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Essential Properties of Numerical Integration for Time-ogtimal
Trajectory Planning Along a Specified Path

Peiyao Shen, Xuebo Zhang and Yongchun Fang

Abstract— This letter summarizessome known properties and
also presentsseveral new properties of the Numerical Integration
(NI') method for time-optimal trajectory planning along a speck
fied path. The contribution is that rigorous mathematical proofs
of these properties are presented, most of which have not bee
reported in existing literatures. We first give some propertes
regarding switch points and accelerating/decelerating cwes
of the NI method. Then, for the fact that when kinematic
constraints are considered, the original version oNI which only
considers torque constraints may result in failure of trajectory
planning, we give the concrete failure conditions with rigoous
mathematical proof. Accordingly, a failure detection algaithm
is given in a ‘run-and-test’ manner. Some simulation resuls
on a unicycle vehicle are provided to verify those presented
properties. Note that though thoseknown properties are not
discovered first, their mathematical proofs are given first n this
letter. The detailed proofs make the theory ofNI more complete
and help interested readers to gain a thorough understandig
of the method.

Index Terms— Time-optimal trajectory planning, Numerical
Integration, Properties with rigorous proofs.

I. INTRODUCE
Due to low computational complexity,

Based on Pontryagin Maximum Principlsl] possesses a
bang-bang structure of torque inputs, thus, the cordllof

is the computation of switch points. The accelerating and
decelerating curves, integrated from those switch points,
constitute the time-optimal trajectory. The work in [12]
presents three types of switch points: tangent, discoityinu
and zero-inertia points. The detection methods for zero-
inertia switch points are presented in [13]-[15]. Based on
previous works, Pham [13] provides a fast, robust and open-
source implementation fodl in C++/Python, which is subse-
guently extended to the case of redundantly-actuatedmgste
in the work [16]. In addition to manipulators [17], [18],
NI is also applied to spacecrafts [19] and humanoid robots
[20]. In real applications, in addition to torque consttajn
velocity constraints (bounded actuator velocity and path
velocity) should also be considered. Under these conssrain
the works in [21], [22] indicate that the origin&ll method
with only torque constraints [10] can not be directly apglie
Considering velocity and acceleration constraints, thekwo
[18] focuses on detecting tangent, discontinuity and zero-
inertia switch points on the speed limit curve decided by

decoupled pI‘gmr"m;?/elocity constraints. However, rigorous proofs have narbe

[11-{3] becomes a popular motion planning method, Whi,d?eported to expose the conditions and underlying reasons of

consists of two stages. In the first stage, path planni
methods are used to generate a geometric path with hig

level constraints including obstacle avoidance, curegtand

ilure cases in aforementioned literatures.
In this brief, we summarize some known properties and
amend corresponding mathematical proofs which have not

so on. In the second stage, trajectory planning, which @ms feqn reported in existing literatures; in addition, somes ne

assign a motion time profile to the specified path, could b§oherties are excavated and proven rigorously. Some prope
then simplified as a planning problem in two-dimensiongjeg jngicate the evolution of accelerating/deceleratinyes

path parametrization spacs,§), with s and s being the

and their intersection points. And another important prgpe

path coordinate and path velocity respectively. To improvg, gicates that, when kinematic constraints are considered
working efficiency, several time-optimal methods have beej,e riginal version oNI which only considers torque con-

reported for the trajectory planning stage along a specifi

path, includingDynamic Programming [4]-[6], Convex Op-

eﬂraints, may result in failure of trajectory planning taskor

this property, we first give the concrete failure conditiansl

timization [7]-[9] and NI [10]-[22]. In addition, the work in - yetailed proofs. Accordingly, the failure detection aigan

[23] proposes a real-time trajectory generation approach f

omni-directional vehicles by constrained dynamic invensi
In this letter, we will focus on théNl method, since its

is given in a ‘run-and-test’ manner. Simulation results on a
unicycle vehicle are provided to verify these properties.
The main contribution of this letter is the rigorous and

computational efficiency is shown in [13] to be better thapyetailed proofs for all presented properties:

other methods. The original version dff is proposed at

almost the same time in the works [10], [11], which aims
to give a time-optimal trajectory along a specified path in
the presence of only torque constraints for manipulators.
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1) ForProperties[ZH3 reported in [24], we first give their
mathematical proofs in Section IlI-A.

2) Some new properties are presented and proven, includ-
ing Property [ in Section 11I-B andProperties [5G in
Section 1lI-C.

These properties and proofs make the theorjNbfmore

complete and help interested readers to gain an thorough

understanding of th&ll method.
The remainder of this letter is divided into four sections.
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Section Il introduces notations and procedures of lie order to guarantee torque constraints in a path-consttaine
method. Section Il presents essential properties of theajectory planning task, the inequality constraint [10]

NI method, and provides rigorous mathematical proofs. In LT .

Section 1V, simulation results are provided to verify the M(§)&+& P(§)E+Q(E) <0 1)

properties. Finally, Section V gives some conclusions. should hold, where the sta# is an n-dimensional vector,
M is anmx n matrix, P is annx mx n tensor andQ is
an m-dimensional vector. Along the specified path, the robot
In this section, we briefly introduce the notations andtate and its differentials are
rocedures of theNl method in [10], [11]. For the time- ; .3 . .
gptimal path-constrained trajecto[ry 2>Ia[nni]ng problenseoh §=8(s), £ =88 E =85 +ES 2)
on Pontryagin Maximum Principle, the originbll method where&,=d&/ds, £ =d& /ds. After substituting[(R) into
[10], [11] uses a bang-bang structure of torque input t¢dl), we obtain that
generate a time-optimal trajectory. First, torque cofmstsa

II. NUMERICAL INTEGRATION

are converted to path acceleration constraints along trengi A(s)3+B(9)$° +C(s) <0, ©)
path. Then, switch points of path acceleration are foungyith

Finally, a time-optimal trajectory is integrated numellica A(S) = M(E(9)E(9)

with maximum and minimum path acceleration. A stable s T

and open-source implementationNif method can be found B(S) = M(§ ()€ x(8) +&5(5) P(&(9)€ (),

in [13], and kinematic constraints are handled in the im- C(s) =Q(&(9)).

plementation with the method proposed in [21]. Yet, in the
presence of kinematic constraints, the rigorous proof amgpw
conditions of failure of the originaNl with only torque
constraints, has not been reported.

a(s,s),B(s,9) : In order to guarantee torque constraints,
the scalars, s,$ should satisfy the inequalit{](3). Therefore,
given the path coordinate and path velocitys, the path
acceleratiors Satisfies the following inequality

A. Time-optimal Path-constrained Trajectory Planning a(s,$) <$<B(s9), (4)

The time-optimal path-constrained trajectory planningynere the minimum path accelerationfs, ) and maximum
problem is to find a time-optimal velocity profile along thepath acceleratiof(s, ) are computed as
given path for a robot under various constraints such as )
—Bi(s)$* —Ci(9)

torque constraints, velocity constraints, and so on. Nwéé t (s &) — max{aj|a; =

the direction of the path velocity is supposed to be tangent ’ Ai(s)

to the given path. _ _ —Bi(9)¥—Ci(s
B9 =min(a | — — S0 O

. i ) ) wherein the integeire [1, m], with m being the dimension of
In order to explain various notations clearer, we will refety, o actorA. Please see the detailed description in [11]
to Fig.[d in the following. MVC: The maximum velocity curve in the plar(g,$) is
represented as

MVC(s) = min{$>0|a(s,$) = B(s,9)}, s€[0,s]. (7)

For instance, the cyan dash curve in Hiy. IMY¥C. If the
robot state is on th®IVC, there exists at least one saturated
actuator torque.

AR: The admissible region, in the plarfg $), is enclosed
by the curveMVC and the liness=0,s=0,s= s. Within
the AR except for the boundarilVC, all actuator torques
are between lower and upper boundsg;s) < (s, $)).

Fig. 1. Red solid curvegy,B; represent accelerating-profiles. Green a-profile: The decelerating curve, in the plafgs), is

solid curvesas,ae represent decelerating-profiles. Red> and green< : . P . A
denote the pointsps ., and sp_.g. respectively. The scalars, & are integrated backward with minimum acceleratiars,s) in

respectively the starting and terminal path velocity at¢hepoints of the @). The slopek, is computed agy = ds/ds= a(s,9)/s.

AI(s) <0}, (5)

,A(s) >0}, (6)
B. Notations

given path. Thes; is the total length of the given path. B-profile: The accelerating curve, in the plaifgs), is
integrated forward with maximum acceleratiffs, ) in (6).
s: Path coordinate along a specified path. The slopekg is computed ag = d$/ds= (s,$)/s.
$: Path velocity along a specified path. Spa—p [12]: Switch points from decelerating to acceler-
§: Path acceleration along a specified path. ating curves, such as the greenin Fig. . They are on

A(s)$+B(s)& +C(s) < 0 [10]: The inequality constraint the MVC curve, and there are three different types: tangent,
along a specified path far$, §, which is derived from torque discontinuity or zero-inertia points. At tangent pointegt
constraints. As an example, for ardof manipulator, in slope kmc = ds/ds of MVC is equal tokq(= kg). At



discontinuity pointsMVC is discontinuous. At zero-inertia . A— B-profile -

points, at least onéy(s) = 0 holds for the corresponding ~ * Pk FRP MYE N

path coordinates. N xp:u//\ AT W Y AR AT
Spg_.q: Switch points from accelerating to decelerating - Y,

curves, such as the red in Fig.[d.

C. Numerical Integration Algorithm

Procedures of the original version bdif [10] which only
considers torque constraints are given as follows: 0

NI-1. In the plane(s,$), starting from(s=0,5= %), the
accelerating curvg-profile is integrated forward Fig. 2. m> 1: Intersection points(, i € [1,m] are onfB*, whereinX;,

with maximum path acceleratioﬂ(s S) until one 1<i<misonXXn EachX has one corresponding decelerating curve
. ’ o; and one switch poinY;. The regionD is enclosed byx;, 8* and MVC.
of the following cases occurs:

« the curveMVC is hit, and go toNI-2; Y
. the lines= 0 is hit, and output that this path 5 | =~ = MC(s)
is not traversable;
. the lines= s is hit, and go toNI-3. L K
NI-2. From the hitting point, searching forward along IR
MVC, the first tangent, discontinuity or zero-inertia PR SNE__-7
point found isspy_g- = See_ . o
o If spy_,p is detected, from the switch point, an e .
a-profile is integrated backward witkr (s, S) 0 s
until it intersects the generatel-profile in
NI-1, NI-2 at a pOintSpgﬁa, and one new Fig. 3. The maximuin velocity curveTis altered frolVC = MVCy +
B-profile is integrated forward abll-1. MVCz +MVCs to MVC? = MVC, +MVCT +MVCs.
o If spy_,g is not detected, go tdll-3.

NI-3. Starting from(s= se,$= <), the decelerating curve mathematical proofs foPropertiesi23, which have not been
a-profile is integrated backward with minimum reported in existing literatures.
path acceleratiom (s,$) until it intersects the gen- Property 1: In the AREM region, any twoa-profiles
eratedB-profile in NI-1, NI-2 at a pointsps ,q.  never intersect with each other. Neither @bprofiles.
Finally, output a time-optimal trajectory consisting(p|ease see the proof in [24].)
of those generated accelerating and decelerating Property 2: In the AREM region, if ana-profile inter-
curves inNI-1, NI-2 andNI-3. sects anotheB-profile at a point(s=s.,$= &), in terms
Note that chattering or vibration is usually caused by highef path velocity, thea-profile is greater than thg-profile
frequent switching of acceleration. Fortunately, the wiork in the left neighborhood o§;, but less than theg8-profile
[10] has indicated that switch points are finite for tNé in the right neighborhood of;.
method, which generally does not cause severe chatteringProperty 3: In the AREM region, ana-profile is not
phenomenons. tangent to anotheB-profile at any point.

Ly

[1l. PROPERTIES B. Property of spg_,q

In this section, essential propertieshif are provided with The point spg_,, is the intersection point between
rigorous mathematical proofs. Note thioperty [l has been a-profile and B-profile, denoted as the red- in Fig.
presented and proven in [24Properties 23 have been re- [2. In the iterative process oNl (see Section II-C), a
ported in [24], and we will amend their mathematical proofsf-profile may intersect a finite number of integrated back-
Properties [4H5 are first exposed in this letter with rigorouswarda-profiles[10]. Which one of these intersection points
proofs; in the presence of kinematic constraints, the ffailu is finally chosen aspg_,, on thef-profile? The answer is
of the originalNI with only torque constraints is reportedgiven in Property @ which is first presented in this letter
in [21], [22], and we will give the mathematical conditionswith rigorous proof.
and underlying reasons of failure casesProperty [6 See Property 4: If one B-profileintersectan> 1 a-profiles,
the proofs ofProperties2HG in Appendix A-D, respectively. respectively at pointsX;,i € [1,m], and in terms of path

) _ coordinate) is less tharXj, 1 <i < j <m, then,Xq is finally
A. Property of a-profiles and -profiles chosen aspg 4 on theB-profile after finite iterations.

In the admissible region except for the boundaty' C Remark 1: In Fig.[2,Y; may be the terminal poir(te, & ).
(AREM), the inequalitya(s,s) < B(s,$) holds, which indi- In this special situationPropertyd still holds. The casen=
catesky < kg for each point. Three known properties arel obviously holds. Meanwhile, the cage> 1 also holds
summarized in the following, and we will give rigoroussince the trajectory starting frord,i > 1 cannot arrive at



the terminal point according tBroperties[IH3 In addition,
other pointsy;, i > 1 cannot be the terminal poirfte, &)
sinceNI has completed all procedures at the terminal point
(see the procedundl-3 in Section II-C). O
The Properties 14 show the evolution of accelerat-
ing/decelerating curves and their intersection points.

C. Property of NI with kinematic constraints

The original NI method [10] generates a time-optimal
trajectory with bounded torque. However, when velocity
constraints (bounded actuator velocity and path velogcitg)
taken into account, the origin@ll (as shown in Section
[I-C) may result in a failure. Several examples for this
property are shown in the work in [21], [24ut the concrete
failure conditions and the detailed proof have not been
reported. In the subsequen®roperty [6 we will elaborate
the failure conditions and provide the mathematical proof.
Note thatProperty[His first presented and proven to indicate
the existence of tangent switch points on the limit curve
considering velocity constraints, which is used in the proo
of Property [@l

Actuator velocity constraints are transformed into path
velocity constraints by kinematic models of robots, theref
velocity constraints are represented as

V(s):s—$S, se[0,s], (8)

where the scala¥ (s) is the maximum path velocity. Due
to the velocity constraints, the maximum velocity curve is
altered as

MVC*(s) = min(MVC(s),V(s)), s€ [0, 9

In the region enclosed bMVC*,s=0,s=s,$= 0, acceler-
ating and decelerating curves satisfy all velocity and derq
constraints. In addition, the part 8V C*, which is different
from MVC, is represented as

MVC'(s)={MVC* (MVC*(s) <MVC(s),s€ [0,s]}. (10)

For instance, the dash-dot curo@z is MVCT in Fig.[3.

The maximum velocity curve altering froMVC to MVC*
results in a decreasing number of tangent switch points. For
instance, the tangent switch poimtlisappears due tlVC'
instead ofMVC; in Fig.[3.

Property 5: Tangent switch points are nonexistent on
MVCT.

The NI method [10] with torque constraints, generates a
time-optimal trajectoryT. After considering velocity con-
straintsV(s), the maximum velocity curve is altered from
MVC to MVC*, which causes that tangent switch points
on the partMVCT of MVC* are nonexistent according to
Property[H It has negative effects on searching switch points
in the NI method, and may result in failure of trajectory
planning tasks.

Property 6: If the following conditions hold:

Ci: 3s'€[0,s], MVC*(s") <T(s"),

C,: discontinuity and zero-inertia switch points on

MVCT are nonexistent,
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then, theNl method usingVC* fails to find out a feasible  In addition, if p is the terminal poin{se, &), then starting

trajectory. from p, and switch points at the right side ak, all
Proof: The proof is proceeded in 4 steps. integrated backward-profiles must hit the purple dash-dot
Step 1: To show four essential cases of C;. 040, or cyan dasto,p, according toProperties[IH3, which
The time-optimal trajectory, which is obtained from the also indicates that this step holds.
NI method usingMVC, consists of severad-profiles and Step 4: To synthesize above analysis and indicate failure
B-profiles, satisfyingT(s) < MVC(s),s< [0,s¢]. According of trajectory planning tasks.
to (Z0) andCy, there must exist one part MVC' below T, The aboveStep 1-3 indicate that if conditions oProperty

and this part is called asVC*. On both sides oMVC, hold, then theNlI method usingMVC* fails to output a

the trajectoryT could be accelerating or decelerating, thugeasible trajectory: in the iterative process;profiles and

there are four essential cases for the condi@eras shown B-profiles on two different sides oMVC* do not intersect

in Figs.[4E7. The purple dash-dot litgos representéVC*.  in the admissible region, which causes that the final trajgct

The gray dotted lin@30;4 and red/green solid lines constituteis incomplete. In summaryroperty [ holds. O

the trajectoryT. The green< and red> are spy .5 and Remark 2: For other complex cases mentioned3ep 1,

Spg_.q Points respectively. These essential cases are regardrére may exist many parts bfVC' belowT. The trajectory

as basic components of other complex cases, thus, fonglarifr could be accelerating or decelerating at the first and last

the proof of complex cases will be presentecdRemark 2. part asStep 1. In these cased)l still searches switch points
Step 2: To prove that for each essential case, the NI method  along MVCT from the first part in the same reason Step

using MVC* must run to the procedure NI-2 in Section II- 2. The conditionC; indicates that thesp,_,; on MVCT is
C, which is to search forward switch point along MVCT (the nonexistent. Starting from switch points at the right side o
purple dash-dot curve 010;) from the hitting point. the last part, alla-profiles cannot intersecB-profiles at

Let p be the neighborhoogp, g of T on the left side the left side of the first part aStep 3. Therefore, in these
of MVC?T, which also can bep; = (O,So)_- Starting fr0m_ complex casesy-profiles and B-profiles on two different
p1, NI integratesf; forward. For essential cases as Figssides ofMVC' do not intersect in the admissible region. It

@, the accelerating curvg; hits MVCT, then NI will indicates thaProperty [ still holds for complex cases. [J
search forwarap,_,; alongMVC' from the hitting point of  |n the presence of velocity and torque constraiRtsperty

0103. For essential cases as Figi.16-7, all accelerating cun@sactually gives sufficient conditions for failure of thd

including B1 and B-profiles from 101 cannot intersectis  method in [10], which is important because it is theoretjcal

for Property 2 thus, it must intersecf;01 or 010s. If the  shown that the failure cases indeed exists for this method. |

hit curve is6103, thenNI will search forwardsp, g from  the following, a necessary and sufficient failure condition

the hitting point alongVC'. If the hit curve isp;01, then given by a numerical ‘run-and-test’ algorithr&¥):

NI will search forwardsp,_,g from the hitting point along RT-1. In the plane (s $), the curve MVC*(s) is ob-

PLoL. The number of switch points op.0; s finite [10], tained with [9). It is initialized that the poinp

therefore switch points op;01 will run out, andNI will go is (0,%), boolean variablésContinuous is TRUE,

on searching forwardp, 5 along MVCT' . the longest continuous trajectofy’ from (0,%) is
Sep 3: To prove that those a-profiles, starting from the null and the scalasLast is zero. Then go t&RT-2.

right Sid? of 04, cannot intersectlﬁ—.prof?les, which are on RT-2. Starting from the poinp, a 3-profile is integrated
the left side of 03 and generated in iterative process of NI. forward until it hits the boundaries of the admis-

I_3ased _onProperty and cono!itioncz of Property sible region at(s= s,$=%&). If iContinuous
switch points _oanIVC are ngnemstgnt. Thereforbl,l WI.|| is TRUE, then RT will call the subfunction
go on s_earchlng foryvard switch points on th_e right s_|de of addProfile(T*, B-profile), and sLagt is updated
0. In Figs.[4EY, the integrated backwasmdprofile, starting ass,. And go toRT-3.
from the spy_,p_of O/ZB.’ cannot intersecly, fis accorgflg RT-3. From the hitting point, the first switch point found
to Properties[H2l thus, it must hit the purple dash-dajo, along MVC* or terminal point is assigned to the
or cyan dasfg;p,. point g. Starting fromq, ana-profile is integrated

Moreover, in the admissible region, starting from the right backward until it intersects one of following lines:
side of pp, integrated backward-profiles cannot intersect The traiectorvT*. then RT will call the sub
. j yT*, Wi ub-

those B-profiles generated byNlI and on the left side of . . . .

03, Which is proven by contradiction. Assume that in the functlt_)n addProfile(T”, a-prqflle) an_d set
admissible region, from the right side @b, an integrated IsContinuous=TRUE. Megnwhne,sLast IS up-
backward a-profile intersects one of thosg@-profiles. dated as the.path coordlnat.eq.)f .

Then, the a-profile should be part of the trajectory - The F’Ound‘f"”es c.)f the admissible region, then
based onProperty [4 However, in terms of path velocity, RT will set isContinuous= FALSE.
the a-profile is less thanMVC*, which contradicts with The pointp is updated ag). If p is the terminal
C1. Therefore, this assumption is invalid, amdprofiles point, then go toRT-4, else go toRT-2.

from the right side ofp, cannot intersect thosg-profiles RT-4. If sLast < s, this method fails to generate a feasible
generated on the left side of. trajectory, else output a feasible trajectdry.



Remark 3: The subfunctionaddProfile adds accelerat-
ing/decelerating curves t6*. The core of this algorithm is
running theNl method and detecting whether those generated
accelerating and decelerating curves constitute a camigu
trajectory on the whole path. The scaldrast indicates
the path length of the trajectory*. Therefore, after the
algorithm is completed, the inequalityast < s in RT-4 is a
necessary and sufficient failure condition for tkie method
in presence of velocity and torque constraints. O A R

IV. SIMULATION RESULTS Fig. 8. The specified path: cubic Bézier curve
In order to verifyProperties[IH6, some simulation results

on a unicycle vehicle are provided in this section.
The velocity limit curveMVC(s) considering acceleration

A. Model constraints is computed withl(7) add{17), and the limit eurv

A unicycle vehicle moves along a specified path, with th&(s) considering velocity constraints is computed with (8)
direction of the vehicle being always tangent to this giveand [I8). When both acceleration and velocity constrairts a
path from a initial pose to a target pose. The angular velocitaken into account, the maximum velocity curve is obtained
w € R, the path velocity € R, and the path curvaturee R~ asMVC* by fusingMVC(s) andV(s) with (@).
have the following relationship [25]:

W= KV. (12)

B. Results

As shown in Fig[B, the specified blue path is the following
For the specified path, the curvature could be computed agbic Bézier curve:

a function of the path coordinate as follows: X =(1-2 %0 + 3(1- 1) %1 + 3(A2- A3 + A3
=(1- - 1 - 2 )

K:se[0,s] — K(s) €R, (12) y=(1-2A)%y0+3(1-A)2Ay1 + 3(A2—A%)y, + Ays,

where the scalas is the path coordinate.

According to [I1) and[{12), the kinematic model of th
vehicle is described as

where the position of the vehicle ix[m],y[m|), the points
(xi[m],yi[m]), i € [0,3] are path control points, and the scalar
A €][0,1] is the path parameter. THeands obey a nonlinear
u=M(s)s, (13) scaling relation. The starting and terminal path velosity-
- - ) ) & = 0[m/g]. This cubic Bézier curve is used to find a path
whereu = [w v]", andM(s) = [«(s) 1]°. Taking the time om 4 initial pose to a target pose so that the orientation
derivative of [I8) yields that of the unicycle vehicle is always tangent to the path, and
U= M(5)5+Ms(9)&, (14) thus the nonholonomic constraint is satisfied. The follgvin

o cases show that thel method assigns velocity profiles to
whereu=[Ww V], Ms(s) = [ks 0]", ks = dk/ds. The scalars e path.

v,W are the path acceleration and angular acceleration, r

; ! ) | . €-Case 1. This case shows that, when the velocity con-
spectively. Velocity and acceleration constraints aregias

straints are moderate, thdl method [10] usingMVC*

~Virax < U < Vimax, (15) 9enerates the time-optimal trajectory. In this simulation
. the velocity and acceleration constraints are sevVas =

~8mex < U'S 8mex, (18) 10 5rad/s 1.3m/s|T, avex — [0.05rad /< 0.1m/sT.

where Vi € R? and amax € R? are constant vectors repre-  In Fig.[d, the cyan dash line represeM¥C(s) with ac-

senting the velocity boundary and the acceleration boyndarceleration constraints. When considering velocity caists

respectively. These vector inequaliti¢s](15)}(16) shdmd corresponding to the purple dash-dot IMés) in Fig.[d, the

interpreted componentwise. maximum velocity curve is altered fromVC to MVC*,
In order to guarantee acceleration constraints, sulistitut which is represented as the boundary between the gray
(I4) into [16) yields that (inadmissible) and blank (admissible) regions. To featfiéit
A(S)S+ B(S)S2+C(s) <o, (17) subsequent analysis, symbols# are used to represent the

two closed areas bounded BWVC(s) and V(s). The red
whereA(s) = [M(s)T —M(s)T]T, B(s) = [Mg(s)T —Ms(s)T]T  and green solid lines are accelerating cun@p(ofiles) and

andC(s) = —[al al.]", which are all 4x 1 vectors. decelerating curvesi¢profiles), respectively, which comply
In order to guarantee velocity constraints, substitufi@) ( with Properties[Ii3 The red> and greend denote the points
into (IB) yields that Spg_.q andsp,_,g respectively (see Section II-B).
A(9)5+D(s) <0, (18) As shown in Fig[®, under the curé¢VC*, theNI method

outputs the optimal trajectory as follows. The acceleratin
whereA(s) = [M(s)T —M(s)T]" andD(s) = — [V} Viax] s curve By, starting from(0,%), hits MVC* at p;. Searching
which are all 4x 1 vectors. forward alongMVC* from py, the firstsp,_,g found is p,.



a admissible
1 region

. . . . . . . . . . . .
0 1 2 3 4 5 6 1.4 1.6 18 2 2.2 24 2.6 2.8
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Fig. 9. Case 1: TheNl method outputs the optimal trajectory with Fig. 11. The enlarged view of the region # Fig.[I0
constraintsViax = [0.5rad/s 1.3m/", amax = [0.05rad/s? 0.1m/s?]"

SPgp ON MVC' is nonexistent, which indicates that the

conditions ofProperty [6 hold and also verifie®roperty B
Under the curveMVC*, the NI method fails to output

a feasible trajectory, which is described as follows. For

clarity, the region # is enlarged as shown in Fifg]11. The

integrated forward curvgy from (0,%) hits the MVC* at

p:1. Then, searching forward from; along MVC*, the first

Spq—p found is the pointp,. However, starting frompy,

the integrated backward; hits the MVC* at ps before

intersectingfy (the pointo; is in the inadmissible region).

3[m/s]

p, dmissble Then, the integrated forwar@; from p, hits the MVC*
| | oo ‘ at ps. No spy g is found alongMVC* from p; when
0 1 2 3 4 5 6 s < . Therefore, the integrated backwanrg, starting from

s[m]

(Se,%), intersectsP; at 0p. In all these procedures, the
Fig. 10. Case 2: Th&ll method fails to output a feasible trajectory with a-profiles on the ”g_ht side of th? purple dash-dot curve
constraintsViex = [0.2rad/s 1.3m/s|T, amex = [0.05rad/s? 0.1m/s?] T MVCT (Bsp7), cannot interseqy. ThisMVCT (gsp7) breaks

the intersection between the accelerating and decelgratin

curves, and causes that the final trajectory is blank between
Starting frompp, the integrated backward decelerating curvey; and ps, which indicates that théll method fails and
ay intersecty3p atog, and the integrated forward acceleratingverifies Property
curve 1 hits MVC* at p3. Then, searching forward along
MVC* from pg, the firstsp,_,g found is p4. Starting from V. CONCLUSION
P4, the integrated backward decelerating cuageintersects This letter revisits the original version &l method for
B1 at 0, and the accelerating cury@; hits the MVC* at time-optimal trajectory planning along specified paths. On
ps. No sp,_, is found alongMVC* from ps whens < s. this basis, we first summarize several known and new prop-
Therefore, the integrated backwang, starting from(se, &), ~ erties regarding switch points and accelerating/deciteya
intersectsBy at 0. Thesps_,q on By is updated frono, to  curves of theNl method, and give corresponding mathemati-
03, which verifiesProperty[d Finally, theNl method outputs cal proofs. Then, we provide concrete failure conditiond an
the feasible and optimal trajectory — a1 — 31 — Qe. rigorous proofs for the property, which indicates that,he t

Case 2: This case shows that, when the velocity constraintgresence of velocity constraints, the original versionNof

are too restrictive, the conditions iRroperty B will be  which only considers torque constraints may result in failu
satisfied, and thus thidl method [10] usingMVC* fails to  of trajectory planning tasks. Accordingly, a failure deiec
output a feasible trajectory. In this simulation, the vélpc algorithm is given in a ‘run-and-test’ manner. Simulation
constraintvmay is modified as[0.2rad/s1.3m/gT and the results on a unicycle vehicle are provided to verify these
acceleration constraindmax remains the same as that ofpresented properties.
Case 1. Therefore, in Fig[_Il0, the velocity limit curwé(s)
due to the velocity constraint becomes lower, and the areas
of two inadmissible regions## increase. Meanwhile, the A Proof of Property 2
trajectoryT : Bo— a1 — B1 — Oe, Obtained by theNI method Proof: In the AREM region, ana-profile intersects an
usingMVC, is greater thaMVC* at the region # and the p-profile at a point(s= s,$=%). At the neighborhood

APPENDIX



of s, the slopes of thex-profile and B-profile satisfy
the inequalityky < kg and the Lipschitz condition [11].
Therefore, based o@omparison Theorem [26] (Let y,z be
solutions of the differential equations=F(x,y),z= G(x, 2).
If F(x,y) < G(x,2),x € [a,b], the functionF or G satisfies
a Lipschitz condition, ang(a) = z(a), theny(x) < z(x),x €
(a,b)), it is proven that theo-profile is greater than the
B-profile in the left neighborhood o, but less than the
B-profile in the right neighborhood of;. O

(5]

(6]

(8]

B. Proof of Property 3

Proof: This property is proven by contradiction. As-
sume that am-profileis tangent to anothg#-profilein the
AREM region. Then, on the tangent point, the slégeof the
a-profileis equal tokg of the 3-profile, which contradicts
with the inequalityky < kg in the AREM region. Thus, the [11

El

[10]

assumption is invalid and the property is proven. O

C. Proof of Property 4 [12]
Proof: In terms of the numbem of intersection points,

there are totally two casesmai=1m> 1. [13]

Case 1: m= 1. There is only one intersection point, so
the pointspg_,, on theB-profileis X;. This property holds [14]
for m=1.

Case 22 m> 1. There arem intersection points as Fig. (15
2. In terms of path coordinate, the intersection pointis
less thanXj, 1 <i < j <m. EachX; has one corresponding
decelerating curver, and one switch poinY;. According to
Property [ Y; is at the right side ofj, i < j. If X, i >1is
chosen aspg_,q onB*, then, starting fronX;, the trajectory

]

consisting ofa-profiles and B-profiles cannot leave the (17]

regionD, which is enclosed byr;, f* andMVC, acrossa;

due toProperties[I{3 Thus,X; is chosen aspg_,, on 3*,  [18]

which can aid the trajectory to leave the regidralong a;

and go on extending to the right side ¥f with ;. This [19)

property holds fom> 1. In summarypProperty [ holds. O

D. Proof of Property 5 20
Proof: Due to [I0) MVC' is less thartMVC. According (201

to the definition ofAR, the inequalitya (s, $) < 3(s,s) holds

on MVCT. Then, based on the factg, = a(s,9)/S kg = 21]

B(s,9)/s, the inequalityky < kg also holds orMVCT, which
violatesky = kg in the definition of tangent switch points
(seespy_,p in Sectior_1 [I-B). Therefore, tangent switch points[zz]
on MVCT are nonexistent. O
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