) have good performance among the other 
features and the ground force sensors (yellow) are outstanding 
despite they are simple two-state sensors. The best FFT 
features (orange) are principal and maximal coefficients, 
generated by the infrared range and the motor force sensors. 
These sensors have been underutilized in the surface 
recognition, Ojeda et al proposed the infrared range sensors as 
complementary for inertial sensors [11] what could be 
originated in more irregularities of the outdoor surfaces. 
Bermudez et al attached the force sensor to deformable 
polymeric legs [1] while the force sensors are placed in each 
leg joints of AIBO. 

Table III shows the rf20,20 model accuracy when different 
feature subsets were used for training and validation. The 
accelerometer (18 features) had the lowest score among the 
individual sensor features and the leg based features (GCF, F) 
were strong, similar to [3], while proprioceptive and feet 
pressure features had higher rankings over the accelerometer 
in [8]. The accelerometer has been the most popular sensor for 
surface recognition, but this modality had the lowest relative 
discriminative power in this paper and in [3, 8]. GCF sensors 
had good results again, similar to Table II, although they 
produced only four features. These latter sensors added the 
biggest contribution to the sensor fusion (A+GCF - 27.7%), 
force sensors 11.6% (A+GCF+F) and IR 4.1%. The author 
examined the joint angle sensors in the initial experiments as 
well, but that modality did not improve the RF models hence 
they were not included in this work. 

D. Computational Requirements 

The random forests were coded in C++ with the OpenCV 
library. A model was built in 1-4 seconds on a first generation 
Core i7 (1.86Ghz) depending on the forest size. This result 
outperformed all training times in [16], considering the weaker 
processor and the larger training set (12373 vs. 9203 samples 
in [16]) of this paper. The feature extraction with three FFT 
analyses took 3 msec on a MIPS CPU (576 Mhz) in AIBO and 
a smaller forest (rf7,5) with 90.9% accuracy was selected 
because of the trade-offs in embedded platforms. This smaller 
RF predicted a surface in 20-90 ìsec with 833KB RAM. 

VI.  SURFACE MODEL DESIGN 

After the author worked on the machine learning problem 
of surface recognition and reviewed the available literature, 
some advices can be given for future researches. These 
experiences were gathered with a quadruped Sony AIBO, but 
they may be applicable for other robots: 

1. The FFT amplitudes have good discriminative power for 
sensors of different sensing modalities. The FFT components 
with the overtones and the inharmonic partials of the walk 
period are advised (see Chapter III), but after the first sensor is 
added to the feature vector, only the lower partials of the other 
sensors contribute improvements to the model performance. 

2. Ground force sensors (even simple ones) predict the 
surface rigidity very well (see Chapter V.C). 
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3. Recommended statistics for feature extraction: RMS 
amplitude, IQR, median, skewness and maximum. 

4. The applied machine learning is rather a “black art” than 
exact science nowadays. The author proposes the random 
forests for the initial experiments and feature selection, but 
RFs are not the ultimate answer for the surface classification 
as (legged) robots with different dynamics, sensors or 
modified feature extraction may need other optimal method. 
(Usually, powerful features produce similar accuracy with 
more classifiers.) Although the author selected the features 
manually, but he believes that the variable importance 
functions of RF are beneficial to execute this process semi-
automatically. The feature vector can be initialized with the 
FFT amplitudes of a sensor and new features/statistics can be 
added to the vector with sequential floating forward selection, 
similar to [12], based on the feature importances. The two 
main discrete parameters (maximum forest size and tree 
depth) of RFs are an advantage to control the forest size while 
many machine learning algorithms have several float 
hyperparameters. To give an insight to the RF properties, 
figures can be drawn (Fig. 3) to visualize the sweat spots 
where these parameters have reasonable accuracy without 
under- and overfitting. Note that bigger sample sets need 
longer time to produce these diagrams, up to several hours. 

VII.  CONCLUSIONS 

The paper detailed the creation of a random forest model 
to recognize six indoor surface types. Although the random 
forests have not been evaluated for surface recognition in the 
past, they were cross-validated to estimate the model accuracy 
and the real performance was computed with unseen data in 
this study. Both results (cross-validation – 96.2%, accuracy - 
94%) outperformed the state of the art researches for domestic 
environments despite the smaller training set, the intraclass 
variability and the mixed barefoot/socks recordings in the 
sample sets. The new method had low computational and 
memory requirements to run the model in real-time on a Sony 
AIBO. The author found some useful practices what can be 
applied to the surface model development (see Chapter VI) in 
the future. Especially, the random forest classifier has some 
inherent properties how this process can be more effective. 

Other contributions were the successful sensor fusion of 
some underutilized sensors (infrared range, motor force) in the 
field. A few FFT amplitudes were proposed for surface 
recognition whose bands were determinated by the overtones 
and the inharmonic partials of the crawling walk period. The 
feature selection confirmed the importance of these 
magnitudes hence future researches with legged robots are 
encouraged to use these frequencies. It was also found that the 
classifier captured similar prediction capabilities of the same 
FFT components of different modalities which rooted on the 
body oscillations caused by the walk period. 

Many statistics were explored to find the maximum, 
skewness, interquartile range and median beneficial for more 
sensors. The root mean square amplitude was applied 
efficiently to all modalities though it has not been considered 
for surface classification earlier. 

Future work can consider more surface types, the 
examination of traversing the surface edges and the detection 
of slippery surfaces although there are several limitations in 

this paper. One gait at a fixed speed was analyzed thus more 
experiments must be executed with varied conditions since 
several past studies focused on multiple gaits [8, 9, 12] and 
speeds [10, 16]. The infrared range sensor was directed to the 
ground in this paper and the effects of small objects (e.g 
LEGO bricks) on the floor have not been researched yet.  
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