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Autonomous Sweet Pepper Harvesting for Protected
Cropping Systems

Christopher Lehnert1, Andrew English1, Christopher McCool1, Adam W. Tow1 and Tristan Perez 1

Abstract—In this paper we present a new robotic harvester
(Harvey) that can autonomously harvest sweet pepper in pro-
tected cropping environments. Our approach combines effective
vision algorithms with a novel end-effector design to enable
successful harvesting of sweet peppers. Initial field trials in
protected cropping environments, with two cultivar, demonstrate
the efficacy of this approach achieving a 46% success rate for
unmodified crop, and 58% for modified crop. Furthermore,
for the more favourable cultivar we were also able to detach
90% of sweet peppers, indicating that improvements in the
grasping success rate would result in greatly improved harvesting
performance.

Index Terms—Agricultural Automation, Dexterous Manipula-
tion, Mechanism Design of Manipulators

I. INTRODUCTION

THE horticulture industry remains heavily reliant on man-
ual labour, and as such is highly affected by labour costs.

In Australia, harvesting labour costs in 2013-14 accounted
for 20% to 30% of total production costs [1]. These costs
along with other pressures such as scarcity of skilled labour
and volatility in production due to uncertain weather events is
putting profit margins for farm enterprises under tremendous
pressure.

Robotic harvesting offers an attractive potential solution
to reducing labour costs while enabling more regular and
selective harvesting, optimising crop quality, scheduling and
therefore profit. These potential benefits have spurred research
in the use of agricultural robots for harvesting horticultural
crops over the past three decades [2]. Autonomous harvesting
is a particularly challenging task that requires integrating
multiple subsystems such as crop detection, motion planning,
and dexterous manipulation. Further perception challenges
also present themselves, such as changing lighting conditions,
variability in crop and occlusions. A recent survey of 50
projects in robotic harvesting of horticulture crops [3] high-
lighted that over the past 30 years of research, the performance
of automated harvesting has not improved substantially despite
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Fig. 1: Our mobile sweet pepper harvesting platform operating
in a protected cropping environment. Harvesting is performed
with a custom harvesting tool and 7DOF manipulator (6DOF
articulated arm + lift joint) integrated into a custom differential
drive mobile base.
huge advances in sensors, computers, and machine intelli-
gence. If robotic-crop harvesting is to become a reality, we
believe there are three key challenges that must be addressed:

1) Detection: determining the presence/location of each
crop

2) Grasp selection: determining the 3D pose and shape
of each crop and selecting appropriate grasping and/or
cutting points.

3) Manipulation: detaching the crop from the plant without
harming the crop or plant.

In this paper, we present an autonomous sweet pepper
harvester that works towards addressing these three key
challenges. We demonstrate a simple and effective vision-
based algorithm for crop detection, a 3D localisation and
grasp selection method, and a novel end-effector design for
harvesting. To reduce complexity of motion planning and
to minimise occlusions we focus on picking sweet peppers
in a protected cropping environment (see Figure 1) where
plants are grown on planar trellis structures. Experimental
results with minor modifications to the plant (removal of
some leaves) demonstrated a harvesting success rate of 58%,
a grasping success rate of 81% and a detachment success
rate of 90% for favourable cultivar. We believe these results
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represent a significant improvement on the previous state-of-
the-art and show encouraging progress towards the possibility
of a commercially viable autonomous sweet pepper harvester.

The remainder of the paper is structured as follows. A
review of current state-of-the-art methods for autonomous
harvesting of horticultural crops is presented in Section II. The
design of our autonomous harvesting platform is presented in
Section III and methods for perception and planning are pre-
sented in Section IV. Finally, results of two field experiments
are presented in Section V-B, before a discussion of the key
challenges and future work in Section VI.

II. LITERATURE

Autonomous harvesting has been demonstrated on a number
of horticultural crops such as sweet peppers [4], [5], cucum-
bers [6], citrus fruits [7], strawberries [8] and apples [9], [10].
Autonomous sweet pepper harvesting has previously been
demonstrated by the Clever Robots for Crops (CROPS) project
[4], [5]. The CROPS platform achieved a harvesting success
rate of 6% for unmodified crop and 33% when occluding
leaves and crop clusters were removed. Their work high-
lights the difficulty and complexity of the harvesting problem.
Several key research challenges remain before widespread
commercial adoption can occur [3]. These challenges can be
broken into three categories: perception, motion planning and
hardware design.

A. Perception
Crop perception pipelines generally include detection, seg-

mentation and 3D localisation stages.
Detection and segmentation are essential in knowing the ap-

proximate location of the crop within an image and approaches
have been developed for both automated harvesting [11], [12],
[13] and yield estimation [14].

After detection and segmentation, the 3D location (position,
orientation and shape) of the crop is determined using a 3D
sensor such as a ToF camera [4], [15], stereo vision [6], [8] or
even a single-point laser range finder [16]. This 3D localisation
step allows a grasp and/or cutting pose to be determined.
Methods in the literature for 3D localisation are generally ad-
hoc and crop specific.

B. Motion Planning
Common methods of motion planning for autonomous crop

harvesting include open loop planning [4], [17] and visual
servoing [16], [8]. Open loop planning methods sequentially
sense, plan and act, leaving such systems susceptible to unper-
ceived environment changes [18]. Visual servoing methods re-
quire a high update rate, but are particularly useful for motion
planning within dense vegetation where crop localisation from
a single viewpoint can perform poorly due to occlusions [18].

Reliable grasping in a dense and cluttered environment
remains an active research topic [19], often requiring tactile
sensing to discern between rigid and deformable objects. As
advocated in [3], simplifying the workspace or developing
harvesting tools which simplify the harvesting operation can
greatly improve the success of motion planning in cluttered
horticultural environments.

C. Harvesting Tools and Manipulators
A range of manipulator configurations have been used for

autonomous harvesting projects including 3DOF Cartesian,
anthropomorphic arms and 6DOF manipulators [3]. Several
works have compared various joint configurations to optimise
target-reachability in cluttered environments [20], [21].

A key component of any autonomous harvesting system is
the harvesting end-effector that grasps and/or cuts the crop.
Suction cups are a common gripping mechanism [4], [5], [8],
[22] that are mechanically simple and only require access to
a single exposed face of the crop.

Another gripping alternative are contact-based grippers [10],
[23] which generally employ mechanical fingers that close
around the crop. Contact-based grippers can grip the crop
very securely, but are more prone to interference from nearby
objects such as branches and other fruit. Some crops such
as sweet pepper and cucumber must also be cut from the
plant and so require an additional detachment tool such as
a thermal cutter [6] or scissor-like mechanism [4], [8], [16].
End effectors customised to a particular crop are common,
for example in 2014 Hemming et al. [4] developed a custom
harvesting tool which simultaneously envelops and cuts-free
sweet peppers with a hinged jaw mechanism. This mechanism
was found to be more effective than a scissor mechanism,
however size and geometry constraints restricted access to
some sweet peppers [24].

III. SYSTEM DESIGN

This section outlines the system design for our autonomous
sweet pepper harvester. The overall procedure for harvesting
sweet peppers is shown in Figure 2 and can be broken down
into five key steps:

1) Scanning: The robot arm is moved in a pre-determined
scanning motion to build up a 3D model using an eye-
in-hand RGB-D camera.

2) Crop Detection: Sweet peppers from the 3D scene are
segmented using colour information and localised by
fitting a 3D parametric model to the segmented points.

3) Grasp Selection: Candidate grasp poses are computed
using the segmented sweet pepper point cloud.

4) Crop Attachment: Suction cup grips the sweet pepper.
5) Crop Detachment: Oscillating blade cuts the sweet

pepper from the plant.

Detection Grasp 
Selection AttachmentScanning Detachment

Fig. 2: The five stages of the autonomous harvesting cycle.
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The first three steps (scanning, crop detection, and grasp
selection) form part of the perception system described in
Section IV. The procedure for the crop attachment and crop
detachment step, are described in Section III-C.

A. Protective Cropping Systems

Sweet peppers are grown in both fields and protected
cropping environments. In this work, we focus on picking
sweet pepper’s in protected cropping environments. In these
environments, sweet pepper’s are grown on a two dimensional
planar surface, significantly reducing occlusion and the need
for complex collision avoidance and motion planning around
the crop structure. Also, many protective cropping environ-
ments have a translucent outer surface that diffuses incoming
sunlight; creating favourable conditions for computer vision
with relatively even lighting.

The protective cropping environment used in this work has
crop grown in planar rows up to 2 m tall with rows spaced
approximately 1 m apart. This layout informed the workspace
requirement of our sweet-pepper harvesting platform design.

B. Platform Design

The harvesting robot “Harvey”, is shown in Figure 1.
The custom differential drive platform was designed to work
independently within a protected cropping environment and
manoeuvre between crop rows for up to 8 hours powered
by an internal 3kWh lead-acid battery. The platform has a
6DoF revolute arm (Universal Robotics UR5) mounted on a
prismatic lift joint (Thomson LM80). The differential drive
mobile base houses the batteries, drive motors, gearboxes,
computer hardware, robot controller and forward facing laser
scanner for mobile navigation and obstacle detection.

C. Harvesting Tool Design

Our custom harvesting tool shown in Figure 3 is able to
grip sweet peppers with a suction cup, and then cut them free
from the plant using an oscillating blade.

Natural variation in crop size, shape and orientation make
choosing a single end-effector pose to simultaneously grasp
and cut each sweet pepper challenging and unreliable. To
overcome this difficulty, a key feature of our harvesting
tool design is a passive decoupling mechanism that allows
the gripping and cutting operations to occur sequentially, at
independently chosen locations.

Fig. 3: Harvesting tool attached to the robot end effector

The decoupling mechanism is a flexible strip that tethers the
suction cup to the body of the end effector. The suction cup
is also magnetically attached to the underside of the cutting
blade, allowing the robot arm to guide the suction cup during
the attachment phase. After attachment, the cutting blade is
lifted to decouple the suction cup from the cutting blade.
The suction cup is then only attached to the end effector
via the flexible tether, allowing the cutting blade to move
independently of the suction cup through the cutting operation.
After detachment, the sweet pepper falls from the plant and
hangs freely from the flexible tether. The suction cup and
cutting blade can be magnetically re-coupled ready for the
next harvesting cycle using gravity by simply pointing the
harvesting tool downwards. The sweet pepper is released into
a collection crate by releasing the vacuum.

This simple and passive decoupling method requires no
additional actuators and allows for a greater harvesting success
rate.

The harvesting tool also contains an RGB-D camera
(Intel R©Realsense SR300 RGB-D) sensor for perceiving the
crop and a micro-switch for checking whether the suction cup
is coupled with the cutting blade. The body of the end effector
contains a modified oscillating multi-tool for cutting stems. A
pressure sensor on the vacuum line is able to detect sucessfull
attachment of the suction cup.

D. Software Design

The software design uses the Robot Operating Sys-
tem (ROS) to communicate between independent processes
(nodes). Figure 4 illustrates the connection between software
components.

The ROS MoveIt! [25] library was used for motion plan-
ning, with the TRAC-IK [26] Inverse Kinematics (IK) solver
for improved solution rate and solution time compared to
standard IK solvers. Trajectory execution was performed by
the Universal Robots ROS controller package.

The Scene Registration node registers point clouds from
the robot’s RGB-D sensor into a smoothed colour point cloud
using the Point Cloud Library (PCL) [27] implementation of
the Kinect Fusion algorithm. This node does not use joint state
information from the robot controller which avoids the need
for accurate time synchronisation between RGB-D frames and
joint states.

The Detection and Segmentation node detects sweet peppers
within a scanned scene. The node returns a list of point cloud
segments and is implemented as a ROS service client.

The State Machine node implements the harvesting logic
and coordinates the operation of other nodes to perform the
harvesting operation. Figure 5 outlines the logic implemented
in this state machine for a single harvesting cycle.

Following segmentation of the scene into individual sweet
peppers, two concurrent state machines are spawned. The first
state machine (below the dotted line in Figure 5) continuously
processes segmented sweet peppers to calculate candidate
grasping and cutting poses. The second state machine (above
the dotted line in Figure 5) waits for a processed sweet
pepper, then plans and executes the harvesting operation. This
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Fig. 4: System diagram illustrating how each subsystem is
connected. Images from the RGB-D camera are fused by the
scene registration node. The state machine uses the scene
registration, detection and grasp detection subsystems to lo-
calise the sweet pepper and estimate grasp poses. Grasp poses
are then used to perform the harvesting actions using the
path planner, robot arm controller and end effector controller
subsystems.

concurrent processing and harvesting of sweet peppers speeds
up the harvesting process when a scene contains multiple
detected sweet peppers.

Failure to attach the suction is detected via an in-line
pressure sensor on the vacuum system and triggers a re-
attachment at the next-best grasp candidate. After a fixed
number of failed attachment attempts the state machine moves
on to harvesting the next sweet pepper. Future work will also

Move 
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Fig. 5: State machine of the harvesting system illustrating the
steps for harvesting sweet pepper. After scene segmentation
completes, the sweet pepper processing states (below dotted
line) run concurrently with harvesting states (above dotted
line) reducing the overall harvesting time.

look into methods of sensing successful peduncle cutting to
enable the state machine to attempt multiple cutting poses.

IV. PERCEPTION AND PLANNING

In this section we present our perception system for detect-
ing, segmenting, and estimating the pose of sweet peppers,
followed by the planning steps to perform the picking action.

This firstly involves moving the RGB-D camera in a scan-
ning motion, combining these views into a single 3D model,
and segmenting sweet peppers using colour information as
described in Section IV-A. Grasp poses are then calculated by
one of two methods described in Section IV-B. Grasp poses are
then used by the subsequent motion planning system (Section
IV-C) to perform the harvesting operation.

An overview of the perception system is given below where
a more in depth description of the perception system can be
found in our previous work [15].

A. Scanning and Sweet Pepper Detection

The initial stage of the perception process involves scanning
the crop row with the end-effector mounted RGB-D camera.
The point clouds captured from the RGB-D sensor during
the scanning motion are used as input to the point cloud
registration method that creates a single 3D model of the
scene using the Kinect Fusion algorithm. The RGB-D camera
operates at approximately 30 frames per second with a depth
resolution of 2 mm and range between 0.2 m to 1.5 m.

Combining multiple views in a single 3D model helps to
reduce point cloud noise, and reduces the effect of occlusion
by leaves since sweet peppers will generally be seen clearly
from at least one view during the scanning process.

Two types of scanning trajectories have been used, a dia-
mond and boustrophedon (lawnmower) pattern with a fixed
offset between the camera and crop row. Figure 6 shows the
trajectory (blue line) and pose (red arrows) of the RGB-D
camera on the end effector recorded while scanning a sweet
pepper as part of the experiment presented in Section V. The
figure also shows the resulting registered point cloud generated
from the Kinect Fusion algorithm produced during the scan.
Scanning is currently performed perpendicular to the crop row,
as this was simple to define and sufficient to build a detailed
3D model. This scanning method is inefficient in time and
future work could look at selecting the next best view to
maximise 3D information about a target crop.

The second stage of the perception system segments the
sweet pepper from the background (leaves and stems). This
task is challenging due to variation in crop colour and illu-
mination as well as high levels of occlusion. Prior work by
McCool et al. [13] proposed a highly accurate sweet pepper
segmentation approach capable of segmenting both green and
red sweet pepper. In this work, we are interested in harvesting
red sweet pepper only and so use a simpler and faster colour-
based segmentation approach outlined in [15] which applies a
Naı̈ve Bayes classifier to points in the fused point cloud in a
rotated-HSV colour space. Parameters of the HSV model were
determined by computing the mean and variance on a sample
of sweet peppers in the field.
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(a) (b)
Fig. 6: (a) Scanning trajectory of the camera during a single field trial along with the registered point cloud (b) End effector
trajectory of a single harvesting trial. The end effector position and orientation is indicated by a coloured line and red arrow,
respectively. The trajectory begins (start pose) with the attachment stage (yellow line), transitioning into the separation stage
(blue line) and finishing with the detachment stage (green line). The estimated pose of the sweet pepper is shown using blue
and red axes.

Once segmented, a Euclidean clustering step is used to
group the remaining points into multiple distinct sweet pep-
pers. Clustering is based on a minimum distance threshold,
selected as 2 mm corresponding to the resolution of the depth
camera. A limitation of this method is when two sweet peppers
are in contact with each other. If multiple sweet peppers are
in view this clustering step also determines the best candidate
sweet pepper based on the cluster which has the largest number
of detected 3D points (most information available) and has
the closest centroid to the end effector. Lastly, smoothing and
outlier removal is performed on the points to filter noise from
the detection step.

B. Grasp Selection

Grasp poses for each sweet pepper are calculated using the
the segmented 3D point cloud of a sweet pepper. An ideal
grasp pose will place the suction cup squarely on a planar
region of a sweet pepper. In this work we developed two
different methods for selecting both grasp and cutting poses.

The first grasp selection method is outlined in [15] and fits a
geometric model (superellipsoid) to the point cloud to estimate
the sweet peppers size, position and orientation. The grasp
pose is calculated to be in the centre of the front face of the
sweet pepper, while the cutting pose is calculated to be offset
from the top face of the sweet pepper.

The second method takes a different approach and selects
multiple grasp poses directly from the point cloud data by
calculating surface normals with a fixed patch size. These
surface normals can be used directly as grasp poses however,
we rotate these poses along their axis to keep the end effector
upright, minimising large jumps in the wrist configuration.

Candidate poses are ranked based on a utility function
that is the weighted average of three normalised scores
Si1, Si2 and Si3 based on the surface curvature, distance to the
point cloud boundary and angle with respect to the horizontal
world axis, respectively, where i is the current candidate pose.
This utility function favours grasp poses that are close to the
centre of the sweet pepper, on planar surfaces, aligned with

the horizontal world axis and away from discontinuities caused
by occlusion. The utility, Ui of the grasp pose i is calculated
according to

Ui =

3∑
j=1

Wj Sij , given
3∑

j=1

Wj = 1 (1)

where 0 ≤ Ui ≤ 1, 0 ≤ Sij ≤ 1 is the score of the grasp pose i
and Wj are weighting coefficients that describe the importance
of each score.

An advantage of this method is it finds multiple grasp poses,
in contrast to a single grasp pose when using the model fitting
method.

Cutting poses for this second method are estimated in a
similar way to grasp poses, however with a modified utility
function that favours vertical rather than horizontal normal
vectors. This tends to find normal vectors on the top surface of
the sweet pepper in a ring around the peduncle. We reject poses
with low utility to remove outliers, translate them vertically to
avoid damaging the sweet pepper and create the final cutting
pose using the medians of the x, y and z-axes independently.
The orientation of the final cutting pose is set so as to keep
the end effector level and perpendicular to the plane of the
crop row.

Both our strategies for calculating the cutting pose (para-
metric model fitting and surface normal estimation) assumes
the sweet pepper is vertical with a peduncle near the top. We
are currently investigating methods of directly detecting the
peduncle location in the colour point cloud to accommodate
highly angled sweet peppers.

An example of the grasp selection method applied to real
sweet pepper point clouds is shown in Figure 7 where the
utility of the grasping and cutting poses (surface normals) are
represented as the gradient from red or green to black, where
black has the lowest utility.

C. Motion Planning

Harvesting trajectories are calculated relative to the grasping
and cutting poses described in the previous section. The
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Fig. 7: Computed grasp poses. The utility of each grasp pose
is shown as the gradient from red to black, where black is
the lowest utility. The blue arrow indicates the best pose. The
vertical green arrows are estimated cutting poses for potential
peduncle locations

attachment trajectory starts at a fixed offset back from the
grasping pose and moves the suction cup along the selected
approach axis. This motion, as computed by the planner, can
be seen as the yellow line within Figure 6.

Once the attachment trajectory has been executed to attach
the suction cup, the end effector is moved vertically from the
attachment pose in order to decouple the suction cup from the
cutting tool (as described in Section III-C).

Finally, a cutting trajectory is computed. This cutting trajec-
tory is calculated so as to keep the end effector aligned with
the horizontal world frame, as this was found to outperform
trajectories aligned with the estimated orientation of the sweet
pepper.

The resulting end effector trajectory for the attachment,
separation and detachment stages for one harvesting cycle is
shown in Figure 6.

As discussed in Section III-A, operating in a protected
cropping environment results in a relatively planar workspace
which simplifies the motion planning task for the robot. In
this work, we avoid implementing complex obstacle avoidance
around branches and leaves since in nearly all cases the robot
performs “in and out” motions thanks to novel harvesting tool
design. The motion planner of the robot takes into account
self collisions with the robot arm and base platform, as well
as a simple planar collision obstacle placed slightly behind the
target crop row.

V. EXPERIMENT AND RESULTS

Two field trials were conducted over two harvesting seasons
on a farm in North Queensland (Australia) within a protected
cropping system. Overall the robot platform has been tested
on a total of 75 sweet peppers in a real protected cropping
system. Within this work, two different sweet pepper cultivars

TABLE I: Scanning Parameters

Trial Parameter Value

1 Boustrophedon (Width, Height, Segments) 0.35 m, 0.4 m, 3
Scan row offset 0.25 m
Scanning speed 0.1 m/s

2 Diamond (Radius) 0.4 m
Scan row offset 0.3 m
Scanning speed 0.1 m/s

were trialled; the Claire cultivar in the first field trial and the
Redjet cultivar in the second.

Trial 1 applied the lab tested grasping methods presented in
[15] in a real protected cropping environment. Changes to the
platform between field trial 1 and 2 were also made in order
to improve the autonomous behaviour of the system. These
differences include:

• The scanning trajectory was changed from a diamond
pattern to boustrophedon pattern

• an upgrade from a manual scissor lift base platform (see
[15]) to a custom mobile platform (Figure 1),

• the addition of a prismatic lift joint (integrated into the
motion planner) replacing the manual lift joint to improve
the workspace and reduce planning failures,

• the addition of a vacuum sensor to detect successful
attachment and a micro-switch to detect decoupling of
the suction cup and cutting blade.

A. Methodology

A formal experiment was conducted on the final day of
each field trial, involving 24 and 26 sweet peppers for the
first and second trial, respectively. Each trial was conducted
within a single 10 m stretch of a crop row. During the first field
trial initial testing resulted in successfully picking a total of 25
additional sweet peppers, though not under strict experimental
conditions.

The methodology for each experiment is as follows. The
base platform was placed at the start of a crop row and
manually moved down the crop row after attempting to harvest
a set of sweet peppers. The platform was positioned in order
for the robot arms workspace to be within range of the next
set of sweet peppers. For the first field trial, this involved
physically pushing the platform and manually operating the
scissor lift joint. For the second trial, the robot was remotely
driven down the crop row, simulating an autonomous move
base state (see Figure 5). There was no need to position the
lift joint manually during the second trial as this was handled
by the motion planner.

If a failure occurred during an attempt, the robot arm
moved back to its start position and the attempt was retried. If
obstructions or occlusions caused multiple failed attempts, the
scene was modified by either removing leaves or by adjusting
the position of the sweet pepper, and then re-attempted.

During each attempt, an attachment (the suction cup at-
tached to the sweet pepper) and detachment (the peduncle was
cut) success or failure was recorded. Additional notes were
also recorded through the experiment and categorised as: major
or minor sweet pepper damage (XD or MD), whether the sweet
pepper was visually occluded or physically obstructed (OC or
OB), or if the sweet pepper had an irregular shape (IS).

The scanning parameters such as size, speed and row offset
for each trial are given in Table I. These parameters were

TABLE II: Parameters used for ranking grasp poses.

Parameter Value

Grasp utility weights (W1, W2, W3) 0.2, 0.5, 0.3
Surface Normal Patch Size 0.025 m
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(a) (b) (c)
Fig. 8: (a) Harvested sweet pepper with minor damage circled
in blue. (b) Example harvested sweet pepper. (c) Failed har-
vesting of a sweet pepper with major damage to its top face.
It can be seen that this sweet pepper has large irregularities
causing a poor estimate of its pose.

empirically determined based on the protected cropping sys-
tem and sweet pepper cultivar used. The scanning trajectories
chosen did not change within the respective field trial.

The parameters for ranking surface based grasps are also
given in Table II.

B. Results

The success rates for the both field trials are presented in
Table III. More in depth results for each of the 24 trials during
the final experiment are shown in Table IV. A video of the
robotic harvester demonstrating these results is available at
https://youtu.be/Fm70wHJ Lew.

Out of the total sweet peppers, 14/24 (58%) and 11/26
(42%) were successfully harvested for field trial 1 and 2
respectively, where a successful harvest includes a successful
attachment and detachment. During field trial 1 and 2, a
total of 22/24 (92%) and 11/26 (42%) sweet peppers were
successfully detached from the plant, irrespective of an attach-
ment success. On the other hand, attachment rates of 14/24
(58%) and 21/26 (81%) were achieved for field trial 1 and 2,
respectively.

An example of two cases where detachment was unsuc-
cessful (sweet peppers 6 and 19 within field trial 1) the sweet
pepper was irregularly shaped which resulted in a poor grasp
pose estimation. In the first case (sweet pepper no. 6), this led
to the cutting blade repeatedly missing the peduncle, whereas
in the second case (sweet pepper no. 19), the cutting blade
caused major damage to the sweet pepper (see Figure 8c).

The average picking time was 35-40 seconds which includes
the total time to perform a scan of each sweet pepper (ap-
proximately 15 seconds), fitting the model, pose and motion
planning (5-10 seconds) and execution of the plan on the robot
arm (10-15 seconds). The average number of attempts for
each sweet pepper was 2.0 and 2.2 for field trial 1 and 2
respectively.

Example sweet peppers harvested by Harvey are shown in
Figure 8. An example of a successfully harvested sweet pepper
with minor damage (circled in blue) to its top face is shown
in Figure 8a. The model and grasp selection results for five

TABLE III: Harvesting Result

Trial 1 - Cultivar: Claire Trial 2 - Cultivar:
Redjet

Detach Rate 92% (22/24) 42% (11/26)
Attach Rate 58% (14/24) 81% (21/26)
Attach & Detach 58% (14/24) 42% (11/26)

Fig. 9: Reconstructed colour point clouds from scene registra-
tion as well as fitted model or selected grasp poses for each
detected sweet pepper for 3 and 2 scenes in field trial 1 and
2, respectively.
separate trials are also provided in Figure 9. It can be seen
qualitatively that, for most cases, the model and grasp selection
methods find appropriate locations for grasp points. In some
cases, a poor estimate of the model was found and this is
believed to be caused by irregularly shaped sweet peppers.
An example of a poor estimate can be seen in the top right
example within Figure 9.

VI. DISCUSSION & CONCLUSION

This paper describes an autonomous crop harvesting system
that achieves state-of-the-art results for sweet pepper har-
vesting in a protected cropping environment. The system is

TABLE IV: Sweet Pepper Individual Harvesting Results

Trial 1 - Cultivar: Claire Trial 2 - Cultivar: Redjet

# No.
At-
tempts

Attach Detach Notes No.
At-
tempts

Attach Detach Notes

1 1 S S MD 6 S S
2 2 S S 2 S F
3 1 S S 3 S S
4 4 F S OC 2 S F
5 4 F S IS 2 S S
6 4 F F OB, IS 3 F F
7 3 F S MD 1 S F OB
8 3 S S OC 6 S F OB
9 1 F S OB, IS 4 S S XD
10 2 F S 2 S F
11 1 F S MD, OB 2 F F
12 1 S S 1 F F
13 1 S S 1 S S
14 1 S S OC 2 S S
15 1 S S 2 F F
16 1 S S 1 S F
17 2 S S MD 2 S S XD
18 2 S S 4 S S
19 2 F F XD, IS 2 S F XD
20 2 F F OC 1 S S OB
21 1 S S OB 3 S S OB

22 2 F F MD,
OC, OB 1 S F

23 4 S S MD 1 S S OB
24 2 S S 1 S F XD
25 N/A 1 F F OB
26 N/A 1 S F

Where F = Failure, S = Success, XD = Major Damage, MD =
Minor Damage, IS = Irregular Sweet pepper, OC = Occluded
scan and OB = Obstruction with attachment.

https://youtu.be/Fm70wHJ_Lew
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demonstrated using a custom end-effector that uses both a
suction gripper and oscillating blade to successfully remove
sweet peppers in a protected cropping environment. The high
success rate of detachment (92%) for field trial 1 is a promising
result, especially since detachment is regarded as one of the
most challenging aspects of the harvesting process. However,
further advancements are necessary for a more general and
commercially viable system.

Most failures of field trial 1 occurred within the attachment
stage. In particular, obstructions from leaves or string caused
40% of the attachment failures, while irregularly shaped sweet
peppers caused 30% of the total attachment failures. In con-
trast, the attachment rates within field trial 2 are much higher.
This can be attributed to the difference of grasp selections
between field trial 1 and 2 (surface normals instead of the
model fitting approach) and the ability to detect attachment
failures using a pressure sensor. In some cases within field
trial 1 the suction cup collided with the obstructions while
approaching the sweet pepper causing the tool to separate
prematurely. This problem was avoided within field trial 2
by the addition of a sensor measuring whether premature
separation occurred.

The most common detachment failure was found to be the
cutting tool missing either side of the peduncle. In this work
the cutting point was calculated by assuming the peduncle
protrudes vertically from the centre of the sweet pepper. This
assumption occasionally breaks since some sweet peppers have
peduncles that do not grow vertically (such as the second culti-
var Redjet). To improve the detachment reliability, future work
will be aimed not only at detecting sweet peppers, but also at
detecting the peduncle. We have conducted preliminary work
that shows promising results using Point Feature Histograms
(PFH) for peduncle detection in [28].

The lower detachment success rate for field trial 2 is most
likely attributed to the different cultivar (Redjet) involved in
the second trial. It was observed that the Redjet cultivar had
more challenges associated with it, including shorter, thicker
peduncles and more crop growing on the inside of the canopy,
increasing the number of obstructions. This result highlights
the importance of selecting cultivar that are more suitable for
automated harvesting.

The novel contributions of this work have resulted in
significant and encouraging improvements in sweet pepper
picking success rates compared with the state-of-the-art. The
methods presented in this paper provides steps towards the
goal of fully autonomous and reliable crop picking systems
that will revolutionise the horticulture industry by reducing
labour costs, maximising the quality of produce, and ultimately
improving the sustainability of farming enterprises.
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