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An Artificial Robot Nervous System To Teach
Robots How To Feel Pain And Reflexively React To

Potentially Damaging Contacts
Johannes Kuehn and Sami Haddadin

Abstract—In this paper, we introduce the concept of an
artificial Robot Nervous System (aRNS) as a novel way of
unifying multi-modal physical stimuli sensation with robot pain-
reflex movements. We focus on the formalization of robot pain,
based on insights from human pain research, as an interpretation
of tactile sensation. Specifically, pain signals are used to adapt
the equilibrium position, stiffness, and feedforward torque of a
pain-based impedance controller. The schemes are experimentally
validated with the KUKA LWR4+ for simulated and real physical
collisions using the BioTac R© sensor.

Index Terms—Physical Human-Robot Interaction, Compliance
and Impedance Control, Biologically-Inspired Robots, Biomimet-
ics, Force and Tactile Sensing.

I. INTRODUCTION

PHYSICAL human-robot interaction (pHRI) has become
an increasingly central discipline in robotics research.

With regard to human safety, considerable research was carried
out in [1], [2] and the results reached real-world applications
and international standards. However, rather limited efforts
were undertaken to ensure the robot’s own safety via suitable
controls and a systematic approach to do so is still missing. For
this, a robot needs to be able to detect and classify unforeseen
physical states and disturbances, rate the potential damage they
may cause to it, and initiate appropriate countermeasures, i.e.,
reflexes. In turn, enhanced robot reflexes may improve human
safety in case of human-robot collisions. In order to tackle
this demanding requirement, the human antetype shall serve
as our inspiration, meaning that human pain-reflex movements
are used for designing according robot pain sensation models
and reaction controls. For this, it is worthwhile to first take a
closer look at human reflexes caused by pain - we denote pain-
reflexes - since they are generally regarded of vital importance
to the human.

A. Human Nervous System & Pain Reflexes
Consisting of millions of connected neurons, the Human

Nervous System (HNS) is the most powerful measurement and
communication system of the human body. From a topological
point of view the HNS can be divided into the Central and the
Peripheral Nervous System (CNS, PNS). The CNS consists
of the spinal cord, brain stem and forebrain and is mainly
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responsible for forwarding and processing information coming
from the PNS [3]. The PNS covers all the nerves that are
located outside the CNS, gathering tactile and proprioceptive
information with the help of a wide spectrum of receptors. If
a stimulus is that strong that body injuries become possible,
a highly unpleasant, but vitally important, sensation is caused
— pain [3]. The most responsible and contributing receptors
to pain caused by physical contact are called nociceptors.

When a mechanical stimulus affects nociceptors, which are
distributed all over the skin, they become activated instantly.
Depending on the stimulus strength, typically in terms of
duration, penetration depth and stress, the nociceptors send
ionic electrical spikes decoded in a frequency modulated
manner [3]. Once the stimulus surpasses a certain threshold, a
nociceptor starts firing following the all-or-nothing principle
at constant amplitude [3]. After the signal passes the first
neural interconnection it crosses to the other side of the
spinal cord, following the spinothalamic tract, then through
medulla, pons and midbrain to the thalamus. From there
on, pain information is projected to different areas of the
cerebral cortex. Pain is evoked, which may cause appropriate
movements (pain-reflexes). Obviously, pain is also strongly
an emotional experience, not only influenced by the signals
coming from the nociceptors. Thus, one distinguishes between
the emotional experience of pain and the nociceptive signals
that may lead to pain experiences. In this paper, we focus on
the latter.

B. Reflex Control in Robotics
Various approaches to reflexes in legged robot locomo-

tion were developed with focus on stabilizing the gait of
humanoids in [4], [5], [6]. Reflexes in manipulation tasks
differ, since they are less cyclic and rather asymmetric. In
[7], the humanoid ”Cog” was taught reflexive behaviors by
generating movements from biologically predefined inspired
postural primitives. Through the superposition of these primi-
tives it was possible to imitate reflex-like withdrawal behavior.
In [8], a similar approach was used by overlaying different
movement patterns triggered by a tactile (force) sensor and
was implemented on a 7-Degree-of-Freedom (DoF) robot
arm. In [9], withdrawal movements of the human-arm were
recorded and a force-distance relation was established to
model this behavior. In order to trigger reflexes, an elastic
robot-tissue was introduced, additionally mitigating the impact
force through inherent damping properties. Moreover, in [10],
based on the work in [11], [12], various collision reflex
controls were proposed in the framework of proprioceptive
collision detection and reflex reaction. Further approaches to
reflex control based on optimal control can be found in [13]
and [14].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/LRA.2016.2536360

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2016

Early reflex control approaches are mostly based on single
sensors, e.g., via force-sensors that trigger predefined patterns.
In [8], the authors activate reflexes by modeling single neuron
firing per reflex-type. However, they focus on manipulation
and specific rather abstract high-level reflexes such as grasping
or catching in case of slipping. The basic implementation
of mechanically triggered reflexes is also based on force
sensing only. To the best of the authors’ knowledge, no deeper
”mechano-physiological” contact dynamics were involved, nor
does their human-like neuron firing imply human topological
design. It rather represents a switching strategy that may
trigger different events.

C. Contribution
In this paper, we introduce the artificial Robot Nervous

System aRNS as a new way of integrating tactile sensation
and according reflex reactions into robot control based on the
concept of robot pain sensation. During a mechanical stimulus,
the penetration stress, depth, and its dynamics are sensed via
a virtual nervous robot-tissue and corresponding pain spiking
signals are generated. Together with an interpretation of pain
level, the signals are then used to activate suitable pain-reflex
movements. Concretely, the proposed pain-based controller
serves, e.g., for online adaptation of the equilibrium position,
stiffness, and feed-forward torque of a joint-level pain-based
impedance controller. The overall behavior allows the robot
to sensitively interact with its environment at nominal pain
level, while mitigating potential risks by activating human
inspired reflex strategies if the pain level increases. Note that
the proposed framework can analogously be extended to other
modalities.

The paper is organized as follows. In Section II the design
of the aRNS is introduced. We explain the underlying concept,
the required definitions, and the proposed mathematical model.
Furthermore, the signal interpretation and corresponding pain
reaction strategies are discussed. The pain-based joint-level
impedance controller is introduced in Sec. III. Section IV
reports on the results for simulated and real physical contact
events using the BioTac sensor. The sensor is mounted on the
robot’s end effector and utilized as a real world implementation
of the proposed sensory model. Finally, we conclude the paper
in Sec. V.

II. ARTIFICIAL ROBOT NERVOUS SYSTEM

A. Concept
In general, the schematic concept of a collision between

any suitably controlled (via the desired torque τd) robot and a
collision object (mass mc, local radius rc) can be described by
its corresponding contact dynamics, see Fig. 1. In generalized
coordinates, the contact dynamics between a robot arm and
a colliding object with state xc and its derivative ẋc are
determined by the robot joint configuration q, the joint velocity
q̇, and the external torque vector τext . This torque is caused by
the contact wrench Fc or the stress σc (single point contact)
acting on the collision object and the robot, respectively. In
order to rate potentially painful collisions and activate proper
pain-reflexes, using information about τext only may not be
sufficient. Humans are known to utilize further information,
e.g., in terms of penetration depth δ or stress, into their con-
trols, using the multitude of information provided by the skin;
and not only from their proprioceptive torque measurement via
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Fig. 1. Dynamics of a collision between a controlled robot and a collision
object.
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Fig. 2. Collision between a controlled robot and a collision object including
an artificial Robot Nervous System (aRNS).

the golgi tendon organs. In this paper, our goal is to enhance
robots with similar capabilities by introducing the concept of
an artificial Robot Nervous System that is inspired by the HNS.
This enables a robot to not only sense, but also to interpret
and react to ”painful” collisions, see Fig. 2. The aRNS can
be subdivided into four major components: the nervous robot-
tissue, the spiking model, the interpretation layer of generated
spiking signals, and the motor control law. In the following,
each component is separately elucidated, while the proposed
control laws are introduced in Sec. III.

B. Mechanical Model of the Virtual Nervous Robot-Tissue
We assume a hypothetical nervous robot-tissue model that

is inspired by the human skin structure. In analogy to the
human skin, we split the nervous robot-tissue into three
distinct layers filled with artificial Robot Neurons (aRNs) that
replicate the principles of human receptors, see Fig. 3. The
parameters b1,2,3 denote the thickness of each layer and are set
to b1 = 0.002 m, b2 = 0.004 m, and b3 = 0.014 m, resulting in
a total tissue thickness bt = 0.02 m. The contact with an object
is described by the contact radius d, the penetration volume
Vc, and the object radius rc. The material constants E1,2,3 and
ν1,2,3 represent the elastic modules and the Poisson ratios. In
this paper, they are chosen to be E1 = E2 = E3 := 50 MPa
and ν1 = ν2 = ν3 := 0.25. E1,2,3 and ν1,2,3 correspond to
polystyrene (soft) material that may be a suitable choice for
a mechanical implementation. Based on [15], bt is chosen to
be thick enough to prevent the material from full compression
during contact events. b1,2,3 are chosen in terms of a scaled
ratio that approximately corresponds to the standard thickness
ratio of human skin layers [3]. The parameters ρ1,2,3 represent
the homogenous density of the aRNs and were chosen to be
ρ1 < ρ2 < ρ3 with ρ1 = 107 m−3, ρ2 = 1.05 · 107 m−3, and
ρ3 = 1.1 ·107 m−3. These density values approximately corre-
spond to the density of the human fingertip mechanoreceptors
[16].1 This contact structure has two main properties. First,
the deeper a collision object penetrates into the nervous robot-
tissue the more aRNs are stimulated. Second, when a collision

1For more details on suitable contact models, please refer to [15].
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Fig. 3. Mechanical model of the proposed nervous robot-tissue.

object reaches the next tissue layer the rate of stimulated aRNs
rises. Note that the distribution of aRNs does not necessarily
reflect the distribution of human skin receptors.

C. Spiking Models
1) Principle aRN spiking characteristics: Basically, the

aRNs reflect the basic operation of human receptors. If the
stimulus of human neurons exceeds a certain threshold, they
start to send spike-like signals. One spike is constant at
amplitude, duration and refractory time, which denotes the
duration the receptor is not able to fire again regardless of
present stimuli. A significant amount of information is thus
encoded by changing the frequency of the firing rate. To
imitate such behavior, aRN firing can be modeled as a finite-
state machine (FSM) consisting of the three states idle-, firing-
and rest-state, see Fig. 4. Initially, the aRN is in idle-state, i.e.,

firing

rest

∆t = ts

∆t = tr

ri = 1

ri = 0

idle
ri = 0

act = 0

∆t = tr

act = 0

act = 1

act = 1

∧

∧

Fig. 4. Modeling aRN firing as a finite-state machine.

in case of no contact (act = 0) leading to ri = 0. Subscript i∈N
denotes the individual aRN. If stimulation occurs (act = 1) the
aRN switches to the firing-state, i.e., it starts firing by setting
ri = 1 for a fixed time duration ts. Thereafter, it switches to
rest-state. The output is then set to ri = 0 for the refractory
time tr, regardless of possibly present stimuli. After this silent
period, the aRN switches either back to firing-state (act = 1) or
remains silent by switching to idle-state (act = 0), depending
on the stimulus. In the following, the aRN types modeled in
this paper are outlined.

2) aRN types: Here, aRN types that respond to penetration
depth, penetration velocity and compressive stress, including
their spiking models, are elaborated as they correlate with
pain sensation as described in [17], [18].2 We assume each
aRN type to be equally distributed over the robot-tissue with
according density ρ1,2,3, respectively. In addition to the ”in-
stantaneous” aRN types we also introduce aRNs encoding the
repetitiveness of contacts, since it is known that this influences
pain level as well [19].

2In this paper, we add penetration velocity, which obviously strongly
correlates with potential danger, as an important metric for an aRNS. We
anticipate that such a modality will become technologically available in the
future.

a) Penetration depth spike train: Under the assumption
that the higher the penetration depth δ , the more aRNs are
activated, the total number of activated aRNs r(δ ) is

r(δ ) =

{ V1(δ )ρ1 δ ≤ b1
V2(δ −b1)ρ2 + r(b1) b1 < δ ≤ bt2
V3(δ −bt2)ρ3 + r(bt2) bt2 < δ ,

(1)

with bt2 = b1 +b2. V1(δ ), V2(δ −b1) and V3(δ −bt2) denote
the instantaneous effective volumes that envelop the stimulated
aRNs. Due to tissue compression, those aRNs that were placed
at penetration volume Vc (see Fig. 3) push against neighboring
ones and may stimulate them as well. Therefore, some of the
affected aRNs lie outside the penetration volume Vc. To take
this effect into account, we approximate the instantaneous ef-
fective volumes to be cylindrical as a reasonable simplification.
Accordingly, each respective volume of layer i is obtained by

Vi(δ ) = ∆δiπd2 = ∆δiπ
(
2rc∆δi−∆δ 2

i
)
, (2)

where ∆δi is the penetration depth in layer i and d the radius
of the cylindric volume (see Fig. 3).

b) Penetration velocity spike train: The velocity-
dependent spike generation is defined in a straight forward
manner as the absolute value of the first time derivative of
penetration depth based firing

rv := |ṙ(δ )| . (3)

c) Compressive stress spike train: The stress-dependent
spiking is computed as

p(σ) =

{ V1(δ ∗)ρ1 δ ∗ ≤ b1
V2(δ ∗−b1)ρ2 + r(b1) b1 < δ ∗ ≤ bt2
V2(δ ∗−bt2)ρ3 + r(bt2) bt2 < δ ∗.

(4)

Due to the physically decaying impact characteristics of pres-
sure we introduce the effective penetration depth δ ∗ as

δ ∗ :=
{

ceδ δ ≤ bt
2

bt
bt
2 < δ ≤ bt ,

(5)

since not only the aRNs within the penetration depth δ are
activated, but also significant portions below. We chose ce ≈ 2,
then, as a result δ ∗ covers 99 % of the impact decay, i.e., the
tissue stress has reduced to < 1 % of the maximum surface
stress. In analogy to (2) the instantaneous stress volumes are

Vi(δ ∗) = ∆δ ∗i πd2, i = 1,2,3, (6)

where ∆δ ∗i is the effective penetration depth of layer i.
d) Repetitiveness spike train: The repetitiveness ξ is

defined as
ξ :=

∫

tc
ξ̇ dt, (7)

where tc is the time instant at which the collision occurs. The
repetitveness rate ξ̇ is defined as

ξ̇ :=





aF(δ )δ̇ δ̇ > 0

−
∫

tv
ξ̈r dt δ̇ ≤ 0∧ξ > 0

0 δ̇ ≤ 0∧ξ = 0,

(8)

where a > 0 and ξ̈r > 0 are the growth and decay factors. tv
denotes the time when penetration velocity gets negative. The
contact force F(δ ) is assumed to follow Hertzian theory, see
[15].

Figure 5 depicts the sensory response of the nociceptive
aRNs given the true compressive stress σ under the following
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collision parameters. The contact occurs between a 2-shell
1-DoF robot with mr = 4.5 kg, rr = 0.1 m and a 1-shell
collision object with mc = 4.5 kg, rc = 0.1 m at impact speed
vc = 0.4 m/s. The robot is assumed to be at rest and the
object approaches at vc. After a single contact event a repetitive
decaying impact follows. The response of the respective aRN-
type to penetration depth r(δ ), velocity rv, impact stress p(σ)
and repetition frequency ξ are displayed. One can see that each
aRN type correlates with the respective (physical) modality.
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Fig. 5. Cumulated spike signals of aRN-types penetration depth r, velocity
rv, stress p, and repetitiveness ξ .

3) Implementation remarks: For convenience, we introduce
a time discretisation t = kTs, with sampling time Ts and time
step k∈N, in the implementation. During the refractory time tr
(see Fig. 4) aRNs do not fire. Thus, the number of stimulated
aRNs r(δ ,kTs) in (1) reduces to an effective number re f f . This
is the sum of aRNs currently being in firing-state. By setting
tr = ts = Ts the stimulated aRNs can be either in firing or silent
mode for every k. Consider the stimulated aRNs at time step
k fire. Then they pause in time step k+ 1 and fire again in
k+2 (assuming the stimulus is still present, i.e., act = 1, see
Fig. 4). The icrement of stimulated aRNs in time step k is
therefore

∆ri(δ ,kTs) = r(δ ,kTs)− r(δ ,(k−1)Ts), i = 1,2, ..., l, (9)

where subscript i is the incremental counter during contact.
All ∆ri(δ ,kTs) form the elements of the stacked vector

∆R = [∆r1 . . . ∆rl ]
T

∆R ∈ Rl , ∆ri > 0 (10)

of length l that increases as long as ∆ri > 0. It follows that
for even and odd time steps one can separately compute re f f
as

re f f (kTs) =

{
∑
bl/2c
j=0 ∆R2 j+1 k = 2m+1

∑
bl/2c
j=1 ∆R2 j k = 2m

, m = 0,1,2, ... .

(11)
If ∆ri is negative (∆r−i := ∆ri ≤ 0) the number of stimulated
aRNs decreases. This means that the object’s collision velocity
turns into the opposite direction and thus moves away from the

robot. Therefore, ∆r−i is deleted from ∆R in reverse order such
that the aRNs stimulated last are deactivated first. Algorithm 1
shows the pseudo code of this firing reduction algorithm.

Algorithm 1 Pseudo code for modeling firing reduction.
c = ∆rl +∆r−l+1
while c≤ 0 do

∆rl = 0
l = l−1
c = ∆rl + c

end while
∆rl = c

D. Interpretation
In this paper, robot pain is defined as the interpretation

of spike trains generated by the aRNs involving contextual
information. Inspired by the human pain system, robot pain
is divided into four verbal pain classes: no, light, moderate,
and severe pain. They represent a simplification of the Verbal
Rating Scale (VRS) of pain measurement in humans, see Tab. I.
The first pain class contains no contact as well as contacts that
are not painful, we call those soft contacts. Consider, e.g., the
robot fulfills a certain task such as holding a desired configu-
ration qd . Obviously, in case of no contact the robot shall hold
its position. In case of soft contact, the robot experiences an
external torque τext that results in a deviation from its desired
equilibrium position qd . Since the contact is not harmful the
robot shall treat the contact as a disturbance, compensate for
it, and focus on the desired task. In the second pain class,
such contacts occur that may harm the robot or prevent it
from performing the task. The robot ”feels” uncomfortable
and shall smoothly retract until the contact event is over and
return thereafter. Strong collisions are covered in the third pain
class. The robot ”feels” moderate pain, shall quickly retract,
and more distant until the contact event is over. Then, it may
move back towards qd . The last pain class covers all contacts
in which the robot may be damaged and thus needs some
sort of ”help”. In order to prevent making the damage worse,
the robot switches to gravity compensation with additional
damping for dissipation, improving the safety of the robot and
the environment by its strictly passive behavior. The desired
interpretation is realized by the control laws that are elucidated
in the following.

III. ARNS: COLLISION CONTROL

A. Robot dynamics
For the pain-based controller design, we assume an n-DoF

serial chain rigid robot to be equipped with the aRNS. The
dynamics of such a system in contact can be described in
Lagrangian form by

τ =M(q)q̈+C(q, q̇)q̇+g(q)+τext, (12)

where τ ∈ Rn denotes the actuator torques, M(q) ∈ Rn×n is
the symmetric joint inertia matrix, C(q, q̇)∈Rn×n the Coriolis
and centrifugal matrix, g(q) ∈ Rn the gravity vector, and τext
the external joint torques. Let us consider a single-areal contact
with associated contact Jacobian matrix Jc(q). This maps the
physically acting contact wrench Fext ∈ R6, which is caused
by the local compression and tensile stress distribution, into
the respective external joint torques via

τext = J
T
c (q)Fext = J

T
c (q)[fext mext ]

T (13)
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TABLE I
ROBOT PAIN CLASSES AND CORRESPONDING REACTION STRATEGIES.

Robot pain class Collision severity Strategy qd -adapt. Kd -adapt. τ f f -adapt.

I no pain no/soft contact fulfill task/compensate (16), with q̇p(k
I
q) (19), with Kd(

IK∗d ,k
I
K) (21), with τ f f (k

I
τ ,W > diag(0))

II light pain light smoothly retract (16), with q̇p(k
II
q ) (19), with Kd(

IIK∗d ,k
II
K) (21), with τ f f (k

II
τ ,W = diag(0))

III moderate pain strong quickly retract (16), with q̇p(k
III
q ) (19), with Kd(

IIIK∗d ,k
III
K) (21), with τ f f (k

III
τ ,W = diag(0))

IV severe pain hard abort task n.a. n.a. n.a.

In this paper, we assume the unit collision direction uc of
Fext and Jc to be known. In general this information could
be derived from various sources such as e.g. proprioceptive
information or suitable tactile sensors.

B. Generalized Pain Spiking State
In order to involve the spiking signals into the overall

control strategy, we introduce the generalized pain spiking
state as

s(t) = [p(σ) r(δ ) rv(δ ) ξ ]T ≥ 0, (14)

which is defined as the stacked vector of all cumulated spike
signals from Sec. II-C2. Note, for a possibly real world
implementation of the aRNS using conventional sensors, i.e.
providing analogue outputs, one can use this spiking state vec-
tor as an entry point to incorporate those signals. For example,
in this paper, we subsequently use the BioTac analogue outputs
to replace the cumulated spike signals, leading to a sensor
related spiking vector sBT , see Sec. IV-B.

C. Reflex Control Strategies
The control strategy we propose adapts the overall

impedance and feed-forward characteristics of a joint level
impedance controller, as well as the reference trajectory based
on the Cartesian pain sensation and interpretation. This pain-
based joint level impedance controller is defined by

τd =Kd(s)(qd(s)−q)+D(q)q̇+τ f f (s)+τG(q), (15)

where Kd ∈ Rn×n, qd ∈ Rn and τ f f ∈ Rn are the desired
closed loop stiffness, the desired equilibrium position and the
feedforward torque. They all depend on the generalized pain
spiking state s. The vector τG ∈ Rn denotes the gravity com-
pensation torque and D ∈ Rn×n the configuration dependent
joint damping matrix

D(q) =A(q)DξKd1 +Kd1DξA(q),

where Dξ = diag
(

1√
2

)
∈ Rn×n is the desired joint damping

ratio matrix. According to [20], A(q) and Kd1 are defined by
A(q)A(q) =M(q) and Kd1Kd1 =Kd .

a) qd-adaptation: Equilibrium position adaptation after
the collision event, occurring at collision time tc, shall cause
faster evading from external contacts the larger s(t). After the
contact, an exponential recovery behavior towards the original
equilibrium qd(tc) shall be achieved. Specifically, the desired
equilibrium position qd is adapted via

qd := qd(tc)+
∫

tc
q̇p(s) dt, (16)

where qd(tc) denotes the desired joint configuration at tc and
q̇p is the pain reflex equilibrium rate, which is integrated from

collision time tc on. The generalized virtual pain force fv is
defined as

fv := (kT
qs)uc, (17)

where kq > 0 is a gain vector. The pain reflex equilibrium
rate is then obtained by

q̇p :=





−JT
c Fv :=−JT

c [fv 0]T s> 0

−sign{qd−qd(tc)}
∫

t ′
q̈r dt s= 0∧qd 6= qd(tc)

0 s= 0∧qd = qd(tc),
(18)

where q̈r > 0 is the constant equilibrium recovery acceleration.
t ′ is the time at contact loss.

b) Kd-adaption: The stronger the stimulus, stiffness
adaptation shall cause faster stiffness increase, while after the
collision recovery to the original constant reference stiffness
K∗d > 0 shall be moderately fast. For the sake of simplicity,
we choose the stiffness entries to be equal for all joints. The
desired diagonal closed loop stiffness Kd > 0 is adapted by

Kd :=K∗d +min
[

∆Kd,max,
∫

tc
K̇p(s) dt

]
, (19)

where K̇p is the pain stiffness rate. The stiffness increase
(as reasoned in Sec. III-D), which is bounded from above by
∆Kd,max =Kd,max−K∗d , starts at tc. The according stiffness
adaptation rate K̇p(s) is defined as

K̇p(s) :=





diag(kT
Ks) s> 0

−
∫

t ′
K̈r dt s= 0∧Kd >K∗d

0 s= 0∧Kd =K∗d ,

(20)

where kK > 0 represents the stiffness rate gain vector and
K̈r > 0 the constant stiffness relaxation acceleration.

c) τ f f -adaptation: The feed forward torque τ f f is
adapted according to the same principle as the equilibrium
position behavior. It consists of the pain reflex torque τp and
the compensation torque τcomp:

τ f f (s) := τp(s)+τcomp (21)

Let us start at the generalized pain force fp, which is defined
as

fp := (kT
τs)uc, (22)

where kτ > 0 is the gain vector of the pain reflex torque. The
pain reflex torque is then obtained via

τp(s) :=





−JT
c Fp := JT

c [fp 0]T s> 0

−sign{τp}
x

t ′
τ̈r dt s= 0∧τp 6= 0

0 s= 0,

(23)
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where Fp denotes the pain wrench and τ̈r > 0 the constant
pain torque recovery acceleration. The compensation torque is
computed as

τcomp :=W
∫

tc
(q−q(tc))dt, (24)

where W > 0 ∈Rn×n represents a diagonal gain matrix. Note
that the compensation torque does not depend on the spiking
state vector s. It is only active in the first pain class in order
to compensate unintended (and painless) contacts.

D. Pain Reflex Graph
Figure 6 illustrates the pain reflex graph. s1, s2 and s3 ∈

no pain

light pain

moderate pain

severe pain

recover

[s(t) > s1]

[s2 ≥ s(t) > s1]

Kd =K
∗
d

[s(t) ≤ s1]

[qd = qd(tc)∧
kq = k

I
q, kK = kI

K , kτ = kI
τ

qd = qtask

τff = τcomp

(17) with q̇p(p(σ))

(20) with K̇p(ξ)
(22) with τp(r(δ), rv)

(17) with q̇p(q̈r)

(20) with K̇p(K̈r)

(22) with τp(τ̈r)

I

[s(t) ≤ s1]

[s(t) > s1]

[s(t) > s2] II

III

IV

kq = k
II
q , kK = kII

K , kτ = kII
τ

kq = k
III
q , kK = kIII

K , kτ = kIII
τ

[s3 ≥ s(t) > s2]

[s(t) ≤ s2]

[s(t) > s2]

(17) with q̇p(p(σ))

(20) with K̇p(ξ)
(22) with τp(r(δ), rv)

[s(t) > s3]

pstate= 2

pstate= 3

pstate= 1

pstate= 4

pstate= 2

Kd =K
∗
d∧

τff = 0∧

pstate = 3

(16) with τd = τG(q) +Dq̇

kq = k
IV
q , kK = kIV

K , kτ = kIV
τ

s = 0]

[s(t) > 0]

pstate= 1

Fig. 6. Pain reflex graph.

R4×1 (s1 < s2 < s3) are the vectors containing the thresholds
for transitioning between pain states. Note that the comparison
with s takes place element-wise. For evaluating when to switch
to the next pain-state the compressive stress spiking p(σ) is
used. The variable pstate denotes the previously active pain
state. In case of multiple contacts, the robot returns to the
nominal pain class only after it has fully recovered from the
previous pain level. Controls do not switch from higher to
lower pain level without completely recovering to the nominal
pain level first. Most noticeably, the equilibrium adaption qd is
set to correlate with the compressive stress that varies with the
collision object shape. The stiffness adaption Kd is connected
to repetitiveness in order to be abel to react to collision bursts
faster. The feedforward torque adaption τ f f changes with
penetration depth and velocity aRN spiking as a response to
potentially painful collisions.

One can conclude, the higher the compressive stress, the
more distant the equilibrium point is set. The higher the
number of contact repetitions, the stiffer the controls. The
deeper and faster the collision object penetrates, the stronger
the feedforward torque. As the respectively growing intensities
increase with the order of pain class according to the gain
vectors, the decaying rates decrease, i.e., the time period of
recovering grows with order of pain class. In pain class IV,

controls are set to gravity compensation with a constant diag-
onal damping matrix D> 0 only. Since fp in (22) depends on
two aRN types, the respective gain constants kτ ,2 and kτ ,3 are
set such that they equally contribute to the maximally possible
pain force fp,max. Thus, the torque gain vector becomes

kτ =




0

(2 rmax(δ ))−1fp,max

(2 rv,max(δ ))−1fp,max

0



, (25)

where rmax(δ ) and rv,max(δ ) denote the respective maximum
spiking magnitude.

IV. EXPERIMENTAL RESULTS

A. Parameter dependency of aRNS control laws
The parameter dependency of aRNS control laws is inves-

tigated during simulated single and multiple collision event(s)
between a 2-shell 1-DoF robot (mr = 4.5 kg, rr = 0.1 m)
and a 1-shell collision object (mc = 4.5 kg, rc = 0.1 m at
vc = 0.5 m/s.3 The task of the robot is to hold qd = 0 m
at K∗d = 5000 N/m. Please note that for this one-dimensional
collision q denotes the Cartesian position. The influence of
the respective key parameters is investigated regarding the
equilibrium, stiffness, and feedforward torque adaption.

Figure 7 depicts the qd-adaptation during a single collision.
The top chart shows the stress spiking p(σ) evoked by the
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Fig. 7. qd -adaptation for single contact for different kq and q̈r .

collision. In the middle plot, qd-adaptation based on p(σ)
and in dependence of kq,1 from the gain vector kq is shown
at fixed recovery acceleration q̈r. Obviously, kq,1 can be
used for varying the magnitude of the set point. The lower
chart shows the reverse case at fixed value of kq,1. This
means that for a given collision the distal response does not
change, while the recovery acceleration q̈r varies, allowing
to influence the decay time before the robot proceeds with
the task. In Fig. 8 the variation of stiffness rate adaptation is
shown during repetitive contacts. The top diagram depicts the

3The radii rr,c are equally chosen, since the used contact model is only
valid for radii greater than the contact radius d, see Fig. 3. Reasonable values
are chosen for mr,c that correspond to typically reflected mass values found
during human-robot collisions [15].
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TABLE II
GAIN VECTORS AND PARAMETERS FOR COLLISION BETWEEN BIOTAC AND HUMAN FINGER (SEE FIG. 10).

pain class
qd -adapt. Kd -adapt.

kT
q [N - -] q̈r

[
rad
s2

]
kT
K

[
- - Nm

rad·s
]

K∗d
[Nm

rad

]
K̈r

[
Nm

rad·s2

]

I 0T 0 0T diag{500} 0

II [0.05 0 0]T diag{10−5} [0 0 60]T diag{500} diag{0.02}
III [0.075 0 0]T diag{5 ·10−6} [0 0 80]T diag{500} diag{0.02}
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Fig. 8. Kd -adaptation for repetitive contacts for different kK and K̈r .

repetitiveness spiking ξ . The middle and lower diagrams show
Kd-adaptation for different kK,4 at fixed recovery acceleration
K̈r =const. (middle) and vice versa (bottom). The stiffness
magnitude increases with the number of contacts (indicated
by ξ ) at different rates depending on the particular choice
of kK until Kp,max = 5500 N/m is reached. When the contact
event is over Kd recovers to the nominal stiffness K∗d with K̈r.
Figure 9 shows feedforward torque adaption for rmax(δ ) = 16,
rv,max(δ ) = 2200 s−1, and fp,max = 100 N. The first and
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Fig. 9. Contribution of r(δ ) and rv to τp-adaptation for given kτ .

middle chart depict the penetration depth and velocity spiking
r(δ ) and rv for three consecutive collisions. To separately

emphasize the contribution of the two spiking signals only
r(δ ) is activated for the first collision. During the second
collision, only rv is considered, while the last collision shows
the combined response. The decay acceleration is set to
τ̈r = 50 N/s2.

To sum up, the aRNS controller adaption can be separately
set up for qs, Kd-, and τ f f , which should be done carefully,
while considering the used robot, its task, and foreseeable
environments.

B. Pain reaction
The pain-reflex control is experimentally demonstrated us-

ing a KUKA LWR4+ equipped with the BioTac R© sensor as
an implementation of the artificial robot neuron concept. The
sensor is mounted at the end effector and pressure is induced
by a human finger, leading to the respective pain class and
reflex reaction, see Fig. 10. The BioTac can sense multiple
modalities such as pressure, vibration, temperature or spatial
contact forces. In this paper, we utilize, e.g., the pressure
signal σBT as the cumulated spiking signal adapting qd . The

LWR4+

BioTac

Fig. 10. Experimental setup consisting of KUKA LWR4+ equipped with
BioTac sensor and controlled by the aRNS.

repetitiveness spiking ξ is realized by a counter with constant
gradient and exponential decay characteristics that is activated
for σBT > 0, directly influencing Kd . The particular relation
can be derived from (8) by replacing aFδ with Tinc = 0.1 and
δ̇ with σBT . In addition, we extend the spiking state vector
s in (14) by the modality of temperature sensing, utilizing
the analog derivative of temperature TAC of the BioTac.4 Due
to the larger time constants of temperature measurement we
introduce a separate temperature pain class that is activated as
soon as a threshold of H = 1920 kbits is exceeded. Its formal
definition and reflex behavior is equivalent to the other contact
classes. However, only two reaction classes are defined for this

4For more information about the BioTac and signal interpretation see [21].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/LRA.2016.2536360

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2016

particular case. The robot retracts with a change of 5 deg in
every joint and waits 4 s until recovery, provided that TAC does
not drop any further. These values were empirically found to
successfully avoid contact with a plastic cup filled with hot
boiled water (ϑc ≈ 100◦C).

During the experiment the cup was only slightly touched in
order to avoid unwanted retraction due to pressure sensing.
The spiking state vector used in the experiment is sBT =
[σBT ,TAC,ξ ]T and the controller parameters can be found
in Tab. II. The equilibrium position related parameters are
empirically chosen such that for the given contact events
the robot does not violate a predefined workspace, while
the stiffness parameters comply with the specifications of
the KUKA LWR4+. The robot task is to mantain qd =
[0,30,0,−50,0,10,0]T [deg]. In Figure 11 one can see an
increase in desired equilibrium position and a slight increase
in stiffness for light pain. For moderate pain one observes
a reinforced version of light pain. Note that since the rele-
vant reflex behavior in this particular experimental setup was
mainly observed in axis 2 and 4, we omit the other traces
for sake of clarity. The corresponding gains were selected
to be larger and the recovery rates decreased. The collision
that causes severe pain represents a special case where the
controller switches to pure gravity compensation mode with
some additional damping, see Fig. 6. The pain-controls are
deactivated and without human intervention the robot is not
able to return to the task. Most noticeably, the set point
adaption and stiffness rise until contact is lost during repetitive
contacts. Finally, the robot retracts to avoid longer contact with
a hot object for the temperature reflexes.
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Fig. 11. Physical collision for the KUKA LWR4+ equipped with the
aRNS/BioTac and a human finger that applies varying pressure.

V. CONCLUSION

This paper is our first step towards enabling robots to not
only measure or estimate contacts, but also to sense and inter-
pret them based on novel bio-inspired controls. For this, we
developed the concept of an artificial Robot Nervous System
(aRNS), which architecture and basic functionality mimics its
human antetype. The concept is designed to unify different
sensing modalities and let the robot respond in a human-
inspired way to perceived stimuli. Specifically, we introduce
a sensory pathway from mechanical collision quantities such
as contact forces and stresses to arificial Robot Neuron firing
caused by quantities such as penetration depth, contact timing,
and aRN density in the involved tissue layers. This concept
makes it possible to design new and interesting collision

reflex reaction behaviors. Depending on spiking rate the robot
executes protective behavior of varying intensity as an escape
strategy before trying to re-engage into the previous task
again.
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[12] S. Haddadin, A. Albu-Schäffer, A. De Luca, and G. Hirzinger, “Collision
detection and reaction: A contribution to safe physical human-robot
interaction,” in Int. Conf. on Intelligent Robots and Systems, 2008.
IEEE/RSJ. IEEE, 2008, pp. 3356–3363.

[13] S. Haddadin, F. Huber, and A. Albu-Schäffer, “Optimal control for
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