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Essential Properties of Numerical Integration for Time-optimal
Trajectory Planning Along a Specified Path

Peiyao Shen, Xuebo Zhang and Yongchun Fang

Abstract— This letter summarizessome known properties and
also presentsseveral new properties of the Numerical Integration
(NI) method for time-optimal trajectory planning along a speci-
fied path. The contribution is that rigorous mathematical proofs
of these properties are presented, most of which have not been
reported in existing literatures. We first give some properties
regarding switch points and accelerating/decelerating curves
of the NI method. Then, for the fact that when kinematic
constraints are considered, the original version ofNI which only
considers torque constraints may result in failure of trajectory
planning, we give the concrete failure conditions with rigorous
mathematical proof. Accordingly, a failure detection algorithm
is given in a ‘run-and-test’ manner. Some simulation results
on a unicycle vehicle are provided to verify those presented
properties. Note that though thoseknown properties are not
discovered first, their mathematical proofs are given first in this
letter. The detailed proofs make the theory ofNI more complete
and help interested readers to gain a thorough understanding
of the method.

Index Terms— Time-optimal trajectory planning, Numerical
Integration, Properties with rigorous proofs.

I. I NTRODUCE

Due to low computational complexity, decoupled planning
[1]–[3] becomes a popular motion planning method, which
consists of two stages. In the first stage, path planning
methods are used to generate a geometric path with high
level constraints including obstacle avoidance, curvature, and
so on. In the second stage, trajectory planning, which aims to
assign a motion time profile to the specified path, could be
then simplified as a planning problem in two-dimensional
path parametrization space (s, ṡ), with s and ˙s being the
path coordinate and path velocity respectively. To improve
working efficiency, several time-optimal methods have been
reported for the trajectory planning stage along a specified
path, includingDynamic Programming [4]–[6], Convex Op-
timization [7]–[9] andNI [10]–[22]. In addition, the work in
[23] proposes a real-time trajectory generation approach for
omni-directional vehicles by constrained dynamic inversion.

In this letter, we will focus on theNI method, since its
computational efficiency is shown in [13] to be better than
other methods. The original version ofNI is proposed at
almost the same time in the works [10], [11], which aims
to give a time-optimal trajectory along a specified path in
the presence of only torque constraints for manipulators.
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Based on Pontryagin Maximum Principle,NI possesses a
bang-bang structure of torque inputs, thus, the core ofNI
is the computation of switch points. The accelerating and
decelerating curves, integrated from those switch points,
constitute the time-optimal trajectory. The work in [12]
presents three types of switch points: tangent, discontinuity
and zero-inertia points. The detection methods for zero-
inertia switch points are presented in [13]–[15]. Based on
previous works, Pham [13] provides a fast, robust and open-
source implementation forNI in C++/Python, which is subse-
quently extended to the case of redundantly-actuated systems
in the work [16]. In addition to manipulators [17], [18],
NI is also applied to spacecrafts [19] and humanoid robots
[20]. In real applications, in addition to torque constraints,
velocity constraints (bounded actuator velocity and path
velocity) should also be considered. Under these constraints,
the works in [21], [22] indicate that the originalNI method
with only torque constraints [10] can not be directly applied.
Considering velocity and acceleration constraints, the work
[18] focuses on detecting tangent, discontinuity and zero-
inertia switch points on the speed limit curve decided by
velocity constraints. However, rigorous proofs have not been
reported to expose the conditions and underlying reasons of
failure cases in aforementioned literatures.

In this brief, we summarize some known properties and
amend corresponding mathematical proofs which have not
been reported in existing literatures; in addition, some new
properties are excavated and proven rigorously. Some proper-
ties indicate the evolution of accelerating/deceleratingcurves
and their intersection points. And another important property
indicates that, when kinematic constraints are considered,
the original version ofNI which only considers torque con-
straints, may result in failure of trajectory planning tasks. For
this property, we first give the concrete failure conditionsand
detailed proofs. Accordingly, the failure detection algorithm
is given in a ‘run-and-test’ manner. Simulation results on a
unicycle vehicle are provided to verify these properties.

The main contribution of this letter is the rigorous and
detailed proofs for all presented properties:

1) For Properties 2-3 reported in [24], we first give their
mathematical proofs in Section III-A.

2) Some new properties are presented and proven, includ-
ing Property 4 in Section III-B andProperties 5-6 in
Section III-C.

These properties and proofs make the theory ofNI more
complete and help interested readers to gain an thorough
understanding of theNI method.

The remainder of this letter is divided into four sections.
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Section II introduces notations and procedures of theNI
method. Section III presents essential properties of the
NI method, and provides rigorous mathematical proofs. In
Section IV, simulation results are provided to verify the
properties. Finally, Section V gives some conclusions.

II. N UMERICAL INTEGRATION

In this section, we briefly introduce the notations and
procedures of theNI method in [10], [11]. For the time-
optimal path-constrained trajectory planning problem, based
on Pontryagin Maximum Principle, the originalNI method
[10], [11] uses a bang-bang structure of torque input to
generate a time-optimal trajectory. First, torque constraints
are converted to path acceleration constraints along the given
path. Then, switch points of path acceleration are found.
Finally, a time-optimal trajectory is integrated numerically
with maximum and minimum path acceleration. A stable
and open-source implementation ofNI method can be found
in [13], and kinematic constraints are handled in the im-
plementation with the method proposed in [21]. Yet, in the
presence of kinematic constraints, the rigorous proof showing
conditions of failure of the originalNI with only torque
constraints, has not been reported.

A. Time-optimal Path-constrained Trajectory Planning

The time-optimal path-constrained trajectory planning
problem is to find a time-optimal velocity profile along the
given path for a robot under various constraints such as
torque constraints, velocity constraints, and so on. Note that
the direction of the path velocity is supposed to be tangent
to the given path.

B. Notations

In order to explain various notations clearer, we will refer
to Fig. 1 in the following.
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Fig. 1. Red solid curvesβ0,β1 represent acceleratingβ -pro f iles. Green
solid curvesα1,αe represent deceleratingα-pro f iles. Red⊲ and green⊳
denote the pointsspβ→α and spα→β , respectively. The scalars ˙s0, ṡe are
respectively the starting and terminal path velocity at theendpoints of the
given path. These is the total length of the given path.

s : Path coordinate along a specified path.
ṡ : Path velocity along a specified path.
s̈ : Path acceleration along a specified path.
AAA(s)s̈+BBB(s)ṡ2+CCC(s) ≤ 000 [10]: The inequality constraint

along a specified path fors, ṡ, s̈, which is derived from torque
constraints. As an example, for ann-dof manipulator, in

order to guarantee torque constraints in a path-constrained
trajectory planning task, the inequality constraint [10]

M(ξξξ )ξ̈ξξ + ξ̇ξξ
T
P(ξξξ )ξ̇ξξ +QQQ(ξξξ )≤ 000 (1)

should hold, where the stateξξξ is an n-dimensional vector,
M is an m× n matrix, P is an n×m× n tensor andQQQ is
an m-dimensional vector. Along the specified path, the robot
state and its differentials are

ξξξ = ξξξ (s), ξ̇ξξ = ξξξ sṡ, ξ̈ξξ = ξξξ ssṡ
2+ ξξξ ss̈ (2)

whereξξξ s = dξξξ/ds, ξξξ ss = dξξξ s/ds. After substituting (2) into
(1), we obtain that

AAA(s)s̈+BBB(s)ṡ2+CCC(s)≤ 000, (3)

with

AAA(s) = M(ξξξ (s))ξξξ s(s),

BBB(s) = M(ξξξ (s))ξξξ ss(s)+ ξξξ s(s)
TP(ξξξ (s))ξξξ s(s),

CCC(s) = QQQ(ξξξ (s)).

α(s, ṡ),β (s, ṡ) : In order to guarantee torque constraints,
the scalarss, ṡ, s̈ should satisfy the inequality (3). Therefore,
given the path coordinates and path velocity ˙s, the path
acceleration ¨s satisfies the following inequality

α(s, ṡ)≤ s̈ ≤ β (s, ṡ), (4)

where the minimum path accelerationα(s, ṡ) and maximum
path accelerationβ (s, ṡ) are computed as

α(s, ṡ) = max{αi|αi =
−Bi(s)ṡ2−Ci(s)

Ai(s)
,Ai(s)< 0}, (5)

β (s, ṡ) = min{βi|βi =
−Bi(s)ṡ2−Ci(s)

Ai(s)
,Ai(s)> 0}, (6)

wherein the integeri ∈ [1,m], with m being the dimension of
the vectorAAA. Please see the detailed description in [11].

MVC: The maximum velocity curve in the plane(s, ṡ) is
represented as

MVC(s) = min{ṡ ≥ 0|α(s, ṡ) = β (s, ṡ)}, s ∈ [0,se]. (7)

For instance, the cyan dash curve in Fig. 1 isMVC. If the
robot state is on theMVC, there exists at least one saturated
actuator torque.

AR: The admissible region, in the plane(s, ṡ), is enclosed
by the curveMVC and the lines ˙s = 0,s = 0,s = se. Within
the AR except for the boundaryMVC, all actuator torques
are between lower and upper bounds (α(s, ṡ)< β (s, ṡ)).

α-pro f ile: The decelerating curve, in the plane(s, ṡ), is
integrated backward with minimum accelerationα(s, ṡ) in
(5). The slopekα is computed askα = dṡ/ds = α(s, ṡ)/ṡ.

β -pro f ile: The accelerating curve, in the plane(s, ṡ), is
integrated forward with maximum accelerationβ (s, ṡ) in (6).
The slopekβ is computed askβ = dṡ/ds = β (s, ṡ)/ṡ.

spα→β [12]: Switch points from decelerating to acceler-
ating curves, such as the green⊳ in Fig. 1. They are on
the MVC curve, and there are three different types: tangent,
discontinuity or zero-inertia points. At tangent points, the
slope kmvc = dṡ/ds of MVC is equal to kα(= kβ ). At



discontinuity points,MVC is discontinuous. At zero-inertia
points, at least oneAi(s) = 0 holds for the corresponding
path coordinates.

spβ→α : Switch points from accelerating to decelerating
curves, such as the red⊲ in Fig. 1.

C. Numerical Integration Algorithm

Procedures of the original version ofNI [10] which only
considers torque constraints are given as follows:

NI-1. In the plane(s, ṡ), starting from(s = 0, ṡ = ṡ0), the
accelerating curveβ -pro f ile is integrated forward
with maximum path accelerationβ (s, ṡ) until one
of the following cases occurs:

• the curveMVC is hit, and go toNI-2;
• the line ˙s = 0 is hit, and output that this path

is not traversable;
• the lines = se is hit, and go toNI-3.

NI-2. From the hitting point, searching forward along
MVC, the first tangent, discontinuity or zero-inertia
point found isspα→β .

• If spα→β is detected, from the switch point, an
α-pro f ile is integrated backward withα(s, ṡ)
until it intersects the generatedβ -pro f ile in
NI-1, NI-2 at a point spβ→α , and one new
β -pro f ile is integrated forward asNI-1.

• If spα→β is not detected, go toNI-3.

NI-3. Starting from(s = se, ṡ = ṡe), the decelerating curve
α-pro f ile is integrated backward with minimum
path accelerationα(s, ṡ) until it intersects the gen-
eratedβ -pro f ile in NI-1, NI-2 at a pointspβ→α .
Finally, output a time-optimal trajectory consisting
of those generated accelerating and decelerating
curves inNI-1, NI-2 andNI-3.

Note that chattering or vibration is usually caused by high-
frequent switching of acceleration. Fortunately, the workin
[10] has indicated that switch points are finite for theNI
method, which generally does not cause severe chattering
phenomenons.

III. PROPERTIES

In this section, essential properties ofNI are provided with
rigorous mathematical proofs. Note thatProperty 1 has been
presented and proven in [24];Properties 2-3 have been re-
ported in [24], and we will amend their mathematical proofs;
Properties 4-5 are first exposed in this letter with rigorous
proofs; in the presence of kinematic constraints, the failure
of the originalNI with only torque constraints is reported
in [21], [22], and we will give the mathematical conditions
and underlying reasons of failure cases inProperty 6. See
the proofs ofProperties 2-5 in Appendix A-D, respectively.

A. Property of α-pro f iles and β -pro f iles

In the admissible region except for the boundaryMVC
(AREM), the inequalityα(s, ṡ) < β (s, ṡ) holds, which indi-
cateskα < kβ for each point. Three known properties are
summarized in the following, and we will give rigorous

s 

s

profile !

profile !

1X

mX

1 

m 

* 

mY

0

sp !"

sp !"

MVC

1 1
Y

D

Fig. 2. m > 1 : Intersection pointsXi, i ∈ [1,m] are onβ ∗, wherein X j,
1 < j < m is on X1Xm

⌢
. EachXi has one corresponding decelerating curve

αi and one switch pointYi. The regionD is enclosed byα1, β ∗ andMVC.

s 

s0

 !MVC s

†MVC

1
MVC

2
MVC 3

MVC

 !V s

p

sp !"

1
o 2

o

Fig. 3. The maximum velocity curve is altered fromMVC = MVC1 +
MVC2+MVC3 to MVC∗ = MVC1+MVC†+MVC3.

mathematical proofs forProperties 2-3, which have not been
reported in existing literatures.

Property 1: In the AREM region, any twoα-pro f iles
never intersect with each other. Neither doβ -pro f iles.
(Please see the proof in [24].)

Property 2: In the AREM region, if anα-pro f ile inter-
sects anotherβ -pro f ile at a point(s = sc, ṡ = ṡc), in terms
of path velocity, theα-pro f ile is greater than theβ -pro f ile
in the left neighborhood ofsc, but less than theβ -pro f ile
in the right neighborhood ofsc.

Property 3: In the AREM region, anα-pro f ile is not
tangent to anotherβ -pro f ile at any point.

B. Property of spβ→α

The point spβ→α is the intersection point between
α-pro f ile and β -pro f ile, denoted as the red⊲ in Fig.
2. In the iterative process ofNI (see Section II-C), a
β -pro f ile may intersect a finite number of integrated back-
wardα-pro f iles [10]. Which one of these intersection points
is finally chosen asspβ→α on theβ -pro f ile? The answer is
given in Property 4, which is first presented in this letter
with rigorous proof.

Property 4: If one β -pro f ile intersectsm ≥ 1 α-pro f iles,
respectively at pointsXi, i ∈ [1,m], and in terms of path
coordinate,Xi is less thanX j, 1≤ i< j ≤m, then,X1 is finally
chosen asspβ→α on theβ -pro f ile after finite iterations.

Remark 1: In Fig. 2,Y1 may be the terminal point(se, ṡe).
In this special situation,Property 4 still holds. The casem =
1 obviously holds. Meanwhile, the casem > 1 also holds
since the trajectory starting fromXi, i > 1 cannot arrive at



the terminal point according toProperties 1-3. In addition,
other pointsYi, i > 1 cannot be the terminal point(se, ṡe)
sinceNI has completed all procedures at the terminal point
(see the procedureNI-3 in Section II-C). �

The Properties 1-4 show the evolution of accelerat-
ing/decelerating curves and their intersection points.

C. Property of NI with kinematic constraints

The original NI method [10] generates a time-optimal
trajectory with bounded torque. However, when velocity
constraints (bounded actuator velocity and path velocity)are
taken into account, the originalNI (as shown in Section
II-C) may result in a failure. Several examples for this
property are shown in the work in [21], [22],but the concrete
failure conditions and the detailed proof have not been
reported. In the subsequentProperty 6, we will elaborate
the failure conditions and provide the mathematical proof.
Note thatProperty 5 is first presented and proven to indicate
the existence of tangent switch points on the limit curve
considering velocity constraints, which is used in the proof
of Property 6.

Actuator velocity constraints are transformed into path
velocity constraints by kinematic models of robots, therefore,
velocity constraints are represented as

V (s) : s → ṡ, s ∈ [0,se], (8)

where the scalarV (s) is the maximum path velocity. Due
to the velocity constraints, the maximum velocity curve is
altered as

MVC∗(s) = min(MVC(s),V (s)), s ∈ [0,se]. (9)

In the region enclosed byMVC∗,s = 0,s = se, ṡ = 0, acceler-
ating and decelerating curves satisfy all velocity and torque
constraints. In addition, the part ofMVC∗, which is different
from MVC, is represented as

MVC†(s)={MVC∗(s)|MVC∗(s)<MVC(s),s ∈ [0,se]}. (10)

For instance, the dash-dot curveo1o2
⌢ is MVC† in Fig. 3.

The maximum velocity curve altering fromMVC to MVC∗

results in a decreasing number of tangent switch points. For
instance, the tangent switch pointp disappears due toMVC†

instead ofMVC2 in Fig. 3.
Property 5: Tangent switch points are nonexistent on

MVC†.
The NI method [10] with torque constraints, generates a

time-optimal trajectoryT . After considering velocity con-
straintsV (s), the maximum velocity curve is altered from
MVC to MVC∗, which causes that tangent switch points
on the partMVC† of MVC∗ are nonexistent according to
Property 5. It has negative effects on searching switch points
in the NI method, and may result in failure of trajectory
planning tasks.

Property 6: If the following conditions hold:

C1 : ∃s∗ ∈ [0,se], MVC∗(s∗)< T (s∗),
C2 : discontinuity and zero-inertia switch points on

MVC† are nonexistent,
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then, theNI method usingMVC∗ fails to find out a feasible
trajectory.

Proof: The proof is proceeded in 4 steps.
Step 1: To show four essential cases of C1.
The time-optimal trajectoryT , which is obtained from the

NI method usingMVC, consists of severalα-pro f iles and
β -pro f iles, satisfyingT (s)≤ MVC(s),s ∈ [0,se]. According
to (10) andC1, there must exist one part ofMVC† below T ,
and this part is called asMVC‡. On both sides ofMVC‡,
the trajectoryT could be accelerating or decelerating, thus
there are four essential cases for the conditionC1 as shown
in Figs. 4-7. The purple dash-dot lineo3o4

⌢ representsMVC‡.
The gray dotted lineo3o4 and red/green solid lines constitute
the trajectoryT . The green⊳ and red⊲ are spα→β and
spβ→α points respectively. These essential cases are regarded
as basic components of other complex cases, thus, for clarify,
the proof of complex cases will be presented inRemark 2.

Step 2: To prove that for each essential case, the NI method
using MVC∗ must run to the procedure NI-2 in Section II-
C, which is to search forward switch point along MVC† (the
purple dash-dot curve o1o2

⌢ ) from the hitting point.
Let p1 be the neighborhoodspα→β of T on the left side

of MVC†, which also can bep1 = (0, ṡ0). Starting from
p1, NI integratesβ1 forward. For essential cases as Figs.
4-5, the accelerating curveβ1 hits MVC†, then NI will
search forwardspα→β alongMVC† from the hitting point of
o1o3
⌢ . For essential cases as Figs. 6-7, all accelerating curves

including β1 and β -pro f iles from p1o1
⌢ cannot intersectα3

for Property 2, thus, it must intersectp1o1
⌢ or o1o3

⌢ . If the
hit curve iso1o3

⌢ , thenNI will search forwardspα→β from
the hitting point alongMVC†. If the hit curve isp1o1

⌢ , then
NI will search forwardspα→β from the hitting point along
p1o1
⌢ . The number of switch points onp1o1

⌢ is finite [10],
therefore switch points onp1o1

⌢ will run out, andNI will go
on searching forwardspα→β alongMVC†.

Step 3: To prove that those α-pro f iles, starting from the
right side of o4, cannot intersect β -pro f iles, which are on
the left side of o3 and generated in iterative process of NI.

Based onProperty 5 and conditionC2 of Property 6,
switch points onMVC† are nonexistent. Therefore,NI will
go on searching forward switch points on the right side of
o2. In Figs. 4-7, the integrated backwardα-pro f ile, starting
from the spα→β of o2p2

⌢ , cannot intersectα2,β3 according
to Properties 1-2, thus, it must hit the purple dash-doto4o2

⌢

or cyan dasho2p2
⌢ .

Moreover, in the admissible region, starting from the right
side of p2, integrated backwardα-pro f iles cannot intersect
thoseβ -pro f iles generated byNI and on the left side of
o3, which is proven by contradiction. Assume that in the
admissible region, from the right side ofp2, an integrated
backward α-pro f ile intersects one of thoseβ -pro f iles.
Then, the α-pro f ile should be part of the trajectoryT
based onProperty 4. However, in terms of path velocity,
the α-pro f ile is less thanMVC∗, which contradicts with
C1. Therefore, this assumption is invalid, andα-pro f iles
from the right side ofp2 cannot intersect thoseβ -pro f iles
generated on the left side ofo3.

In addition, if p2 is the terminal point(se, ṡe), then starting
from p2 and switch points at the right side ofo2, all
integrated backwardα-pro f iles must hit the purple dash-dot
o4o2
⌢ or cyan dasho2p2

⌢ according toProperties 1-3, which
also indicates that this step holds.

Step 4: To synthesize above analysis and indicate failure
of trajectory planning tasks.

The aboveStep 1-3 indicate that if conditions ofProperty
6 hold, then theNI method usingMVC∗ fails to output a
feasible trajectory: in the iterative process,α-pro f iles and
β -pro f iles on two different sides ofMVC‡ do not intersect
in the admissible region, which causes that the final trajectory
is incomplete. In summary,Property 6 holds.

Remark 2: For other complex cases mentioned inStep 1,
there may exist many parts ofMVC† belowT. The trajectory
T could be accelerating or decelerating at the first and last
part asStep 1. In these cases,NI still searches switch points
along MVC† from the first part in the same reason asStep
2. The conditionC2 indicates that thespα→β on MVC† is
nonexistent. Starting from switch points at the right side of
the last part, allα-pro f iles cannot intersectβ -pro f iles at
the left side of the first part asStep 3. Therefore, in these
complex cases,α-pro f iles andβ -pro f iles on two different
sides ofMVC† do not intersect in the admissible region. It
indicates thatProperty 6 still holds for complex cases. �

In the presence of velocity and torque constraints,Property
6 actually gives sufficient conditions for failure of theNI
method in [10], which is important because it is theoretically
shown that the failure cases indeed exists for this method. In
the following, a necessary and sufficient failure conditionis
given by a numerical ‘run-and-test’ algorithm (RT):

RT-1. In the plane (s, ṡ), the curve MVC∗(s) is ob-
tained with (9). It is initialized that the pointp
is (0, ṡ0), boolean variableisContinuous is T RUE,
the longest continuous trajectoryT ∗ from (0, ṡ0) is
null and the scalarsLast is zero. Then go toRT-2.

RT-2. Starting from the pointp, a β -pro f ile is integrated
forward until it hits the boundaries of the admis-
sible region at(s = sh, ṡ = ṡh). If isContinuous
is TRUE, then RT will call the subfunction
addPro f ile(T ∗, β -pro f ile), and sLast is updated
as sh. And go toRT-3.

RT-3. From the hitting point, the first switch point found
along MVC∗ or terminal point is assigned to the
point q. Starting fromq, anα-pro f ile is integrated
backward until it intersects one of following lines:

• The trajectoryT ∗, then RT will call the sub-
function addPro f ile(T ∗, α-pro f ile) and set
isContinuous=TRUE. Meanwhile,sLast is up-
dated as the path coordinate ofq.

• The boundaries of the admissible region, then
RT will set isContinuous = FALSE.

The point p is updated asq. If p is the terminal
point, then go toRT-4, else go toRT-2.

RT-4. If sLast < se, this method fails to generate a feasible
trajectory, else output a feasible trajectoryT ∗.



Remark 3: The subfunctionaddPro f ile adds accelerat-
ing/decelerating curves toT ∗. The core of this algorithm is
running theNI method and detecting whether those generated
accelerating and decelerating curves constitute a continuous
trajectory on the whole path. The scalarsLast indicates
the path length of the trajectoryT ∗. Therefore, after the
algorithm is completed, the inequalitysLast < se in RT-4 is a
necessary and sufficient failure condition for theNI method
in presence of velocity and torque constraints. �

IV. SIMULATION RESULTS

In order to verifyProperties 1-6, some simulation results
on a unicycle vehicle are provided in this section.

A. Model

A unicycle vehicle moves along a specified path, with the
direction of the vehicle being always tangent to this given
path from a initial pose to a target pose. The angular velocity
ω ∈R, the path velocityv ∈R, and the path curvatureκ ∈R

have the following relationship [25]:

ω = κv. (11)

For the specified path, the curvature could be computed as
a function of the path coordinate as follows:

κ : s ∈ [0,se]→ κ(s) ∈R, (12)

where the scalars is the path coordinate.
According to (11) and (12), the kinematic model of the

vehicle is described as

uuu = MMM(s)ṡ, (13)

where uuu = [ω v]T, and MMM(s) = [κ(s) 1]T. Taking the time
derivative of (13) yields that

u̇uu = MMM(s)s̈+MMMs(s)ṡ
2, (14)

whereu̇uu=[ẇ v̇]T, MMMs(s) = [κs 0]T, κs = dκ/ds. The scalars
v̇, ẇ are the path acceleration and angular acceleration, re-
spectively. Velocity and acceleration constraints are given as

−vvvmax ≤ uuu ≤ vvvmax, (15)

−aaamax ≤ u̇uu ≤ aaamax, (16)

wherevvvmax ∈ R
2 and aaamax ∈ R

2 are constant vectors repre-
senting the velocity boundary and the acceleration boundary,
respectively. These vector inequalities (15)-(16) shouldbe
interpreted componentwise.

In order to guarantee acceleration constraints, substituting
(14) into (16) yields that

AAA(s)s̈+BBB(s)ṡ2+CCC(s)≤ 000, (17)

whereAAA(s) = [MMM(s)T −MMM(s)T]T, BBB(s) = [MMMs(s)T −MMMs(s)T]T

andCCC(s) =−[aaaT
max aaaT

max]
T, which are all 4×1 vectors.

In order to guarantee velocity constraints, substituting (13)
into (15) yields that

AAA(s)ṡ+DDD(s)≤ 000, (18)

whereAAA(s) = [MMM(s)T −MMM(s)T]T andDDD(s) = −[vvvT
max vvvT

max]
T,

which are all 4×1 vectors.
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Fig. 8. The specified path: cubic Bézier curve

The velocity limit curveMVC(s) considering acceleration
constraints is computed with (7) and (17), and the limit curve
V (s) considering velocity constraints is computed with (8)
and (18). When both acceleration and velocity constraints are
taken into account, the maximum velocity curve is obtained
asMVC∗ by fusingMVC(s) andV (s) with (9).

B. Results

As shown in Fig. 8, the specified blue path is the following
cubic Bézier curve:

x =(1−λ )3x0+3(1−λ )2λ x1+3(λ 2−λ 3)x2+λ 3x3,

y =(1−λ )3y0+3(1−λ )2λ y1+3(λ 2−λ 3)y2+λ 3y3,

where the position of the vehicle is(x[m],y[m]), the points
(xi[m],yi[m]), i ∈ [0,3] are path control points, and the scalar
λ ∈ [0,1] is the path parameter. Theλ ands obey a nonlinear
scaling relation. The starting and terminal path velocity ˙s0 =
ṡe = 0[m/s]. This cubic Bézier curve is used to find a path
from a initial pose to a target pose so that the orientation
of the unicycle vehicle is always tangent to the path, and
thus the nonholonomic constraint is satisfied. The following
cases show that theNI method assigns velocity profiles to
the path.

Case 1: This case shows that, when the velocity con-
straints are moderate, theNI method [10] usingMVC∗

generates the time-optimal trajectory. In this simulation,
the velocity and acceleration constraints are set asvvvmax =
[0.5rad/s 1.3m/s]T,aaamax = [0.05rad/s2 0.1m/s2]T.

In Fig. 9, the cyan dash line representsMVC(s) with ac-
celeration constraints. When considering velocity constraints
corresponding to the purple dash-dot lineV (s) in Fig. 9, the
maximum velocity curve is altered fromMVC to MVC∗,
which is represented as the boundary between the gray
(inadmissible) and blank (admissible) regions. To facilitate
subsequent analysis, symbols #1,#2 are used to represent the
two closed areas bounded byMVC(s) and V (s). The red
and green solid lines are accelerating curves (β -pro f iles) and
decelerating curves (α-pro f iles), respectively, which comply
with Properties 1-3. The red⊲ and green⊳ denote the points
spβ→α and spα→β respectively (see Section II-B).

As shown in Fig. 9, under the curveMVC∗, theNI method
outputs the optimal trajectory as follows. The accelerating
curve β0, starting from(0, ṡ0), hits MVC∗ at p1. Searching
forward alongMVC∗ from p1, the firstspα→β found is p2.
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Fig. 10. Case 2: TheNI method fails to output a feasible trajectory with
constraintsvvvmax = [0.2rad/s 1.3m/s]T ,aaamax = [0.05rad/s2 0.1m/s2]T

Starting fromp2, the integrated backward decelerating curve
α1 intersectsβ0 at o1, and the integrated forward accelerating
curve β1 hits MVC∗ at p3. Then, searching forward along
MVC∗ from p3, the first spα→β found is p4. Starting from
p4, the integrated backward decelerating curveα2 intersects
β1 at o2, and the accelerating curveβ3 hits the MVC∗ at
p5. No spα→β is found alongMVC∗ from p5 when s ≤ se.
Therefore, the integrated backwardαe, starting from(se, ṡe),
intersectsβ1 at o3. The spβ→α on β1 is updated fromo2 to
o3, which verifiesProperty 4. Finally, theNI method outputs
the feasible and optimal trajectory:β0−α1−β1−αe.

Case 2: This case shows that, when the velocity constraints
are too restrictive, the conditions inProperty 6 will be
satisfied, and thus theNI method [10] usingMVC∗ fails to
output a feasible trajectory. In this simulation, the velocity
constraintvvvmax is modified as[0.2rad/s 1.3m/s]T and the
acceleration constraintaaamax remains the same as that of
Case 1. Therefore, in Fig. 10, the velocity limit curveV (s)
due to the velocity constraint becomes lower, and the areas
of two inadmissible regions #1,#2 increase. Meanwhile, the
trajectoryT : β0−α1−β1−αe, obtained by theNI method
usingMVC, is greater thanMVC∗ at the region #1, and the
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Fig. 11. The enlarged view of the region #1 in Fig. 10

spα→β on MVC† is nonexistent, which indicates that the
conditions ofProperty 6 hold and also verifiesProperty 5.

Under the curveMVC∗, the NI method fails to output
a feasible trajectory, which is described as follows. For
clarity, the region #1 is enlarged as shown in Fig. 11. The
integrated forward curveβ0 from (0, ṡ0) hits the MVC∗ at
p1. Then, searching forward fromp1 alongMVC∗, the first
spα→β found is the pointp2. However, starting fromp2,
the integrated backwardα1 hits the MVC∗ at p5 before
intersectingβ0 (the pointo1 is in the inadmissible region).
Then, the integrated forwardβ1 from p2 hits the MVC∗

at p3. No spα→β is found alongMVC∗ from p3 when
s ≤ se. Therefore, the integrated backwardαe, starting from
(se, ṡe), intersectsβ1 at o2. In all these procedures, the
α-pro f iles on the right side of the purple dash-dot curve
MVC† (p6p7

⌢ ), cannot intersectβ0. ThisMVC† (p6p7
⌢ ) breaks

the intersection between the accelerating and decelerating
curves, and causes that the final trajectory is blank between
p1 and p5, which indicates that theNI method fails and
verifiesProperty 6.

V. CONCLUSION

This letter revisits the original version ofNI method for
time-optimal trajectory planning along specified paths. On
this basis, we first summarize several known and new prop-
erties regarding switch points and accelerating/decelerating
curves of theNI method, and give corresponding mathemati-
cal proofs. Then, we provide concrete failure conditions and
rigorous proofs for the property, which indicates that, in the
presence of velocity constraints, the original version ofNI
which only considers torque constraints may result in failure
of trajectory planning tasks. Accordingly, a failure detection
algorithm is given in a ‘run-and-test’ manner. Simulation
results on a unicycle vehicle are provided to verify these
presented properties.

APPENDIX

A. Proof of Property 2

Proof: In theAREM region, anα-pro f ile intersects an
β -pro f ile at a point(s = sc, ṡ = ṡc). At the neighborhood



of sc, the slopes of theα-pro f ile and β -pro f ile satisfy
the inequalitykα < kβ and the Lipschitz condition [11].
Therefore, based onComparison Theorem [26] (Let y,z be
solutions of the differential equations ˙y= F(x,y), ż =G(x,z).
If F(x,y) < G(x,z),x ∈ [a,b], the functionF or G satisfies
a Lipschitz condition, andy(a) = z(a), theny(x)< z(x),x ∈
(a,b]), it is proven that theα-pro f ile is greater than the
β -pro f ile in the left neighborhood ofsc, but less than the
β -pro f ile in the right neighborhood ofsc.

B. Proof of Property 3

Proof: This property is proven by contradiction. As-
sume that anα-pro f ile is tangent to anotherβ -pro f ile in the
AREM region. Then, on the tangent point, the slopekα of the
α-pro f ile is equal tokβ of theβ -pro f ile, which contradicts
with the inequalitykα < kβ in the AREM region. Thus, the
assumption is invalid and the property is proven.

C. Proof of Property 4

Proof: In terms of the numberm of intersection points,
there are totally two cases:m = 1,m > 1.

Case 1: m = 1. There is only one intersection point, so
the pointspβ→α on theβ -pro f ile is X1. This property holds
for m = 1.

Case 2: m > 1. There arem intersection points as Fig.
2. In terms of path coordinate, the intersection pointXi is
less thanX j, 1≤ i < j ≤ m. EachXi has one corresponding
decelerating curveαi and one switch pointYi. According to
Property 1, Yi is at the right side ofYj, i < j. If Xi, i > 1 is
chosen asspβ→α on β ∗, then, starting fromXi, the trajectory
consisting ofα-pro f iles and β -pro f iles cannot leave the
regionD, which is enclosed byα1, β ∗ andMVC, acrossα1

due toProperties 1-3. Thus,X1 is chosen asspβ→α on β ∗,
which can aid the trajectory to leave the regionD alongα1

and go on extending to the right side ofY1 with β1. This
property holds form > 1. In summary,Property 4 holds.

D. Proof of Property 5

Proof: Due to (10),MVC† is less thanMVC. According
to the definition ofAR, the inequalityα(s, ṡ)< β (s, ṡ) holds
on MVC†. Then, based on the factskα = α(s, ṡ)/ṡ,kβ =
β (s, ṡ)/ṡ, the inequalitykα < kβ also holds onMVC†, which
violates kα = kβ in the definition of tangent switch points
(seespα→β in Section II-B). Therefore, tangent switch points
on MVC† are nonexistent.
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