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DROW: Real-Time Deep Learning based Wheelchair Detection in 2D
Range Data
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Abstract— We introduce the DROW detector, a deep learning
based object detector operating on 2D range data. Laser
scanners are lighting invariant, provide accurate 2D range data,
and typically cover a large field of view, making them interesting
sensors for robotics applications. So far, research on detection
in laser 2D range data has been dominated by hand-crafted
features and boosted classifiers, potentially losing performance
due to suboptimal design choices. We propose a Convolutional
Neural Network (CNN) based detector for this task. We show
how to effectively apply CNNs for detection in 2D range data,
and propose a depth preprocessing step and a voting scheme
that significantly improve CNN performance. We demonstrate
our approach on wheelchairs and walkers, obtaining state of
the art detection results. Apart from the training data, none
of our design choices limits the detector to these two classes,
though. We provide a ROS node for our detector and release
our dataset containing 464k laser scans, out of which 24k were
annotated.

[. INTRODUCTION

Many autonomous robots are equipped with a 2D laser
scanner, typically used for navigation-related tasks including
the detection of people [1], [34] and objects [18]. Laser
scanners are widely used due to their typically large field
of view and their invariance to lighting and environmen-
tal conditions. While early detection methods used simple
heuristics such as fitting lines and circles [35], in the
past few years hand crafted features, coupled with learned
classifiers, have dominated laser based detection. Within
this paradigm, a range of successful people [1], [30], [20],
mobility aid [34] and road obstacle [18] detectors have
been developed to support mobile robot navigation [8] and
autonomous driving [28]. Even though the aforementioned
models obtain respectable results, the general consensus
seems to be that the information provided by 2D range data
is not sufficient to reliably perform detection in a single scan,
leading to approaches relying on sensor fusion [30], multi-
layered sensor setups [20], [29], or temporal integration of
information by tracking. We show that detection based on
single 2D range scan can actually perform well.

In this paper, we specifically focus on the detection of
wheelchairs and walkers. This is motivated by a service robot
application in an elderly care facility, where many people
rely on their mobility aids. Since the presence of a mobility
aid can significantly change a person’s appearance, both in
laser and in camera data, they are less reliably detected by
existing people detectors. However, especially people relying
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Fig. 1: An overview of our approach. We extract windows
with a fixed real world size regardless of the laser coverage.
Values are centered and clamped to the range of the window.
Each window is classified by a CNN and, if an object is
found, a weighted vote is cast for its relative offset (Ax, Ay).
Finally, the votes are consolidated using a non-maximum
suppression (NMS) scheme to yield detection centroids.

on those aids will have a harder time avoiding an approaching
robot, making a reliable detection all the more important.
Weinrich et al. [34] face a similar task and propose the
Gandalf detector for detecting people, wheelchairs, and walk-
ers in individual laser scans. They introduce a new feature
set for laser segments and classify these with an AdaBoost
classifier. The resulting detector performs reasonably well
and we include it as a baseline.

In this paper, we introduce the DROW (Distance RObust
Wheelchair/Walker) detector. Driven by our application sce-
nario, we focus on the detection of wheelchairs and walkers.
However, there are no design decisions which restrict our
approach to these objects and we are confident it will
generalize to detection of persons or other objects, given
sufficient annotated training data. Code and data needed to
train and run our detector, as well as code to annotate data
for new tasks, will be made available upon publication.

In computer vision, deep learning has recently become
the new best practice, replacing hand-crafted features by
learned ones and overhauling the state of the art in many
tasks [13], [32], [5]. Specifically, Convolutional Neural Net-
works (CNNs) have been very successful at challenging
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Fig. 2: Non-maximum suppression: (a) a part of an input scan, (b) the votes shown as arrows, (c) the joint voting grid, (d)
the wheelchair voting grid, (e) the walker voting grid, (f) resulting detections.

tasks. In this paper, we show how CNNs can be applied for
object detection in laser data, alleviating the need for feature
engineering and enabling drastic improvements.

While CNN-based image-level detectors like Multi-
Box [16] and YOLO [24] could in principle be applied to a
2D laser scan, we found that doing so naively is not effective.
Since the spatial density of laser points varies greatly with
distance, the fixed perceptive field of a CNNs covers widely
different scales, making learning difficult. To make use of
the spatial information a laser sensor provides, we propose a
preprocessing stage that cuts out and normalizes a fixed real-
world extent window around each laser point. All of those
windows are fed through a CNN which can cast votes for
object locations. These votes are then turned into individual
detections using a non-maximum suppression scheme. We
show that both depth preprocessing and voting are essential
components of our approach, an overview of which can be
seen in Fig.[Il Our approach does not require background
subtraction and runs with a frame rate of ~75fps on a
modern desktop machine using a single core and a GPU.
On our robot, it easily keeps up with the laser frame rate
(~13fps) on a laptop GPU.

To summarize, we make the following contributions:

¢ We introduce the DROW detector, a CNN based
wheelchair and walker detector for 2D range data
which, by effectively making use of the provided depth-
information, achieves state of the art results.

o We publish our dataset, containing 464k raw scans of
which 24k have been annotated with wheelchair and
walker centroids.

o We provide ROS components of our detector and related
service modules, including trained models.

II. APPROACH

Our approach consists of three steps: preprocessing, which
cuts out a resampled window around every laser point and
computes detection locations in a local coordinate system,
a CNN classifying said windows and predicting relative
detection locations, and finally a voting and non-maximum
suppression scheme turning predictions into detections.

A. 2D Range Data Preprocessing

In order to apply a CNN for detection, the network’s
receptive field must cover a large part of the object. The
problem with laser scans is that nearby objects cover a large
amount of laser beams, whereas distant objects are only hit
by a handful of beams. This means the CNN’s receptive field

must cover most of the laser, which makes it very prone to
overfitting to the training scenes’ backgrounds.

To circumvent this problem, and at the same time make use
of the real-world scale information that laser data provides,
we propose to evaluate the CNN in a depth-guided sliding-
window fashion. This means that we preprocess the data such
that objects have approximately the same representation at
every distance, thus alleviating the need to implicitly learn
completely different representations at varying distances:
Around each beam, we cut out a window of real-world
extent ¢, thus spanning an angle o = 2sin™'(4£) and
containing a variable amount of measurements depending on
the distance r at which the current beam hits an obstacle. We
then resample the measurements inside this window linearly
at n fixed samples. When applied to such a window, the
network’s receptive field always covers the same real-world
extent, regardless of the distance r. In addition, we center
the window around the current point, clamp any values
outside a +H, hull in order to remove distant clutter and
finally project the values into [—1,1]. In total, this means
max(—H,, min(xz — r, H,.))/H, is applied to each point x
of the window around the point at depth r, as illustrated
in Fig[[l A detailed analysis regarding which of these
preprocessing operations contribute the most to DROW’s
performance can be found in Section [[II-E

B. Prediction

For each window, and thus for each laser point with its
context, a CNN both classifies whether this window belongs
to an object class of interest through a SoftMax output and,
if so, votes for the center location of that object through a re-
gression output. As the 2D range data is inherently rotation-
invariant, we do not want to perform voting in absolute
(z,y) coordinates. Instead, we learn offsets (Az, Ay) in a
coordinate system centered and aligned at the current laser
point, as shown in Fig.[T]

C. Voting and Non-Maximum Supression

The predictions for every window need to be consolidated
into detection centers. This is achieved by making the CNN’s
predictions vote into regular grids spanning the laser’s field
of view. Let p(Olw) = 3 .. p(c|lw) be the total probability
of the window w seeing an object of interest, where C are
the classes to be detected.

If p(O|w) exceeds a predefined voting threshold 7', the
window will cast a vote into a class-agnostic grid with weight
p(Olw) as well as into each class-specific grid with weight
p(clw). After all windows have potentially cast votes, each



grid is blurred with a Gaussian filter and non-maximum
suppression is performed on the class-agnostic grid. For each
maximum found in that grid, a detection is predicted at
the cell’s center using the class which has the highest sum
of votes in said cell. The reason for this voting scheme,
as opposed to treating each class separately, is to avoid
detections of both classes at the same position. Fig.[2] shows
an example of the different steps involved. Votes cast from
the raw laser points in (a) are shown in (b); (c) - (e) show the
three voting grids and (f) shows the two resulting detections.

III. EXPERIMENTAL EVALUATION

For the evaluation of our approach we first introduce our
new dataset. We outline the details of our training procedure
and of the evaluation methods. After the general evaluation
of DROW and a comparison to baselines, we perform several
ablation studies to show how much individual parts of our
detector contribute to the overall performance.

A. Dataset

Although Weinrich et al. [34] provide their datasets, their
recordings are limited to scenes with a single wheelchair
or walker. While this might suffice for learning the few
parameters of fairly constrained features and classifiers, we
want to learn features from scratch and thus require more
general and varied data. This is why we recorded a little
over 10 hours of data at an elderly care facility.

1) Recording  Setup:  We
I recorded the data wusing a
SCITOS G5 robot equipped

with a SICK S300 laser scanner
mounted at approximately 37 cm
above the ground plane. The
laser was configured to record
at nearly 13Hz and span a
field of view of 225° at a
resolution of 0.5°, totalling 450
measurements. For annotation
purposes, we also recorded
RGB-D data from an ASUS
Xtion mounted on the robot’s
head (see Fig.[3). Unfortunately,
we are not allowed to publish
the video streams for privacy
reasons. The software infrastructure is based on ROS and
all data was stored in rosbags. To ensure seeing enough
wheelchairs and walkers, one person permanently roamed
around using either while the robot was recording. Our
recordings consist of both (1) natural scenes where we
recorded the everyday life in the facility including all
kinds of clutter such as flower pots, chairs, furniture,
rolling beds, ..., and (2) artificial recordings where we
drove around in certain patterns as to bring variation
to the dataset. Apart from the resident’s wheelchairs, we
included as many wheelchair and walker models as possible,
including one motorized wheelchair.

170 cm

37 cm

SCITOS G5

Fig. 3: Our robot Karl.

TABLE I: Dataset overview

Train Validation Test Total
Sequences 78 30 5 113
Scans 341138 74744 48131 464013
Annotated Scans 17 665 3919 2428 24012
Wheelchairs 14455 5595 1970 22020
Walkers 2047 219 581 2847
Wheelchairs
by distance J - J b J H L:: - J ik,
Walkers

by distance

2) Dataset Statistics: We split the resulting dataset into
a train, validation and test set. To create these sets, we split
the care facility into four non-overlapping areas, three of
which were assigned to the train, test and validation sets,
respectively. The fourth, the entrance hall, was split into
temporally disjoint sequences which were distributed over
the train and validation sets. Based on this split, we can
show how well the approach generalizes to never before seen
areas. Table [ shows an overview of our dataset, as well as
statistics of the subset we annotated. The wheelchair and
walker counts refer to individual detections as opposed to
instances, and the bar plots show their distribution over the
distance. Each bar represents a 1 m slice in the distance (15
bars for up to 15m), clearly showing that the majority of
observed mobility aids are encountered within 1 m to 6 m of
the robot.

3) Annotation: We annotate our data with wheelchair
and walker centers. Since the dataset contains 464k raw
laser scans, we devise an annotation scheme that keeps
effort manageable while still covering the full extent of the
sequences as well as allowing temporal approaches to be
developed in the future. Instead of all the laser scans, we
annotate small batches throughout every sequence as follows:
A Dbatch consists of 100 frames, out of which we annotate
every 5Sth frame, resulting in 20 annotated frames per batchﬂ
Within a sequence, we only annotate every 4th batch, leading
to a total of 5 % of the laser scans being annotated. We wrote
a custom annotation tool based on matplotlib [11], which

train/r-2w2p_2015-11-24-16-42-10.bag: Batch 1/4 frame 60, seq 106922

10

Fig. 4: An example view of our annotation tool. The dotted
cone shows the Xtion’s field of view and on the right the
first, current, and last image in the batch is shown. The blue
cross shows annotated wheelchairs.

I'This allows experimenting with interpolation between the annotations,
even though we didn’t do so in this work.
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(b) Performance on the Reha test set [34].

Fig. 5: Performance comparison of DROW, the Gandalf detector [34], and a naive deep learning baseline on two test sets
(a) and (b). As explained in Section , the naive baseline is not applicable on the Reha test set.

loads sequences of scans with corresponding RGB images
from the head camera and automatically finds the batches
that need to be annotated. To aid the user in annotation, we
show the first, current, and last image of the current batch.
An example view of this annotation tool can be seen in Fig.[d]
A 1.2m circle around the mouse pointer, indicating the
average wheelchair size, helps the user click on locations of
wheelchair or walker centers. By using all of this supportive
information to get an understanding of the scene, we were
able to annotate most mobility aids, but based on the limited
camera view, we likely still missed a few.

B. Training Procedure

We train a CNN which, for each preprocessed window,
predicts whether it is indicative of a nearby wheelchair
or walker and, if it is, predicts the offset of its center.
We do so in a single pass by using a network with two
output layers: a three-way SoftMax differentiating between
background, wheelchair and walker, and a two-dimensional
linear regression output. We optimize the network by min-
imizing the sum of a negative log-likelihood criterion on
the SoftMax output and a root-mean-square error on the
regression output. The regression targets are computed as
(Az,Ay) in each window’s local coordinate system as
shown in Fig.[T] The class-labels are determined by the type
of the closest detection to the window’s center-point, with
a maximal Euclidean distance of 0.6 m for wheelchairs and
0.4m for walkers. When there is no nearby annotation, no
error is backpropagated for the regression output and the
network is thus free to predict any offset.

The architecture of our network, inspired by the popu-
lar VGGnet [27ﬂ is as follows: Conv5@64, Conv5@64,
Max2, Conv5@128, Conv3@128, Max2, Conv5@256,
Conv3@5, where Convn@c represents a convolution with
c filters of size n and Max p the maximum operation on a
window of p values. Batch-normalization [12], dropout [31]
of 0.25, and ReLU nonlinearities [9] are applied between
all convolutional layers. For an input window resampled to
48 values, the network outputs a vector of length five, three
of which are sent to a SoftMax and the other two are the

2VGG is a well-performing architecture in vision. Other architectures
may perform better, but that’s beyond the scope of this paper.

regression outputs Ax and Ay. All weights are initialized
similarly to the scheme proposed in [26], except for those of
the output layer, which are initialized to 0. For training the
network, we use the AdaDelta optimizer with p = 0.95 and
€ = 1077 and train until approximate convergenceE] During
training, we add small multiplicative random noise to the
regression targets and we flip each window and its target with
probability 0.5. We implemented our CNN in Theano [2].

For the voting scheme, we add multiplicative class-weights
to the votes and re-normalize them, thus voting for class
¢ with % instead of p(clw). We then optimize
all voting hyper-parameters (class-weights w, grid resolu-
tion b and blur-size o) using hyperopt [4] to maximize
maxr fuheelchair (1) + fwaker(I') on our validation set, f.(T)
being the Fl-score of class ¢ using detection threshold 7.
Interestingly, the best values, wpg = 0.38, Wyheelchair = 0.60,
Wyalker = 0.49, b = 0.1 m and o = 2.93 are not far off from
our initial guesses.

C. Approach Evaluation

We trained our model on our training set and computed
hyperparameters on our validation set as described in the
previous section. In order to evaluate real-world performance
of DROW, we now look at the precision and recall curves on
our own test set and on the publicly available Reha test set
of [34 recorded with a similar robot. Recall that our test set
was recorded in a never before seen part of the care facility,
thus a method which learns location priors or background
models will fail. The result shown in Fig.[5|demonstrates that
DROW generalizes very well and has significantly higher
precision and recall than Gandalf [34], both on our test set
and on the Reha test set.

In our application scenario, the actual detection of a mo-
bility aid is more important than their correct classification,
hence we also evaluate a class-agnostic performance. For
this, we ignore the class of all detections and annotations
during evaluation.

3This means that we started training in the evening and stopped it the
next morning. The loss-curve was almost flat in log-space.

“4Detection annotations for the Reha dataset were provided by the
authors. We skip the Home test set as it does not contain mobility aids.
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Fig. 6: Performance of DROW for different evaluation radii.
The high overlap for radii above 0.3 shows that our predic-
tions are well localized.

The precision and recall curves for each class are com-
puted by varying the voting threshold 7. We use an eval-
vation radius of 0.5m, meaning a detection is matched
to a ground-truth if it falls within 0.5m of that ground-
truth’s center and has the correct class. An annotation can be
matched with at most one detection, all remaining detections
of that class are false positives and all unmatched annotations
of that class are false negatives. To see how well localized
DROW'’s detections are, we show precision-recall curves
for varying evaluation radii in Fig.[f] The cluttering of all
curves for acceptance radii of 0.3 m and above mean that our
detections are well localized. During annotation, it became
clear to us that the precision of the annotations is limited,
meaning that evaluation at radii as small as 0.1 m is strongly
affected by labeling noise.

We also analyze how well DROW behaves with respect
to the distance from the laser scanner. For this, we start by
ignoring all detections beyond 0.1 m from the laser. We then
slowly grow that radius, taking into account more and more
detections, and plot how the precision and recall at a fixed
threshold evolve in Fig.[7] DROW performs very well across
the board, but especially so in mid-range which is crucial
for navigation and planning. Unsurprisingly, the curves do
not change much beyond a distance of 10m, as only few
mobility aids where observed that far.

D. Baselines

We compare our proposed method to two baselines in
Fig.[p} the publicly available Gandalf detector [34] and a
naive deep learning baseline.

None of the precision-recall curves in [34] quantify Gan-
dalf’s actual detection performance, they only focus on
parts of the system independently. To obtain comparable
detection precision-recall values, we evaluate Gandaliﬁ] using
the evaluation protocol described above. As provided, the
Gandalf detector has no single threshold to be tuned and
thus results in a single point in our plots. For the class-
agnostic case, we plot the results for the cases when Gandalf
person detections are kept (¢) and discarded (*), respectively,
showing a trade-off between precision and recall.

Shttps://github.com/neurob/gandalf_detector
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Fig. 7: Precision (——) and Recall (---) at T'= 0.5 in the
class-agnostic case up to a certain distance in meters. The
histogram ([I[], y axis on the right) shows the percentage of
all annotations at a certain range.

Note that the detector performance we obtained with the
code from [34] is significantly lower than the one reported in
the original paper. The performance could be improved by an
additional covariance-based merging step briefly mentioned
in [34] which is, however, neither described in detail in
the paper, nor included in the provided detector code. We
were thus not able to reproduce the results presented in [34].
However, extrapolating from the false positives and missing
detections we observed using the provided code, even an
optimistic bound on this method’s performance would place
it below our detector’s curve.

As a naive deep learning baseline, we train another CNN,
similarly to YOLO [24], that directly predicts up to two
detections (sufficient for 95.0 % of the frames) in normalized
(z,y) coordinates, based on a full scan. The results of this
baseline experiment are shown as dotted lines in Fig.[3] (a),
but are missing from the Reha test set as the scans have a
different amount of laser beams. It should be noted that we
spent a considerable amount of time getting the naive CNN
baseline to work as well as possible and follow best-practice:
carefully chosen receptive-fields, batch-normalization, care-
ful initialization, AdaDelta optimizer, etc. However, as can
easily be seen, just applying deep learning to 2D range data
in such a naive way leads to abysmal results.

E. Ablation Studies

In this section, we analyze how each of our design
decisions affects detection by systematically removing or
substituting each part that defines our approach. Fig.[§] sum-
marizes these experiments. Overall, the complete DROW
detector (—) outperforms all other configurations, i.e. each
single decision contributes to the high performance. For each
of the following experiments, we retrain the full network
from scratch.

1) Preprocessing: Our depth preprocessing can be dis-
sected into three operations: centering, clamping and re-
sampling. Not centering the input window (——) has the
smallest, albeit non-negligible, effect. Removing the clamp-
ing (—) hurts overall performance as much as removing the
centering. Without the resampling step ( ) which ensures
that the network’s receptive field keeps a constant real-world
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Fig. 8: Ablation studies. We retrain our approach with slight modifications to show how the performance changes.

size, performance drops significantly, especially for walkers.
Considering that the CNN has to learn completely different
representations across different distances, the overall perfor-
mance is still surprisingly good. The fact that walkers are
almost undetected and yet the agnostic performance is decent
suggests a high confusion. Finally, dropping all of the above
steps ( ) performs the worst in all measures, showing that
our preprocessing is indeed crucial.

In total, all these experiments clearly suggest that each of
the three preprocessing steps are important.

2) Voting: The comparison to the naive deep learning
baseline in Fig.[5a] already showed that voting is essential
for proper detection results.

In order to see the effect of regressing local offsets
(Az, Ay), we train a version of the network which regresses
(A¢p,r): an angular offset and an absolute distance to the
laser scanner (——). For this experiment, we also had to
remove centering (c.f. ), as otherwise r is impossible
to predict. Without centering, the network could in principle
learn to “pass through” the centerpoint’s distance and add it
as a bias in the last layer. The drastically degraded results
suggest that this is a much more difficult problem that the
learning procedure fails to solve.

To ensure that this difficulty is not caused by a bad
interaction with our preprocessing, we also train a network
to make these predictions on raw, unprocessed data ( ).
This model performing worst of all shows that even a plain
voting-based network alone does not perform well if no care
is taken on both the input and output.

3) Model: Since every window is sent through the model
individually, and all windows have the same size due to the
resampling step, there is no inherent reason for the model to
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Fig. 9: Effect of the window size ¢ on the performance.

be a CNN. To show that the spatial prior encoded in a CNN
is useful, we train a three hidden-layer perceptron (——) with
2048 hidden units each, ReLU non-linearities, dropout, and
batch-normalization. As in the other experiments, we leave
all other design decisions unchanged. The result shows that,
although the MLP is a viable alternative, the CNN clearly
outperforms it.

As an additional baseline we trained a regression forest
( ) that regresses the three class probabilities and the local
offsets (Axz, Ay). It was trained with the same training data
as the CNN and the MLP (including the flip augmentation).
We used the scikit-learn [23] implementation of the regres-
sion forest with all default settings and 50 trees. Training
took 7.5 hours (using 5 threads) and resulted in a model of
6.9GB compared to our CNN model of 1.1MB. Nevertheless,
the forest model performs even slightly worse than the MLP
in all cases.

4) Window Size: So far, all evaluations have been per-
formed with a real-world window spanning ¢ = 1.66 m, mo-
tivated by the typical extent of wheelchairs being 1.2m. To
verify that this is a reasonable choice, we trained a network
on both larger (2.20m) and smaller (1.10 m) windows. The
results of this experiment can be seen in Fig.[9] The class-
agnostic prediction performance is best for our choice of £ =
1.66 m, but wheelchairs alone could be detected considerably
better by using a window of 2.2m. These results suggest
that further improvements might be obtained by providing
the network with multiple scales of input windows.

IV. RELATED WORK

Most related to our approach is that of Weinrich et al. [34]
who propose a distance invariant feature for laser based
detection. They detect wheelchairs, walkers, and persons in
2D range data by first detecting larger jumps in the distance.
Once such a jump is found, they create a window with a
fixed real-world extent, covering subsequent scan points. The
window is discretized into equally sized segments, for each
of which a clamped distance relative to the window depth is
computed. Each segment is characterized by the min, max
and average depth which are concatenated for all segments
to form the feature vector. These are then classified by an
AdaBoost classifier. While their feature design has a high
similarity to our depth preprocessing step, their windows are
only created when a jump in distance is found, where we



create a window for every scan point. The biggest difference,
however, is that they directly predict a detection center and
object class for every window, while we vote for centers, a
step in our detector which we have shown to be essential.

A few more publications [7], [14], [17] identify the need
for a distance-invariant representation which we highlight
in this work. The solution of creating a re-sampled depth
image from a 3D point-cloud by ray-tracing [7], however,
involves multiple significantly more complex operations than
our proposed simple pre-processing and no timings were
provided. The other commonly-used solution is the creation
of a 3D occupancy-grid [14], [17]. Such an approach ef-
fectively uses N + 1-dimensional inputs for data on an N-
dimensional manifold, while our approach keeps the input
N-dimensional. Arguably, the latter makes learning easier
and predictions more robust [3]. In addition, multiple dif-
ferent heuristics exist for “filling holes” in those occupancy-
grids [17], whereas our pre-processing doesn’t produce holes
in the first place. In the end, both data representations may
be made to work, but we believe our lower-dimensional
representation is simpler and more effective.

Others have used voting for detection in laser scans,
Mozos et al. [20] in a multi-height laser setup and Spinello et
al. [29] in a layered fashion based on 3D range data. Both,
related to [15], learn shape models from data and cast
votes from the different laser layers to detection centroids.
However, similar to Weinrich er al. [34], they rely on jump
distance segmentation and only the segments can cast votes
for detections. In [33], Wang et al. prove that detection using
a voting scheme corresponds to sliding-window detection
on a sparse grid for linear models. While they achieve
good detections on point clouds using hand-crafted features
and a linear SVM, it has been shown time and again
in the computer vision literature (and in this paper) that
learned non-linear features and classifiers outperform hand-
crafted features and linear classifiers by a large margin. In
line with our findings, voting has recently been shown to
work well in combination with various other deep learning
approaches [19], [25], [36]. It would thus be interesting
to establish a relationship between deep, non-linear voting
detectors such as DROW and sliding-window detectors on
sparse inputs as shown in [33].

Detection in range data is not limited to persons or
mobility aids. Around the time at which we uploaded the
preprintﬂ of this paper, Ondruska et al. [22] shows how
to do “tracking” of pedestrians, cyclists, buses, cars, and
road obstacles in 2D range data. Although seemingly similar
to our work, their input is an occupancy-grid (i.e. N + 1-
dimensional) for which they predict a labelled occupancy-
grid, as opposed to discrete detections or tracks with IDs.
Based on the biases for static grid cells in their RNN, it
remains to be seen how well their approach works on a
mobile robot.

Merdrignac et al. [18] also detect cars, bicyclists and static
road obstacles in 2D range data. They hypothesize that more
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information can be extracted from range data than done
before and aim to achieve this by designing a large set of
hand-crafted features. We agree, but we instead learn feature
representations from the data directly.

V. DISCUSSION

A few interesting aspects of our detector should be high-
lighted. Firstly, given the experimental evaluation it becomes
clear that we perform well with respect to wheelchairs, but
our walker performance leaves some room for improvement.
One reason for this could be the fact that our training set
is rather biased towards wheelchairs. However, the class-
agnostic precision-recall curves are very similar to the ones
of wheelchairs in most of our experiments. This suggests
that one significant problem for walker detection is a high
confusion with wheelchairs. The fact that whenever DROW
detects a mobility aid of either class, it is well localized, leads
us to the conclusion that the network “understood” walkers
but needs to see more of them.

Secondly, laser-based detection is often dismissed as too
sparse or too difficult in a single frame. We hope our
results refute this fear, even though we do not dismiss the
performance gain that could likely be achieved by tracking
our detections over time.

A commonly suggested alternative to laser-based detec-
tions is the use of a vision-based detector and RGB(-D) cam-
eras, which produce much richer data. Several approaches
have tried this before [21], [10], [6], but none of them is
general enough to be applied in all scenarios. They typically
rely on geometric primitives [21] or very specific camera
setups [6]. Furthermore, commonly used RGB-D sensors
such as the Asus Xtion, mounted on a human sized robot,
have a too narrow field of view to perceive wheelchairs both
far away, as well as when they come close to the robot.
Vision-based detectors would thus need many cameras to
cover the same field of view that is covered by a single
laser scanner. Additionally, since mobility aids themselves
come in many different appearances, training such a detector
robustly would require a vastly larger dataset. Thus, a laser-
based detector, as we have shown to be feasible here, is the
more effective and efficient approach.

VI. CONCLUSIONS

In this paper we introduced the DROW detector, a fast
deep learning based detector for wheelchairs and walkers
from 2D range data. We have proposed a depth preprocessing
and a voting scheme, both of which enable CNNs to vastly
outperform naive CNN detection baselines and obtain state
of the art results compared to a previous method. We
performed a thorough experimental evaluation, justifying all
our major design choices. To achieve all this, we recorded a
large dataset in which we annotated wheelchair and walker
centroids, and which we believe will enable further research.
We are convinced that our detector generalizes to other
classes given training data and will thus be useful to the
community. Upon acceptance of the paper, we will publish
our code, including a ROS node and the annotated dataset.
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