
HAL Id: hal-01421734
https://inria.hal.science/hal-01421734

Submitted on 22 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visual servoing in an optimization framework for the
whole-body control of humanoid robots

Don Joven Agravante, Giovanni Claudio, Fabien Spindler, François Chaumette

To cite this version:
Don Joven Agravante, Giovanni Claudio, Fabien Spindler, François Chaumette. Visual servoing in
an optimization framework for the whole-body control of humanoid robots. IEEE Robotics and
Automation Letters, 2017, 2 (2), pp.608-615. �10.1109/lra.2016.2645512�. �hal-01421734�

https://inria.hal.science/hal-01421734
https://hal.archives-ouvertes.fr


IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2016 1

Visual servoing in an optimization framework
for the whole-body control of humanoid robots

Don Joven Agravante1, Giovanni Claudio1, Fabien Spindler1, and François Chaumette1

Abstract—In this paper, we show that visual servoing can be
formulated as an acceleration-resolved, quadratic optimization
problem. This allows us to handle visual constraints, such as field
of view and occlusion avoidance, as inequalities. Furthermore, it
allows us to easily integrate visual servoing tasks into existing
whole-body control frameworks for humanoid robots, which
simplifies prioritization and requires only a posture task as a
regularization term. Finally, we show this method working on
simulations with HRP-4 and real tests on Romeo.

Index Terms—Visual servoing, optimization and optimal con-
trol, humanoid robots.

I. INTRODUCTION AND BACKGROUND

V ISUAL servoing is a method of control that directly
incorporates visual information into the control loop [1].

It has been shown that it is effective in various robotics
applications. In particular, it is often used for gaze control
and grasping with humanoids [2]–[4]. On the other hand,
optimization is a process that seeks to obtain the minimum (or
maximum) of a particular objective under some constraints [5].
Optimization algorithms have proven to be a good framework
for control, especially on complex systems such as humanoid
robots. This is evidenced by various groups, working on hu-
manoids, adapting similar optimization-based approaches [6]–
[12]. The purpose of this paper is to show how visual servoing
can be effectively used within these optimization frameworks.
In doing so, we can gain the advantages of the optimization
approaches (e.g., handling multiple tasks and constraints),
yet retain the main research results of the visual servoing
community. Specifically, we want to keep using the various
visual features and the corresponding Jacobians that are well
suited to be used in control, such as those collected and
implemented in [13].

In the literature related to visual servoing, the problem of
enforcing constraints has been one of the key issues because
of the need to keep features in the field of view and avoid
occlusions. In the state of the art, these are usually handled
by firstly planning a path/trajectory in image-space and then
tracking the result with visual servoing [14]–[17]. One way to
do the planning phase is with optimization [15]. So by using

Manuscript received: September, 2, 2016; Revised November, 22, 2016;
Accepted December, 15, 2016.

This paper was recommended for publication by Editor Dongheui Lee upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported in part by the BPI Romeo 2 and the H2020 Comanoid projects
(www.comanoid.eu)

1All authors are with Inria Rennes - Bretagne Atlantique,
Lagadic group, Campus de Beaulieu, 35042 Rennes, France.
firstnames.lastname@inria.fr

Digital Object Identifier (DOI): see top of this page.

optimization for visual servoing itself, we can proceed without
the planning phase but still handle constraints. This was one
of the main ideas in [18] which is probably the closest related
work. In [18], visual servoing with constraints is formulated as
a Model Predictive Control (MPC) problem that is solved in
an optimization framework. This was validated in a simulation
of a free-flying camera and four image points for features.
Compared to [18], we firstly pose a novel second-order model.
This is important to be consistent with dynamics. Secondly,
we do not use predictive control and the cost function is
formed differently such that we can use quadratic optimization,
avoiding the complexities of using non-convex optimization.
MPC implies an additional computational cost since the state
and control vectors are multiplied by N previewed steps. We
choose to avoid this for now. Meanwhile, the cost function
formulation allows us a wider choice of convergence properties
as motivated in Sec. IIA. Thirdly, we use the model to
form inequalities for both the field of view constraint and
occlusion avoidance. Finally, we show that our formulation
integrates well to existing task objectives and constraints used
to control a humanoid platform. There are also other works
similar to [18]. Notably, [19] had similarly framed the visual
servoing problem in an MPC and optimization context. This
was integrated inside of an existing MPC for walking pattern
generation (WPG) of a humanoid. Being an MPC formulation
of visual servoing, our novelty claims relative to it are the same
except for application to a humanoid platform. In regards to
this, we create the visual servoing objectives and constraints
directly in the whole-body controller while [19] does it in
the WPG. Historically, the WPG is solved ahead of time and
separately so that it can produce reference trajectories for
the whole-body controller to track [20]. Recently, [21] has
shown that both problems can be solved together. Leveraging
this result, we argue that formulating visual servoing as just
another task/constraint for the whole-body controller is better.
Not only does it ensure consistency with actuation constraints
(e.g., joint limits), it also simplifies the overall framework for
task prioritization, i.e., both walking and visual servoing are
just another set of tasks/constraints in the same optimization
problem.

The rest of the paper is structured as follows. Sec. II defines
the base formulation. We then show how inequalities can
naturally represent the field of view and occlusion constraints
in Sec. III. Simulation results are presented in Sec. IV and
Sec. V shows some tests on a real humanoid robot. Finally,
Sec. VI concludes and outlines some possible future works.



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2016

II. BASE FORMULATION

Classically, visual servoing techniques use a first-order
motion model of the visual features and the Moore-Penrose
pseudoinverse to solve the system of equations, formally:

ė =Lev, (1)

v =− λL̂+
e e, (2)

where e is an error vector of the chosen visual features, v the
velocity of the camera, Le is the visual feature’s Jacobian (or
interaction matrix) with L̂+

e the pseudoinverse of its estimate
(denoted by the hat), and finally λ is a gain to be tuned.
Notice the two parts: the model (1) and the control law (2).
A primary idea of this paper is that re-using (1) is beneficial
while (2) can be done more generally by optimization. Using
the pseudoinverse for velocity-resolved control is not unique to
visual servoing. In fact, the exact same method can be found in
general robotics literature as instantaneous inverse kinematics.
A useful parallel can be drawn between the pseudoinverse
and optimization, as explained in [22], where an equivalent
optimization problem can be created. For example, (2) is the
same as:

v = argmin
v

‖v‖2

subject to L̂ev = −λe.
(3)

In fact, several parallels can be drawn between classical robot
control approaches and optimization, as presented in [23].
Contrary to [23], which focused on a novel method to solve the
optimization problem, this paper concentrates on the problem
construction while leveraging optimization solvers such as
those explained in the reference text [5].

To start detailing the base formulation, let us first generalize
e to be any task vector in the operational space, then we define
the function, fe, that maps the joint positions q to this space:

e = fe(q). (4)

A classical example is using Cartesian space to define e and
the function fe is known from forward kinematics. Assuming
fe is twice differentiable, we can define:

ė =Jeq̇, (5)

ë =Jeq̈ + J̇eq̇, (6)

where Je is known as the task Jacobian. Note how (5) has a
similar form to (1). Furthermore, (6) has a well known form
and can be used for effective Cartesian space control in an
optimization framework [8], [24]. Returning first to (5), it can
be related to (1) by expanding into:

ė = LeJpq̇, (7)

by setting Je = LeJp. Here, Jp is the Jacobian of a
corresponding robot frame p. For example, if p is the camera
frame, then (7) is equal to (1). Continuing, (6) then becomes:

ë = LeJpq̈ + LeJ̇pq̇ + L̇eJpq̇. (8)

We now have (7) and (8), in the same form as (5) and (6). With
these, we can formulate an optimization problem consistent
with the framework of [8].

A. Quadratic programming objective

Recall that a general optimization problem can be written
as finding x such that:

argmin
x

fo(x)

subject to fc(x) ≤ 0,
(9)

where fo(x) is the objective function and the inequality
fc(x) ≤ 0 is the constraint which is infinitely more important
than the objective. A constrained quadratic programming (QP)
problem can be formulated when:

fo(x) =
1

2
x>Qx + c>x, (10)

fc(x) =Ax− b. (11)

For example, (3) is a QP by defining x = v. The objec-
tive function can then be formed like (10) where Q is an
identity matrix and c is a vector of zeros. For the constraint,
the general form of (9) is an inequality. But we can form
equality constraints, such as that in (3), with inequalities by
creating artificial upper and lower limits which are equal.
Doing this for (3), we can recover the form of (11) where
A = [L̂e

>
−L̂e

>
]> and b = [−λe> λe>]>. However, most

QP solver interfaces can explicitly handle equalities, so this is
not always needed. For example, active set strategies [5] can
benefit from knowing there is one equality that is always active
rather than two inequalities to regularly check. Once we have
a well-formed QP, it can be solved reliably [5]. To simplify
the explanations that follow, we define the argument of the
optimization, x = q̈, being consistent with the acceleration-
resolved framework [8].

A QP is useful since we can define objectives as Euclidean
norms. For example, a commonly used cost function is that of
a tracking control objective:

fo(x) =
1

2
‖k(edes − e) + b(ėdes − ė) + (ëdes − ë)‖2 , (12)

where edes, ėdes, ëdes define a desired trajectory in the task
space and k, b are gains to tune. Note that this is a design
choice. This corresponds to the design choice of ė = −λe in
the basic visual servoing control law of (2). The advantage of
(12) is that it corresponds to a mass-spring-damper system and
can be tuned as such. For example, normally we set b = 2

√
k

for a critically damped behavior. A particular case of (12)
consists in positioning all the joints such that e = q and
Je = I, along with defining ėdes = ëdes = 0 so that:

fo(x) =
1

2
‖k(qdes − q)− bq̇− q̈‖2 . (13)

We will refer to this as a posture task similar to [8]. For
humanoid robots having many joints, this is used as a low-
priority task to make sure the QP solution is unique.

For visual servoing, we substitute (7), (8) into (12) to
recover the form of (10) where:

Q =J>pL
>
e LeJp,

c =− J>pL
>
e (k(edes − e) + b(ėdes − LeJpq̇)

+ ëdes − LeJ̇pq̇− L̇eJpq̇).

(14)



AGRAVANTE et al.: VISUAL SERVOING IN AN OPTIMIZATION FRAMEWORK FOR THE WHOLE-BODY CONTROL OF HUMANOID ROBOTS 3

Note that this differs from (3) because the control law is
used as an objective function instead of a constraint. However,
if we use a slack variable, s, in (3) for relaxing the constraint,
then the constraint effectively becomes an objective:

v = argmin
v,s

‖v‖2 + w ‖s‖2

subject to L̂ev − s = −λe,
(15)

where w is a weight used to adjust the priority. The slack
variable trick can be applied to any constraint, including
inequalities [22]. So the difference between an objective and
constraint is effectively only the priority. The design choice
of lessening the importance of the visual servoing solution fits
humanoid robots that already have several constraints that are
more important. Another change is the use of the posture task
(13) in place of the velocity norm objective. Lastly, note that
adding several independent QP objectives together results in
the same QP form of (10) so (15) can be written as a QP
similarly to (3).

B. Particularities of visual servoing

To use (14), we need to detail some variables. Firstly, e
is defined as one of the visual servoing features from the
literature - e.g., point, line, circle, image moments, luminance,
etc. [13]. These come together with a definition of the corre-
sponding interaction matrix, Le. Recall that we can stack the
features and Jacobians [1]. Although this is possible, a better
way in the optimization framework is to define a separate
task. This allows better handling of prioritization - whether
weights [24], a hierarchy [25], or both are used. Next, a robot
body part, p, (or an associated surface) is selected to be the
servo end point. This similarly comes with the Jacobian, Jp.
Note that a slight modification of the Jacobian is needed in the
case of eye-to-hand systems as opposed to eye-in-hand systems
that servo the camera body as illustrated in [26]. Lastly, we
are missing the definition of L̇e. An approximation can be
made that the term L̇eJpq̇ is negligible in the context of (14).
However, it is possible to obtain L̇e as shown next.

One of the most common and simplest image-based features
is the point. It is defined by:

e =

[
x
y

]
=

[
X/Z
Y/Z

]
, (16)

where the 3D coordinates of the point in reference to the
camera frame are {X,Y, Z}, where Z is the depth. The
equivalent pixel-space coordinates are easily obtained with the
camera intrinsic parameters [1]. Its corresponding Jacobian is:

Le =

[−1
Z 0 x

Z xy −(1 + x2) y
0 −1

Z
y
Z 1 + y2 −xy −x

]
. (17)

Taking the time derivative we get:

L̇e =

[
Ż
Z2 0 ẋZ−xŻ

Z2 ẋy + xẏ −2xẋ ẏ

0 Ż
Z2

ẏZ−yŻ
Z2 2yẏ −ẋy − xẏ −ẋ

]
.

(18)

The image point derivatives {ẋ, ẏ} can be obtained from (7)
while Ż is obtained by:

Ż =
[
0 0 −1 −yZ xZ 0

]
v, (19)

which comes from the spatial velocity definition.
Another example comes from the class of pose-based fea-

tures. The relative translation feature is defined as:

e = dtp, (20)

which is a 3-dim vector corresponding to the translation of
the robot body part, p, with d, the target/desired frame used
as the reference. Its Jacobian is:

Le =
[
dRp 0

]
, (21)

which contains the corresponding rotation matrix. The deriva-
tive of a rotation matrix can be associated to the angular
velocity placed in skew-symmetric matrix form [ω]× such that:

L̇e =
[

˙dRp 0
]

=
[
(− [ω]×

dRp) 0
]
. (22)

III. INEQUALITY FORMS: FIELD OF VIEW MAINTENANCE
AND OCCLUSION AVOIDANCE

In visual servoing, we often want to formulate additional
tasks relating to the visibility of features. These can be broadly
classified into two. The first is to ensure that features remain
within the field of view. In fact, a control law driving the
feature error to zero does not explicitly prevent the features
from leaving the field of view during the transition. Secondly,
there are often other objects (or even the robot’s other body
parts) that have the possibility to block the field of view
causing an occlusion, which we want to avoid. In these
two cases, there is no specific target, making it difficult to
formulate the problem as an equality, as the case in Sec. II.
However, both of these can be easily formed as inequalities.
Recall also that with slack variables the inequality does not
need to be a strict constraint [22]. The question then becomes
that of correctly prioritizing the different tasks, which we leave
up to the designer of specific use cases.

Maintaining the field of view implies that the feature of
interest, efov, should remain inside some defined image bounds
such that:

e ≤ efov ≤ e, (23)

where e, e symbolizes the lower and upper limits respectively.
Contrarily, avoiding occlusion can be formulated by defining
eocc as some features related to the occluding object. We then
desire to keep it outside of certain image bounds such that:

eocc ≤ e or e ≤ eocc. (24)

These behaviors can be formulated similarly. Recall that
inverting the inequality amounts to simply negating both sides
and that the task vector can be stacked. So without loss
of generality, the following explanations only show a single
direction of the FoV constraint, that is: e ≤ e.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2016

A. Base inequality formulation

Any appropriate task vector can be used to formulate an
inequality, as it is with the objective function. Recall that we
want to have a second-order form. For this, a second-order
approximation can be defined:

ek+1 = ek + ėk∆t+
1

2
ëk∆t2, (25)

where ∆t is a time step from discretization. We can then
constrain this by:

ek+1 ≤ e. (26)

We can get the linear form needed by first substituting (25)
into (26). Doing so also removes the need for the subscript
k, which we drop to be concise. Next, we use (7, 8) in (25)
to obtain the joint space expression. Finally, recalling that we
use x = q̈, we recover the form of (11) where:

A =
1

2
LeJp∆t2,

b =e− ek − LeJpq̇∆t− 1

2
∆t2

(
LeJ̇pq̇ + L̇eJpq̇

)
.

(27)
Almost all other terms were detailed before. The only thing
left to define are the limits, in this case e. For example, let us
first define e to be image points as in (16). This is a common
and versatile definition because it can be extended by sampling
the object of interest with several different points. Since we
are concerned with visibility, the limits are best described in
pixel space. For example, to define x such that it corresponds
to the image border in pixel space, u, we have:

x =
u− cx
fx

, (28)

where cx is the principal point, fx is the focal length, both
of which are obtained from calibration of the intrinsic camera
parameters. This can be done similarly for y and lower limits.

Finally, note that (26) can be viewed as a 1-step preview
horizon, making it similar to the form used in [18]. Because
of this, it also has the same disadvantages of not being very
stable in a numerical sense. The solution in [18] is to extend
the preview horizon. This improves performance but has the
disadvantage of extra computational cost (particularly since the
number of constraints is increased). Differently, we improve
the performance by slightly reforming (26) as shown next.

B. Augmenting the behavior by avoidance functions

Usually it is better to avoid a hard constraint rather than
wait for it to activate (often violently). We can replace the hard
constraint in (26) by an avoidance function, f(e, e). Another
improvement can be made by constraining only the update
(i.e., velocity and acceleration). Using both we have:

ėk∆t+
1

2
ëk∆t2 ≤ f(e, e). (29)

Using a parametrization of the avoidance function commonly
used in [8]:

ėk∆t+
1

2
ëk∆t2 ≤ ξ ek − es

ei − es
− ξoff if ek > ei, (30)

where es is a safety bound, such that es = e − δ , while ei
is an interactive bound which defines the activation boundary
of the constraint, so ei = e − i where i > δ , finally ξ is
a tunable gain for the avoidance behavior and a small offset
ξoff ensures that the robot is moving away from the constraint
direction instead of keeping still (zero update). We can now
change the QP with this. Note that A retains its form. Then:

b =ξ
ek − es

ei − es
− ξoff − LeJpq̇∆t

− 1

2
∆t2

(
LeJ̇pq̇ + L̇eJpq̇

)
.

(31)

Finally, note that the constraint activation condition needs to
be handled explicitly in the implementation, by adding the
constraint when ek > ei and removing it otherwise.

IV. SIMULATION RESULTS

This section shows some representative examples of our
verification tests with simulations using the HRP-4 robot
model with a 5 ms control loop. These are shown as part of
the accompanying video (sped up only due to video length).
In all of these, we have some essential whole-body control
tasks in addition to the visual servoing tasks described. The
required tasks can be generally described as:
• maintaining balance (e.g., dynamics consistency, center

of mass control)
• actuation limits (e.g., joint position and torque limits)
• maintaining contacts (e.g., null contacting body accelera-

tion, keeping within the static friction cone, unilaterality
of force)

• self-collision avoidance
• default posture task (e.g, Eq.(13))

Because whole-body control is still a very active area of
research, different teams use various formulations as can be
seen in some examples from the literature [6]–[12]. Here, we
are using the same formulation as [8]. The objective functions
are combined using a weighted sum:

ftotal(x) =

n∑
i=1

wifi(x). (32)

A guideline to tune the weights to produce a pseudo-hierarchy
is:

wi min(fi(x)) > wi-1 max(fi-1(x)), (33)

where task i has a higher priority than task i − 1, and
min() and max() represent minimal and maximal function
values according to the expected/acceptable task error values.
Typically, we have prioritized: (1) center of mass control,
(2) visual servoing, and (3) posture, for the objectives while
actuation limits, maintaining contacts, dynamics consistency
and self-collision avoidance are explicit constraints. The in-
terested reader can refer to [8] for more implementation
and technical details on the QP (e.g., solvers and runtime).
However, the visual servoing tasks presented here can be
adapted easily to fit with other optimization-based whole-body
control frameworks. Furthermore, a strict hierarchy [25] is also
possible instead of (32) and (33).



AGRAVANTE et al.: VISUAL SERVOING IN AN OPTIMIZATION FRAMEWORK FOR THE WHOLE-BODY CONTROL OF HUMANOID ROBOTS 5

A. Gaze with occlusion avoidance

In this simulation, we show how the gaze can be con-
trolled simply by centering a single point feature, defined
by (16), in the image. Since the feature is defined in image
space without extrapolating the object pose, the method falls
into Image-Based Visual Servoing (IBVS). Fig. 1 shows this
demonstration. The feature is the 2D projection of the user-
controlled interactive marker. Additionally, a simulated wall
serves as an occluding object to the left of the robot. For
simplicity, we assume prior knowledge of its location. To
define the occluding features, the wall edge closest to the
robot is sampled with point features. The task limits are the
edge of the image border (this is then augmented with the
safety and interactive margins). In the accompanying video,
the gaze control motion without occlusion is shown first by
moving the object to the right of the robot. This corresponds
to about 3 to 8 sec of the plot in Fig. 2. Contrarily, moving
the object to the left of the robot can result in an occlusion
by the wall as seen in Fig. 1. This corresponds to around
9 sec onwards of the plot in Fig. 2. The occlusion avoidance
forces the robot to lean forward, noticeably using the torso and
leg joints to gaze while maintaining balance (Center of Mass
control). Additionally note how a small part of the wall enters
the bottom-left corner of the simulated image inset in Fig. 1
(gray triangle on the bottom left). This portion is in between
the sampled points. Although adding more points can always
be done, it is also possible to use other image features such
as line segments, that can better represent the object.

Fig. 1. A demonstration showing a gazing task using IBVS.

B. Hand servoing with modeling errors

Visual servoing is well-known for its robustness to some
modeling errors. To show that this is still the case, we
simulated a constant offset of 0.5 radian on the right shoulder
pitch. This can be seen in Fig. 3. There are two different robot
models here. The opaque one is the real robot model. The
transparent one is the wrong robot model which has the offset
in the right arm pose representing the mistaken internal knowl-
edge. In this simulation, we used the wrong information for
all the computations requiring the robot model, e.g., the robot
Jacobians in (14). However, we update the visual servoing task
(error and feature Jacobians) with the real pose, simulating
the information provided from a visual pose estimate. For
the control, we use Pose-Based Visual Servoing (PBVS) on
the right wrist with the translation feature of (20) and a

0 5 10 15 20 25 30 35

time (s)

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

e
rr

o
r

Task error

x

y

Fig. 2. Simulation data of the IBVS gazing task error discussed in Sec.IV-A

corresponding angle-axis orientation feature [1]. Note how in
the accompanying video, the real robot model converges to
the desired pose instead of the wrong robot model, which
would have been the case if we used an open-loop method.
Fig. 3 is representative of this, where the interactive marker
was moved. The PBVS task errors of this demonstration are
shown in Fig. 4.

Fig. 3. Final pose of a PBVS task for the right wrist with a simulated modeling
error. The opaque robot represents the real robot model while the wrong robot
model is transparent. The error is introduced in the right shoulder joint. The
task error plot of Fig 4 shows convergence to the target.



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2016

0 5 10 15 20 25 30 35 40

time (s)

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

e
rr

o
r 

(t
 i
n
 m

, 
θ
u
 i
n
 r

a
d
)

Task error

tx

ty

tz

θux

θuy

θuz

Fig. 4. Simulation data of the PBVS hand task error discussed in Sec.IV-B,
the goal was moved 3 times after initial convergence

C. Combining with walking

Walking (and other locomotion modes) amounts to control-
ling the floating base of the humanoid while maintaining bal-
ance. This implies that contact states (footsteps) are handled.
In this demonstration, we are using a WPG implementation
with a reference velocity as an input [27], [28]. To use this
together with our visual servoing tasks, a simple but effective
method consists of defining the WPG inputs as a function
of the visual servoing task errors. For example, if we have a
PBVS task for the right hand and an IBVS gaze task (as in the
previous simulations) then we can define the WPG reference
as:

ċxref =kv(txPBVS), ċyref =0, θ̇ref = −kθ(θgaze),

where the WPG input reference velocities are ċxref, ċyref, θ̇ref,
while txPBVS is the translation part of the hand PBVS task
corresponding to the x axis of the WPG frame (local frame on
the robot), θgaze is the yaw angle of the gaze frame relative to
the current WPG frame and kv, kθ are gains to tune. The idea
is that the hand PBVS will guide walking forward. Walking
sideways is not used. The gaze IBVS orients the robot such
that it faces straight at the object. Finally, note that bounds
are needed for txPBVS and θgaze that are used in the coupling.
When a bound is exceeded, we use: e′ = e

max(e) where e is
the unbounded error, max(e) is the largest limit violation and
e′ is the result used. This preserves the vector direction. Fig. 5
shows a screenshot from the demonstration. Fig. 6 shows the
relevant WPG control inputs: ċxref, θ̇ref. The start of the plot of
Fig. 6 from time 0 to around 4 sec shows the clipping of the
control due to the bound of 0.3 m/s on ċxref. After this, up to
around 35 sec, we show how the tasks converged to a fixed
goal. Next, from around 35 sec onwards, we see how the tasks
converged when the interactive goal was moved. Furthermore,
there is a small oscillation (especially when the task is close to
converging). This is due to the conflicting tasks (since we are
not using strict hierarchies). Specifically, the visual servoing

task designed in this paper conflicts with the Center of Mass
servoing with references generated by the WPG. Although
the coupling laws designed here seek to resolve this conflict,
having a separate solver for the WPG means it cannot be fully
resolved in this manner.

Although this ad hoc coupling is effective in this demon-
stration, it has some clear drawbacks. The purpose here was to
show further that visual servoing can be used as just another
whole-body task implying that it can work together seamlessly
with balance control and changing contact states. For a more
rigorous integration of walking, we think that methods such
as [21] which consider all the conflicting tasks together could
be a more suitable approach to the problem. However, since
this requires a larger effort, we have opted to leave this out of
the scope of this work.

Fig. 5. A demonstration showing walking together with a hand PBVS task
and an IBVS gaze

0 10 20 30 40 50 60 70 80

time (s)

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

v
e
lo

c
it

y
 (

v
 i
n
 m

/s
, 

˙ θ
 i
n
 r

a
d
/s

)

WPG control inputs

v
x

˙θ
z

Fig. 6. Simulation data of the walking pattern generator velocity inputs
coming from the visual servoing errors discussed in Sec.IV-C

V. TESTS ON A REAL PLATFORM

For validation on a real robot, we are using Romeo, a 37
DOF humanoid from SoftBank Robotics. In these tests, we
used the left eye camera with a resolution of 320x240 at 30 Hz.



AGRAVANTE et al.: VISUAL SERVOING IN AN OPTIMIZATION FRAMEWORK FOR THE WHOLE-BODY CONTROL OF HUMANOID ROBOTS 7

For the interface to Romeo, we used a velocity controller pro-
vided by SoftBank Robotics running at 10 Hz. The computed
acceleration commands are numerically integrated to provide
the required velocity commands.

A. Gaze control with Romeo

In this test, Romeo detects and tracks a moving visual target
where an IBVS gaze task is used to keep the target in the
center of the image (see Fig. 7). In this case, the circular
target is a single marker from the open-source marker-based
localization system called WhyCon [29]. Fig. 8 shows the
IBVS task error throughout the test. We can see that the
absolute task error always remains less than 0.3 despite the
target being moved (in this case, no feedforward prediction of
the motion was added either). Because of modeling errors, (i.e.
intrinsic and extrinsic camera parameter errors and Romeo’s
mechanical model errors), we had to prevent overshooting by
increasing the damping ratio of our control law (12) from
1 (used in simulations for a critically damped convergence)
to 2.7, such that b = 5.4

√
k. Furthermore, along with the

common tasks listed at the beginning of Sec. IV, two tasks
were added for show. Although these do not help the visual
servoing tasks in any way, they subjectively improve what
appears in the video and screenshots. Firstly, an orientation
task for the head is added to minimize the unnatural-looking
head tilting. Secondly, another IBVS task is defined so that the
right eye tracks the target as well (the eyes are independently
actuated).

Fig. 7. A demonstration showing gaze control with Romeo using IBVS.

B. Grasping with Romeo

In this test, Romeo has to grasp a box (see Fig. 9). To do
this, PBVS is used to move the hand towards a desired pose
that is defined relative to the pose of the box. The box is also
moved after the initial convergence, as seen in the video as
well as the plot of Fig. 10 after around 15 sec. Simultaneously,
IBVS is used for the gaze, as in Sec. V-A, this time keeping
a point relative to both the box and hand as a target, similar
to [3], [4]. Here, it is necessary to visually track both the hand
and box. The ViSP [13] library is used for these. Specifically,
we used the ViSP blob detection and pose estimation algorithm
on the hand marker and the Model Based Tracker (MBT) for
the box.

0 10 20 30 40 50 60 70 80 90

time (s)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

e
rr

o
r

Task error

x

y

Fig. 8. Data from Romeo of the IBVS gazing task error discussed in Sec.V-A

This demonstration turned out to be particularly challenging
with Romeo. Throughout the tests, we faced a problem of
reduced stiffness in the knee joints, imposed by an internal
temperature protection of the motors, to which we do not
have access. This caused unwanted oscillations whenever it
occurs. This can be noticed in the accompanying video towards
the end of the grasping demonstration. This adds even more
perturbations (on top of the camera and mechanical modeling
errors). In spite of these, visual servoing made it possible for
Romeo to succeed in the tasks.

Fig. 9. A demonstration showing Romeo grasping a box using IBVS for the
gaze and PBVS for servoing the hand.

VI. CONCLUSION AND FUTURE WORK

In this paper, we showed how visual servoing can be for-
mulated as a quadratic optimization problem. Furthermore, we
formulated both equality and inequality constraints. Moreover,
by defining an acceleration resolved form, we were able to
easily integrate the visual servoing tasks into an existing
whole-body control framework for humanoids. Results were
then shown with simulations on HRP-4 and then real tests on
Romeo.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2016

0 20 40 60 80 100 120

time (s)

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

e
rr

o
r 

(t
 i
n
 m

, 
θ
u
 i
n
 r

a
d
)

Task error

tx

ty

tz

θux

θuy

θuz

Fig. 10. Data from Romeo of the hand PBVS task error discussed in Sec.V-B

For future work, we can envision using the visual servoing
tasks in more challenging scenarios. Some specific areas to
be improved in this regard are: the combination with walking,
and adding feedforward prediction for target motion tracking.
Both of these were briefly outlined here. We also envision
using other image features and visual constraints to improve
the challenges on real robot platforms such as Romeo.

VII. ACKNOWLEDGEMENT

This work was supported in part by the BPI Romeo 2 and
the H2020 Comanoid projects (www.comanoid.eu).

REFERENCES

[1] F. Chaumette and S. Hutchinson, “Visual servo control, Part I: Basic
approaches,” IEEE Robotics and Automation Magazine, vol. 13, no. 4,
pp. 82–90, 2006.

[2] N. Mansard, O. Stasse, F. Chaumette, and K. Yokoi, “Visually-Guided
Grasping while Walking on a Humanoid Robot,” in IEEE International
Conference on Robotics and Automation, pp. 3041–3047, April 2007.

[3] D. J. Agravante, J. Pagès, and F. Chaumette, “Visual servoing for the
REEM humanoid robot’s upper body,” in IEEE International Conference
on Robotics and Automation, pp. 5253–5258, May 2013.

[4] G. Claudio, F. Spindler, and F. Chaumette, “Vision-based manipulation
with the humanoid robot Romeo,” in IEEE-RAS International Confer-
ence on Humanoid Robots, pp. 286–293, Nov. 2016.

[5] J. Nocedal and S. Wright, Numerical Optimization. Springer Series in
Operations Research and Financial Engineering, Springer New York,
2000.

[6] L. Saab, O. E. Ramos, F. Keith, N. Mansard, P. Souères, and J. Y.
Fourquet, “Dynamic Whole-Body Motion Generation Under Rigid Con-
tacts and Other Unilateral Constraints,” IEEE Transactions on Robotics,
vol. 29, pp. 346–362, April 2013.

[7] J. Koenemann, A. D. Prete, Y. Tassa, E. Todorov, O. Stasse, M. Ben-
newitz, and N. Mansard, “Whole-body model-predictive control applied
to the HRP-2 humanoid,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 3346–3351, Sept 2015.

[8] J. Vaillant, A. Kheddar, H. Audren, F. Keith, S. Brossette, A. Escande,
K. Bouyarmane, K. Kaneko, M. Morisawa, P. Gergondet, E. Yoshida,
S. Kajita, and F. Kanehiro, “Multi-contact vertical ladder climbing with
an HRP-2 humanoid,” Autonomous Robots, vol. 40, no. 3, pp. 561–580,
2016.

[9] A. Herzog, N. Rotella, S. Mason, F. Grimminger, S. Schaal, and
L. Righetti, “Momentum control with hierarchical inverse dynamics
on a torque-controlled humanoid,” Autonomous Robots, vol. 40, no. 3,
pp. 473–491, 2015.

[10] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter,
T. Koolen, P. Marion, and R. Tedrake, “Optimization-based locomotion
planning, estimation, and control design for the atlas humanoid robot,”
Autonomous Robots, vol. 40, no. 3, pp. 429–455, 2016.

[11] M. Johnson, B. Shrewsbury, S. Bertrand, T. Wu, D. Duran, M. Floyd,
P. Abeles, D. Stephen, N. Mertins, A. Lesman, J. Carff, W. Rifenburgh,
P. Kaveti, W. Straatman, J. Smith, M. Griffioen, B. Layton, T. de Boer,
T. Koolen, P. Neuhaus, and J. Pratt, “Team IHMC’s Lessons Learned
from the DARPA Robotics Challenge Trials,” Journal of Field Robotics,
vol. 32, no. 2, pp. 192–208, 2015.

[12] S. Feng, E. Whitman, X. Xinjilefu, and C. G. Atkeson, “Optimization-
based Full Body Control for the DARPA Robotics Challenge,” Journal
of Field Robotics, vol. 32, no. 2, pp. 293–312, 2015.

[13] É. Marchand, F. Spindler, and F. Chaumette, “ViSP for visual servoing:
a generic software platform with a wide class of robot control skills,”
IEEE Robotics and Automation Magazine, vol. 12, no. 4, pp. 40–52,
2005.

[14] Y. Mezouar and F. Chaumette, “Path planning for robust image-based
control,” IEEE Transactions on Robotics and Automation, vol. 18,
pp. 534–549, Aug 2002.

[15] A. H. A. Hafez, A. K. Nelakanti, and C. V. Jawahar, “Path planning
approach to visual servoing with feature visibility constraints: A convex
optimization based solution,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1981–1986, Oct 2007.

[16] T. Shen and G. Chesi, “Visual Servoing Path Planning for Cameras
Obeying the Unified Model,” Advanced Robotics, vol. 26, no. 8-9,
pp. 843–860, 2012.

[17] M. Kazemi, K. K. Gupta, and M. Mehrandezh, “Randomized Kino-
dynamic Planning for Robust Visual Servoing,” IEEE Transactions on
Robotics, vol. 29, pp. 1197–1211, Oct 2013.

[18] G. Allibert, E. Courtial, and F. Chaumette, “Predictive Control for Con-
strained Image-Based Visual Servoing,” IEEE Transactions on Robotics,
vol. 26, pp. 933–939, Oct 2010.

[19] M. Garcia, O. Stasse, J.-B. Hayet, C. Dune, C. Esteves, and J.-
P. Laumond, “Vision-guided motion primitives for humanoid reactive
walking: Decoupled versus coupled approaches,” International Journal
of Robotics Research, vol. 34, no. 4-5, pp. 402–419, 2015.

[20] S. Kajita, M. Morisawa, K. Miura, S. Nakaoka, K. Harada, K. Kaneko,
F. Kanehiro, and K. Yokoi, “Biped walking stabilization based on linear
inverted pendulum tracking,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 4489–4496, Oct 2010.

[21] A. Sherikov, D. Dimitrov, and P.-B. Wieber, “Whole body motion con-
troller with long-term balance constraints,” in IEEE-RAS International
Conference on Humanoid Robots, pp. 444–450, Nov 2014.

[22] O. Kanoun, F. Lamiraux, and P. B. Wieber, “Kinematic Control of
Redundant Manipulators: Generalizing the Task-Priority Framework to
Inequality Task,” IEEE Transactions on Robotics, vol. 27, pp. 785–792,
Aug 2011.

[23] E. Malis, “Improving vision-based control using efficient second-order
minimization techniques,” in IEEE International Conference on Robotics
and Automation, vol. 2, pp. 1843–1848 Vol.2, April 2004.

[24] K. Bouyarmane and A. Kheddar, “Using a multi-objective controller
to synthesize simulated humanoid robot motion with changing contact
configurations,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 4414–4419, Sept 2011.

[25] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” The
International Journal of Robotics Research, 2014.

[26] F. Chaumette and S. Hutchinson, “Visual servo control, Part II: Ad-
vanced approaches,” IEEE Robotics and Automation Magazine, vol. 14,
no. 1, pp. 109–118, 2007.

[27] D. J. Agravante, A. Sherikov, P. B. Wieber, A. Cherubini, and A. Khed-
dar, “Walking pattern generators designed for physical collaboration,” in
IEEE International Conference on Robotics and Automation, pp. 1573–
1578, May 2016.

[28] A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, and
M. Diehl, “Online walking motion generation with automatic footstep
placement,” Advanced Robotics, vol. 24, no. 5-6, pp. 719–737, 2010.

[29] T. Krajnı́k, M. Nitsche, J. Faigl, P. Vaněk, M. Saska, L. Přeučil,
T. Duckett, and M. Mejail, “A Practical Multirobot Localization Sys-
tem,” Journal of Intelligent & Robotic Systems, vol. 76, no. 3, pp. 539–
562, 2014.


