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Multi-Type Activity Recognition in Robot-Centric Scenarios

Ilaria Gori1, J. K. Aggarwal1, Larry Matthies2, and M. S. Ryoo3

Abstract— Activity recognition is very useful in scenarios
where robots interact with, monitor or assist humans. In the
past years many types of activities – single actions, two persons
interactions or ego-centric activities, to name a few – have
been analyzed. Whereas traditional methods treat such types
of activities separately, an autonomous robot should be able to
detect and recognize multiple types of activities to effectively
fulfill its tasks. We propose a method that is intrinsically
able to detect and recognize activities of different types that
happen in sequence or concurrently. We present a new unified
descriptor, called Relation History Image (RHI), which can
be extracted from all the activity types we are interested in.
We then formulate an optimization procedure to detect and
recognize activities of different types. We apply our approach
to a new dataset recorded from a robot-centric perspective
and systematically evaluate its quality compared to multiple
baselines. Finally, we show the efficacy of the RHI descriptor on
publicly available datasets performing extensive comparisons.

I. INTRODUCTION

The recognition of activities is a crucial problem in
computer vision. Usually, activities are categorized based on
how many people participate (one person, two persons, a
group of people), and the point of view from which they
are recorded (third person, ego-centric). The combination
of these two characteristics generates 6 possible types of
activities. Traditional computer vision methods address the
recognition of only one type of activity. For example, single
person activities from a third-person perspective [1] has been
studied broadly in the past. Two-person interactions from a
third person perspective [2] and group activities from a third
point of view [3] have been analyzed more recently. In the
last few years, the ego-centric perspective has been largely
explored in the form of ego-centric activities [4], [5], where
the goal is understanding what the person wearing the camera
is doing, and ego-centric interactions [6], [7], where a robot
usually wears a camera, and the objective is classifying what
activities other people are doing to the robot.

In all the above-mentioned cases, videos to be classified
belong to a specific type of activities. However, imagine a
service robot, who provides directions and recommendations
in public places, or a robot assistant, who helps elderly
people, or yet a surveillance robot, who monitors crowded
areas. In these situations, people usually perform several
different types of activities at the same time, and the robot
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should be able to classify them all. For example, it should
be able to understand if a person intends to talk to it (ego-
centric interactions), to detect if someone needs help (single
person activities from a third person perspective), or notify
someone if there is a fight (two-persons interactions from a
third person perspective). In summary, there is a clear need
to move towards a more general objective: classifying more
complex scenes where multiple people perform activities of
different types concurrently or in a sequence. To our knowl-
edge, ours is the first recognition work that considers such
multiple types of activities. We provide a new video dataset
recorded from a robot-perspective where multiple activities
and interactions happen at the same time, and present a novel
approach to appropriately analyze such videos.

In order to discriminate different types of activities, a
unified descriptor, i.e., a descriptor that can be extracted from
several activity types, is necessary. We propose a new unified
mid-level descriptor, called Relation History Image (RHI)
(see Fig. 1). The Relation History Image is built as the vari-
ation over time of relational information between every pair
of local regions (joints or image patches) belonging to one
or a pair of subjects. It can be extracted from several types
of activities while maintaining the same format and dimen-
sionality, thereby allowing the direct comparison between
activity videos of completely different types. This direct
comparison enables the robot to detect ongoing activities and
discard false positives even in the scenario where multiple
types of activities are present in the same video. In contrast
to the other previous appearance-based unified descriptors
such as STIP [1] or DSTIP [8], RHI is suitable to represent
subtle interactions where human body configurations are
very important. The presented experiments confirm that RHI
significantly outperforms state-of-the-art descriptors in our
scenario, as well as on other public datasets.

The main peculiarity of multi-type activity videos is that
it is impossible to know a priori who is performing what
types of activities. In traditional videos with single person
actions, it is assumed that each person is doing something
singularly. In traditional videos of two-person interactions,
it is expected that there are two persons and that they are
interacting. In our case, if there are three persons in the scene,
there is no way of knowing a priori if two of those persons
are interacting and who they are, or if some of them are
interacting with the robot, or if all three of them are on their
own. To solve this problem, we propose a new method based
on optimization. First, RHI descriptors are extracted from all
the possible combinations of subjects in the scene, including
those formed by pairing each subject with himself. All the
combinations are fed to a classifier, which provides for each
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Fig. 1. This picture represents how RHIs on skeleton and depth are extracted from a single person (e.g., person1) and pairs of persons (e.g., {person1,
person3} and {person2, person3}). For RHIs on skeletons, the relations between pairs of joints are computed for each frame, for each pair. For RHIs on
depth, the Hamming distance between strings obtained from the τ test represents the relations between local regions. The first descriptor in a temporal
window is subtracted to each other frame in the window; these differences are then convoluted with a set of Gaussian filters. The filter responses are
summed to generate the final RHI descriptor over the window of frames.

descriptor the confidence that it belongs to a certain class.
Since RHI can be extracted from different types of activities,
the resultant class can be an interaction, or an action, or an
interaction with the robot. An optimization problem based on
the generated confidence returns who is performing a certain
type of activity, and what activity that is. In the example
above, a possible outcome of our algorithm is: person1-
person3 hug, person2 sit. Notably, the optimization problem
outputs both the action and who is involved in it.

Our main contribution is the idea of recognizing concur-
rent activities belonging to different types, which is crucial
in real-world scenarios. Our technical contributions are:
1) a new unified descriptor, RHI, which can be extracted
from multiple types of activities and thus simplifies the
classification step; 2) a new method to identify what persons
are involved in what activity; 3) a systematic evaluation to
compare the proposed approach to several baselines on a
newly collected dataset as well as on public ones.

II. RELATED WORK

Most of the approaches in the literature tackle the prob-
lems of third-person activity recognition [9], [10], [11], [12],
two persons interactions [2], [13], [14], [15] and group
activities [3], [16], [17]. Li et al. [15] for instance, build
a tensor which contains relations between two persons’ low-
level features over different pairs of frames. In [10], joint
relations and Local Occupancy Patterns (LOP) are used to
retrieve a frame-based descriptor, then the Fourier Transform
is used to model their temporal dynamics. Wang et al. [9]
propose an effective method to create dense trajectories
from which local features are extracted. In the last few
years, also first-person activities [5], [18], [4] and first-
person interactions [6], [7] have been analyzed. However,
previous works are specific to only one type of activities.

In contrast, our method explicitly addresses situations where
the goal is recognizing different types of activities performed
concurrently.

Detecting who is interacting with whom has been recently
studied by Fathi et al. [19]: given a set of persons, their
goal is to classify monologues, dialogues, and discussions.
Their method is based on detecting the social attention of the
participants. Nonetheless, it is assumed that only one social
interaction happens in each scene. Our goal is more general,
as we consider cases where there are multiple social/physical
activities performed at the same time.

In a different category, Lan et al. [20] analyze videos
with multiple people and formulate a hierarchical classifier
to recognize single activities at a low level, while inferring
their social roles at an intermediate level. However, they only
focused on multi-person group activities and simple actions
composing those.

III. METHOD

We introduce a new unified feature descriptor to handle
multiple different types of human activities: Relation History
Image (RHI). Our descriptor is unified as it is able to describe
different types of human activities while maintaining the
same format and dimension. Having a unified descriptor
is very important in robot-centric scenarios, where we do
not know a priori who is interacting with another person,
who is by himself, and who is interacting with the robot.
In this case, we need classification results on interactions,
single person activities and ego-centric interactions to be
directly comparable. If we had three distinct classification
systems (one for interactions, one for single person actions
and one for ego-centric ones), it would not be possible to
infer whether an interaction between two persons p1 and
p2 is more likely than person p1 sitting and person p2



Fig. 2. Examples of the RHI descriptors on human joint locations. In
the first row, RHIs have been extracted from exchange and shake hands
videos, SBU dataset [21]. The second row contains examples of high throw
and bend from the MSRAction3D dataset [22]. In the third row, RHI is
extracted from the First-Person RGBD Interaction dataset [7], actions stand
up and point robot. The last row depicts RHIs taken from our dataset. The
recorded activities are grab robot and run.

hugging the robot. Instead, thanks to the unified descriptor,
we can train all the activities within the same classification
framework and make decisions. At the same time, since the
actual matrix is different when extracted from single persons
and pairs, it is easy for the classifier to learn differences
between single actions and interactions.

Our approach takes a set of unlabeled RGB-D frames,
where multiple people perform activities of different types,
and returns a set of pairs with their associated activity
classes. We consider a pair formed by the same person
selected twice as an acceptable pair to enable single-person
action representations. We take advantage of Kinect 2.0 to
detect human bodies. Relation History Images (RHIs) from
each possible pair of appearing persons is extracted over
a sliding window of frames. During training, we know who
are the persons that are interacting, who is alone and who is
interacting with the robot; the related descriptors model valid
actions. All the other descriptors extracted from pairs that are
not modeling a real activity (non-valid actions) are associated
to the ‘null’ class. A one-vs-one SVM is trained based on
all the RHIs, including those assigned to the ‘null’ class,
regardless of their types. When testing, we do not use any
annotation on the pairs who are interacting and the pairs who
are not. In order to simultaneously recognize the activities
and identify the persons performing them, we solve a linear
optimization problem, exploiting the SVM responses for each
pair in the scene.

For example, in Fig. 3, middle column, the pairs {green,
blue}, {pink, yellow}, and {cyan, cyan} are associated to
valid activities, because the descriptors generated from those
pairs are modeling real actions. However, the descriptor

extracted from the pair {blue,cyan} is not describing an
interaction between blue and cyan, because cyan is actually
on his own, and blue is interacting with green. Thus, the
descriptor extracted from the pair {blue,cyan} models a non
valid action, and it is assigned to a ‘null’ class. Likewise,
the pair {pink,pink} and the pair {yellow,yellow} will be
assigned to the ‘null’ class.

A. Relation History Image

We propose a new mid-level descriptor for general activity
recognition: the Relation History Image (RHI). Given a set of
m local regions (r1, ...,rm) identified on a person, we extract
a local feature vector from each of them (x1, ...,xm). We then
build a m×m matrix Rt for each frame t, for each pair in
the scene. Each element of Rt is equal to

Ri, j
t = K(xi

t ,x
j
t ), (1)

where K(·, ·) is a function that measures the relation between
the low-level descriptors extracted from the i-th and the j-th
local regions at time t. Notably, Rt can describe the relation
between local regions on two different persons, as well as
the relation between local regions on the same person (i.e.,
RHI can model the relations among one person joints by
choosing the same person twice). Two-persons RHIs are
showed in Fig. 2, first row. Examples of single-person RHIs,
extracted from third-person single actions and human-robot
interactions, are showed in Fig. 2, second, third, and fourth
rows. Notably, they are symmetric.

Inspired by the well-known Motion History Image (MHI)
[23], we embed the temporal information in our descriptor
computing a series of temporal differences. We consider
windows [t, t +F ] of F frames and we build a tensor Wt
composed of the differences between all the matrices Rt+f,
f ∈ {2, ...,F} in the window and the first one:

Wt = [Rt+1−Rt Rt+2−Rt ... Rt+F−1−Rt]. (2)

We further convolute Wt with a set of 1D Gaussian filters
over the temporal dimension, each of which having µ =
2t +F

2
and σ2 ∈ (0,1). In particular, we use three different

sigma values: the first one is conceived to consider mostly
the difference between the middle frame and the initial frame
of the window; the second and the third one linearly increase
the weight of the differences between the other frames in the
window and the first one. The responses are summed up in
the final RHI descriptor:

RHIt =
s

∑
j=1

Wt ∗h(µ,σ2
j ), (3)

where s = 3 is the number of filters employed, h(µ,σ2
j ) is a

Gaussian filter applied to the temporal dimension, and RHIt
is the RHI descriptor extracted from the window [t, t +F ].
Fig. 2 depicts some examples of RHI. The only parameter
that influences the proposed descriptor is the number of
frames on which it is calculated. We experimentally found
that a small number of frames, such as 5 or 8, performs well
in any setting.



1) Relation History Image on Joints: Joints are the most
informative local regions for humans. With the popularity
of the Kinect sensor, the possibility of tracking joints au-
tomatically has significantly increased, and several works
in the literature rely on this information to obtain effective
descriptors [10], [24], [25], [26], [27]. For this reason, we
propose a RHI descriptor that represents relations between
pairs of joints over time. In this case, relations can be simply
the Euclidean distances between pairs of joints:

K(xi
t,x

j
t) = ‖x

i
t−xj

t‖, (4)

where xi
t is the 3D position of the i-th joint at time t and xj

t
is the 3D position of the j-th joint at time t (see Fig. 1). This
formulation models variations over time. If two activities are
represented by very similar temporal variations but different
initial positions (i.e., sitting still or standing still), it is useful
to model the initial configuration as well. For this reason, we
concatenate to the RHI on joints the mean of the Rt matrices
defined in 1 over the set of frames, considering a smaller
number of joints chosen randomly.

2) Relation History Image on Depth: In order to build a
similar structure using depth information, we exploit as low-
level feature the so-called τ test, described in [28] and used
in [29] for activity recognition. Given a depth image patch,
the τ test is computed as follow:

τ(i, j) =

{
1, if d(i)> d( j)
0, otherwise,

(5)

where i and j represent two pixel locations, and d(i) and
d( j) correspond to the depth values of those pixels. We use
the modified τ test proposed in [29], which adds a second
bit to each pixel comparison:

τ2(i, j) =

{
1, if |d(i)−d( j)|< ε

0, otherwise.
(6)

We first build a bounding box around each person in the
scene, and we split it in m cells, which represent the locally
fixed regions. Then, for each cell we sample P pairs of pixels,
whose locations are extracted from an isotropic Gaussian
distribution:

(px,py) = i.i.d.N(0,
1

25
σ

2), (7)

where N(·, ·) is the Normal distribution. Such locations
are kept fixed for the whole dataset, so that they can
be coherently compared across different cells and frames.
The comparisons between pairs of pixels within a cell are
performed in an ordered manner, following the order with
which locations have been sampled. From each pair of pixels
we obtain a binary value, therefore from P ordered pairs of
pixels we retrieve a P-long binary string, which describes a
cell and constitutes our low-level feature vector. The relation
between pairs of cells is represented using the Hamming
distance between pairs of strings. Hence, the K(·, ·) function
used in 1 in this case is:

K(xi
t,x

j
t) = Hamming(xi

t,x
j
t), (8)

Fig. 3. Sample images from the new Multy-Type dataset.

where xi
t and xj

t represent the binary strings of cell i and cell
j at time t (see Fig. 1).

B. Learning and Classification

We evaluate temporal segments, where a segment is de-
fined as a set of frames where each user is performing one
activity that lasts the entire time. This means that each pair
– including the pairs formed by the same person selected
twice – can be associated with a single label for the entire
segment, including the ‘null’ label, but the activities executed
by different pairs can belong to different types. A new
segment starts if a new person enters the scene, if someone
leaves the scene, or if someone starts performing a different
activity. Obviously, a label on a pair can be the same for
several sequential segments. For each segment, there is no a
priori information on who is interacting with whom, who is
on his own and who is interacting with the robot. Therefore,
we extract RHIs on skeleton and depth from all the possible
pairs. Given a segment where there are n ≥ 2 persons, we
compute a number of descriptors D(n) equal to

D(n) = n+
n!

2(n−2)!
; (9)

the first n descriptors are extracted from pairs formed by the
same person repeated twice, while the remaining come from
all the possible simple combinations without repetitions of
the n subjects in pairs. For n= 1, D(n) = 1. RHI is computed
over a set of F frames, therefore, for each video containing n
subjects and T frames, we will extract D(n) · (T −F) RHIs.
Then we train a one-vs-one SVM, without distinguishing
among different types of activities. Since descriptors are
extracted from all the possible combinations of subjects in
the scene, some of them do not model valid activities. For
this reason, we introduce the ‘null’ class, ck0 , which gathers
descriptors obtained in such cases. For each test data RHIt
extracted from a set of F frames and from a specific pair, the



one-vs-one SVM outputs a set of values s, one for each pair
of classes. Each value sk,l is positive if the test data has been
classified as belonging to class k, negative if belonging to
class l. Based on these values, given the set C of the activity
classes, we can build a vector of votes v = [v1,v2, ...,v|C|] for
each segment, for each pair, where:

vk =
T

∑
t=1

|C|

∑
l=1,l 6=k

h(RHIt ,ck,cl), (10)

and

h(RHIt ,ck,cl) =

{
1, if sk,l > 0
0, otherwise.

(11)

For each segment, we obtain a matrix V ∈ R|C|×D(n), where
element vk,i j indicates the votes obtained from class ck on
the test data extracted from the pair (ui,u j). The first n
columns contain the votes obtained by descriptors extracted
from pairs where the same user is repeated twice, while the
remaining columns contain the votes obtained by pairs of
different users.

The simultaneous identification and classification is per-
formed using an optimization procedure over the matrix V
so generated: given the votes obtained by all the classes on
each possible pair of users, we would like to select the pairs
that are likely to perform valid activities (i.e., different from
the ‘null’ class), associated to the activity classes that they
are performing. The intuition is that the descriptors extracted
from pairs that are performing a valid activity ck should
obtain the highest number of votes exactly on that activity. At
the same time, the descriptors extracted from pairs that are
not performing any valid activity should get the highest votes
from the ‘null’ class ck0 . At the end of the procedure, each
pair in the segment will be associated to one and only one
valid label. Therefore, if a pair composed of the same user
(ui,ui) is assigned to a valid label, all the pairs formed with
ui will be assigned to the ‘null’ class ck0 . Likewise, if a pair
(ui,u j) is assigned to a valid class, then the pairs (ui,ui) and
(u j,u j) will be labeled as ck0 . Given the set of users U, the
set of activities C and the matrix of votes V for one segment,
we formulate an assignment problem slightly modified. We
create a set of variables Φ, one for each element of the matrix
V. Then, we solve:

Φ
∗ =argmax

Φ

|C|

∑
k=1

n

∑
i=1

n

∑
j=1

vk,i jφk,i j

s. t.
|C|

∑
k=1

φk,i j = 1;∀ui,u j;

|C|

∑
k=1,k 6=k0

φk,ii +
|C|

∑
k=1,k 6=k0

n

∑
j=1, j 6=i

φk,i j = 1;∀ui;

φk,i j ∈ {0,1};∀ui,u j,ck.
(12)

The objective function represents the fact that we want to
choose classes and users that maximize the votes obtained
from the classifier. The first constraint models the fact that

Fig. 4. Some labeled examples from our dataset. First row: the orange
couple is approaching, while the two persons on the sides are sitting. Second
row: the person in the red box is talking to the robot, while the two persons
behind him are talking. Third row: one person is sitting, one running and
two pushing.

each pair has to be assigned to only one class. The second
constraint handles the assignment between pairs composed
of the same user and pairs of different users. We solve this
problem using a branch and cut methodology implemented
within the cplex IBM library.

IV. EXPERIMENTS
This section presents our experimental results on multiple

datasets. RHI performance is compared to other state-of-the-
art descriptors on our new dataset as well as on three public
video datasets.

A. Experiments on our Multi-Type Dataset

1) Dataset: We collected a new RGB-D dataset, called
Multi-Type Dataset, which includes videos where multiple
types of activities are performed concurrently and sequen-
tially. We took advantage of Kinect 2.0 for the tracking. The
sensor has been mounted on an autonomous non-humanoid
robot (see Fig. 5), which is designed to move around in
a building populated by students. We recreated a natural
environment, where students meet, wait to go to class, or
interact with the robot. We asked 20 participants divided in
5 groups of 4−5 persons to perform 12 different sequences
of activities. Each sequence is characterized by the presence
of 2 to 5 persons performing actions, with different body
orientations and at different scales. An example of a sequence
could be: a pair of persons get close, shake hands and start
talking while a person sits by himself, and another person
approaches the robot and clears the path to avoid it. We
asked the subjects to act naturally and with their own timing,
therefore the sequences are always different. We defined 16
basic activities: 6 two-person interactions, approach, hug,
shake hands, push, talk, wave, 6 first-person interactions,
approach robot, wave to the robot, point the robot, clear the
path, talk to the robot, grab the robot, and 4 single activities,
sit, stand up, walk, run.

We collected RGB, depth and skeletal data (see Fig.
3). The images are recorded at around 20 fps. The depth



TABLE I
THE TABLE SHOWS RESULTS ACHIEVED BY OUR METHOD AND OTHER STATE-OF-THE-ART ALGORITHMS ON PUBLICLY AVAILABLE DATASETS AND ON

OUR NEW DATASET.

Method SBU FP MSR MT-Acc MT-F1 MT-F2 Real-time
Yun et al. [21] 80.03% - - - - - Y
Ji et al. [30] 86.9% - - - - - Y

Oreifej et al. [31] 77.0% 45.55% 88.36% 68.07% 0.7315 0.7870 N
Xia et al. [8] 42.69% 53.25% 37.76% 28.38% 0.3891 0.46 N

Laptev et al. [1] 66.28% 50.84% - 38.59% 0.4519 0.5641 N
Xia et al. [32] 41.88% 70.0% 78.97% 47.06% 0.4434 0.5075 Y
Xia et al. [7] - 83.7% - - - - N
Li et al. [22] - - 74.7% - - - ?

Wang et al. [33] - - 86.5% - - - ?
Wang et al. [10] - - 88.2% - - - ?
Wang et al. [24] - - 90.22% - - - ?

Evangelidis et al. [34] - - 89.86% - - - ?
Chaaraoui et al. [35] - - 91.8% - - - Y

Vemulapalli et al. [26] - - 92.46% - - - ?
Luo et al. [25] - - 96.70% - - - ?

RHI (ours) 93.08% 85.94% 95.38% 76.67% 0.7954 0.8633 Y

images are 512× 424 16-bits single channel. RGB images
are 640× 480 three-channels. The skeleton is composed of
25 joints, whose positions are provided in both 3D and 2D.
Some images extracted from the dataset are shown in Fig.
3, while Fig. 4 depicts some labeled examples.

2) Experimental Setting: Given multiple continuous
videos containing a total of 288 activity executions which
may temporally overlap, 523 samples are extracted including
action samples as well as non-valid action samples (i.e.,
‘null’ class samples not corresponding to any activity) for
the training/testing of our approach and baselines. The one-
vs-one SVM is trained based on all these samples by using
corresponding action samples as positive samples and all the
others as negative samples. We performed a leave-one-group-
out cross-validation treating 4 groups of people as training
set and 1 group as test set.

For the testing, we carried out two experiments. In the
first one, we assume that there is no information on who
are the pairs that perform valid actions. As described in Sec.
III-B, a label is associated to each possible pair in the scene.
To evaluate the performance of our method, we use precision
and recall in the following fashion: we treat detections as true
positives if the pairs that have been detected as performing a
valid activity and, at the same time, the classified activity are
correct; the pairs correctly identified as performing a valid
activity, but whose activity has been classified incorrectly,
are treated as false positives; false negatives correspond to
pairs that have been incorrectly identified as belonging to the
‘null’ class. In the second experiment, we assume that the
pairs who are performing valid activities are known. In this
case, we evaluate the effectiveness of descriptors in terms of
classification accuracy.

3) Experimental Results and Comparison: In order to
establish a baseline, HON4D [31], STIP [1] and DSTIP
[8] are assessed on our dataset. Being appearance-based
descriptors, they can be adapted to handle multiple activity
types just by cropping the image around a pair, and by using

the crop to extract the feature vectors associated to that pair.
For HON4D and DSTIP, whose source code is available,
we tested several sets of parameters and we report here the
highest results obtained.

Table I, column MT-F1 and MT-F2, summarizes the
comparison between our descriptor and HON4D, STIP and
DSTIP. The recognition accuracy, computed assuming that
the true pairs are known, is reported in Table I, column MT-
Acc. To take into account the randomness in the dictionary
generation step, we report the mean value over 10 different
trials for STIP and DSTIP. As the table shows, RHI outper-
forms any other general purpose feature descriptor. This is
probably due to the fact that RHI can model situations where
the body configuration is very important.

To show that RHI is more flexible than other joint-based
methods, which are usually not unified, we extend HOJ3D
[32] so that it becomes applicable to our scenario: when
considering pairs constituted by different persons, we con-
catenated the two HOJ3D; when considering a pair composed
of the same subject repeated twice, we concatenated a set of
zeros at the end of the HOJ3D computed on the subject.
We test this simple extension on the SBU dataset too, which
has been recorded to recognize interactions. Table I shows
that the results achieved by this method on our dataset, as
well as on the SBU dataset, are poor. This confirms that it is
not trivial to find a way to extend conventional non-unified
descriptors to recognize multiple types of activities.

B. Comparison on Public Datasets

We assess our new RHI descriptor on three publicly
available datasets. In this case, we only need to evaluate
its recognition accuracy. We compute the RHI descriptor on
each set of F frames in every video, therefore, if the video is
composed of T frames, we extract (T −F) RHI descriptors,
which constitute positive examples for the classifiers. We
proceed in training non-linear SVMs with Radial Basis
kernel in a one-versus-all fashion. The kernel parameters are



Fig. 5. This figure shows the robot that we have used for our experiments.
The Kinect v2.0 is mounted on its head.

estimated during cross-validation. Given a test example, the
SVM scores are calculated for each of the m classifiers and
for each RHI. The test sample is labeled as belonging to the
class that obtained the highest score:

c = argmax
i=1,...,m

T

∑
j=1

hi(RHI j, j+k), (13)

where hi(·) is the SVM i-th classifier. For the following
experiments, we found that computing the RHI on windows
of 5 frames provides the best accuracy.

1) Two-Person Interactions; SBU Dataset: The SBU
Kinect Interaction Dataset [21] has been recorded for interac-
tion recognition purposes. It contains two person interactions
videos from a third-person perspective. This is the first
RGBD dataset for two person interactions, and the only one
containing human joint information. The dataset contains
examples of eight different interactions: approaching, depart-
ing, kicking, punching, pushing, hugging, shaking hands and
exchanging something. We perform a 5-fold cross validation
following the instructions provided in [21]. Table I shows the
results compared to the state-of-the-art in the column called
SBU. As Table I reports, our method outperforms previous
works on this dataset.

2) First-person Interactions; First-Person RGBD Interac-
tion Dataset: The non-humanoid robot dataset presented in
[7] has been collected to recognize first-person interactions.
In this dataset, people only interact with (or react to) the
person/robot who wears the camera, thus it is significantly
different from the dataset considered in Sec. IV-B.1. We
follow the instructions provided by [7] to generate the
final accuracy. Our results with respect to state-of-the-art
approaches are shown in Table I, column FP. As Table I
reports, we achieve the highest accuracy.

3) Third-person Actions; MSRAction3D Dataset: The
MSRAction3D dataset [22] contains video where a single
person performs simple actions, thus is again different from
the previously considered datasets. It provides skeleton and
depth information of 20 different actions. In this case we
use, as relational information on the joint locations, the
same displacement vector that has been used in [10]. This
procedure provides the opportunity to evaluate the actual
effect of the temporal structure in our RHI. We follow the
instructions provided in [22] to compute the final accuracy

using the cross-subject test, which is the most challenging. In
particular, we divide the dataset in three subsets (AS1, AS2
and AS3), and we compute the accuracy on them separately
using 5 subjects for training and 5 subjects for testing. We
compare our results with several state-of-the-art methods in
Table I, column MSR. We only listed the works that used
the cross-subject test, as indicated in [22]. Notably, RHI
outperforms the method in [10]; this shows that the temporal
structure plays an important role to improve the effectiveness
of joint-based descriptors.

C. Discussions

Table I shows that RHI is not only the most effective
descriptor on our new dataset, but also achieves excellent
performance on all the datasets we have considered. The
methods that report a ‘-’ in the Table have not been tested on
the related datasets. Even though some of these approaches
obtained reasonable results on classifying activities of a
single type, they were never tested for realistic scenarios
where activities of multiple different types are present at
the same time, and did not consider learning representations
for such situations at all. Such methods do not have an
ability to directly compare activities of different types, and
thus are not suitable for classifying/detecting them. The only
descriptors that could be more easily extended to our setting
are appearance-based descriptors such as HON4D, STIP and
DSTIP. However, as the experiments confirm, they are not
sufficient to model the scenario we have proposed.

1) Computation time: In Table I, we also report the ability
of the descriptors to be extracted in real-time. In our case,
each RHI computation takes less than 1 msec on the joints
and less than 20 msec on the depth on a common laptop.
The final computational cost is quadratic with respect to the
number of persons in the scene. Note that all these can still
be done in real-time with a support from modern CPU/GPU
architectures. In our approach, each RHI is independent from
the others. This means that we are able to parallelize all these
RHI computations using modern GPUs that handle a large
number of threads simultaneously.

2) Occlusion: We also want to mention that our dataset
contains multiple types of partial occlusions, more than most
of the previous RGBD activity datasets. In order to confirm
this, we measured the ‘occlusion level’ of each dataset
including ours: we computed the largest occlusion between
any two persons present in each video and averaged such
values over all the videos. More specifically, we considered
bounding boxes of every pair of appearing persons, and
computed their intersection divided by the size of the larger
bounding box. Our dataset presents the occlusion level of
0.78. The SBU dataset [21] has the occlusion of 0.44, while
the other two public datasets [22], [7] have 0 occlusion (i.e.,
they are datasets with only one person in each video).

V. CONCLUSION

Our work addresses the problem of labeling a complex
robot-centric scene where multiple persons perform different
activity types concurrently and sequentially. Toward this



goal, we proposed RHI, a new unified descriptor that does
not depend on any sensitive parameter and can be computed
in real-time. We further propose a new optimization-based
method that enables the simultaneous classification of activ-
ities and identification of the subjects involved. Experimental
results confirm that RHI outperforms previous works on
publicly available datasets as well as on the newly collected
Multi-Type Dataset, a new RGB-D dataset which can be
useful to the community for future benchmarking. Few
traditional descriptors can handle a scenario where different
types of activities are performed at the same time. We show
that, even those that can be assessed on our dataset, obtain
poor performances with respect to ours.

At this stage, our approach does not handle group activities
with three or more persons: if three persons are doing group-
conversation, two persons will be labeled as doing ”talking”
interaction and the single action with the highest confidence
will be assigned to the remaining person. A possible future
direction is to handle group activities using graph properties
in the optimization procedure, finding persons with the same
activity. Another possible extension regards improving the
optimization procedure, by substituting the SVM-based vot-
ing strategy with methods which output a confidence measure
along with label predictions. In this paper, we focused on
developing the unified descriptor, RHI, and further improving
the optimization remains a future challenge.
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