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Abstract—We propose a nonlinear inverse kinematics formu-
lation which solves for positions directly. Compared to various
other popular methods that integrate velocities, this formula-
tion can better handle fast, asymmetric and singular-postured
balancing tasks for humanoid robots. We also introduce joint
position and velocity boundaries as inequality constraints in
the optimization to ensure feasibility. Such boundaries provide
safety when approaching or getting away from joint limits or
singularities. Besides, mixing positions and velocities in our
proposed algorithm facilitates recovery from singularities, which
is very difficult for conventional inverse kinematics methods.
Extensive demonstrations on the real robot prove the applicability
of the proposed algorithm while improving power consumption.
Our formulation automatically handles different numerical and
behavioral difficulties rising from singularities, which makes
it a reliable low-level conversion block for different Cartesian
planners.

I. INTRODUCTION

Bipedal robots are often mechanically very complex, de-
signed to perform various types of tasks apart from walking.
The location and the number of degrees of freedom (DoF)
are mainly inspired by the human skeletal system, comprising
limbs with at least six joints. From a control perspective, it
becomes difficult however to plan a trajectory for each joint
individually to perform a desired motion at the end-effector
level. Therefore, one prefers to transform complex joint-
space formulations into Cartesian space [1], making trajectory
planning easier. Using such transformations, one can easily
convert Cartesian trajectories to joint motions, required by
individual joints in the robot. Cartesian control is popular in
manipulation [1], humanoid balance [2] and locomotion [3].
The output of this transformation can generate joint positions,
velocities, or accelerations. The first two quantities are often
used in position-controlled robots (Inverse Kinematics, IK),
while accelerations are used more often with the full dynamics
model of the robot [4], resulting in desired joint torques
(Inverse Dynamics, ID).

Although IK conversion is nonlinear, there are various
methods to solve it either in a closed form [5] or iteratively
[6], both suitable for online control. The ID problem is more
complex but linear with respect to accelerations, forces, and
torques. One can solve this linear system in a closed form
[4] or set up a quadratic optimization problem (QP) to con-
sider boundary constraints [7]. These constraints can ensure
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satisfaction of physical limitations on joint torques, contact
frictions, and joint positions. The latter constraint is typically
realized by putting boundaries on accelerations based on
Taylor series expansion of joint positions. In a previous work
[8], we successfully combined our QP-based ID algorithm
with advanced state-estimation and torque tracking methods
and demonstrated various compliant balancing behaviors on
the Coman robot. However, on one hand, the position limit
constraint was not effective as it produced largely infeasible
accelerations very close to boundaries. On the other hand,
the algorithm was not numerically stable enough in singular
positions. In practice, operating in crouched postures with bent
knees caused higher torques and therefore, less precise track-
ing performance. Besides, the consequence over the long term
was permanent spring deflections in series elastic elements,
increased backlash, over-heating and large power consumption
in addition to less human-like postures.

In the literature, there are plenty of algorithms proposed
for stretched-knee walking. Apart from model-free walking
approaches [9], which deal with singularity problem differ-
ently, a large number of model-based algorithms are based
on preplanned knee trajectories, where other joint angles are
adjusted to realize desired swing or Center of Mass (CoM)
motions [10], [11]. Likewise, the walking planner proposed
in [12] modifies a parametrized 2D CoM trajectory to limit
large knee velocities close to singular positions. For arbitrary
balancing tasks, however, such periodic trajectories can not
be found. The idea of limiting velocities is inspiring, though,
the time linkage between positions and velocities is encoded
in the CoM trajectory, not in the IK method. In other words,
preplanned Cartesian CoM velocities are found in a way to
satisfy limitations on the velocity of the knee joint. The same
paradigm is proposed in [13] for balancing tasks, but again,
the trajectory planner handles stretched knee postures.

Given desired Cartesian trajectories, the IK or ID method
is supposed to find joint trajectories that follow the task
as precise as possible while satisfying physical constraints
automatically. In this article, instead of focusing on plan-
ning trajectories, we aim at studying physical limitations
and propose algorithms that handle them in a unified online
control setup. We limit our study to IK methods to explore
important aspects of joint position boundaries and singularities
exclusively. In future, however, force/torque constraints of our
previously developed ID method [8] will be combined with
geometrical constraints studied in this article to address a
larger number of hardware limitations.Digital Object Identifier 10.1109/LRA.2017.2661810



Stretched-leg postures are more convenient for the mechani-
cal hardware of humanoid robots, but they introduce two major
difficulties to the control problem:

1) Singularities: which mainly refer to the alignment of the
hip, knee and ankle joints and lead to ill-conditioned
Jacobians. Such postures limit controllability and might
produce large velocities in the knee joint.

2) Joint position limits: which should be respected together
with velocity limitations to avoid impacts, especially in
the knee.

Handling these problems requires a robust method that safely
approaches the singularity, does not vibrate, and safely leaves
the singularity again. Besides, in all these phases, the method
should find the closest solution to the desired task. Singu-
larities and joint limits can be handled in planning level or
inside the low-level IK algorithm. For any specific task, one
can adjust the planner to match better with the geometry of the
robot. However, we focus on the baseline IK method to make
it robust and general, without modifying Cartesian planners.

For manipulators, robust IK methods [14], [15] have been
developed to deal with singularity conditions robustly. These
methods either bring the target position closer to the manip-
ulator [15] or find the closest solution [14]. The former falls
into planner-level category while the latter is more interesting
as it provides a generic IK method, normally in the form
of least-squares error minimization. To handle stability of
trajectories in singular postures, one can add a damping term
which is widely used in literature [14], [16], [17]. Such
damping can improve numerical stability in redundant robots
as well [16]. Although one can modify weightings in these
unconstrained least-squares optimizations to avoid joint limits
[18], expressing them explicitly in constrained optimizations is
also popular [19]. A more general form of such optimization is
formulated in [20] or [21] where velocities are strictly bounded
or adaptively damped respectively.

All previously mentioned methods are based on time-
integration, where the outcome of optimization is being in-
tegrated over time to obtain desired joint positions. Another
class of IK methods solves the exact nonlinear constraint by
performing many iterations in the same time-step [22]. Each
iteration here is similar to solving a quadratic program like
before, aiming at getting closer to the exact solution. Adding
position and velocity limitations as well as singularities are
less studied in this class of optimizations, mainly because of
computational cost.

Focusing on previously-mentioned geometrical constraints,
we formulate a general IK module that handles inequality
constraints in the form of nonlinear optimizations. We use
generalized-coordinate models instead of per-limb models and
go beyond walking, to target arbitrary whole body balancing
tasks for our floating-based humanoid robot in 3D. By reim-
plementing popular IK methods in the literature, we show
that getting to singular positions and coming out in a safe
manner can most of the time be problematic for IK methods
based on time-integration. Therefore, the novelty of this work
lies in proper analysis and handling of singularities and joint

limitations via the proposed nonlinear method which combines
positions, velocities and inequality constraints in the same
optimization. Our analysis covers multiple behavioral and
computational aspects, proving applicability of the proposed
method for the real robot. This is demonstrated for a couple
of different symmetric and asymmetric balancing tasks. The
structure of this paper is as follows: in the next section, we
formulate different IK optimization problems and present our
proposed formulation. Next, we will demonstrate simulations
and experiment results, characterizing the performance and
handling physical limitations. Finally, we conclude the paper
by discussing possible future improvements in the last section.

II. METHODOLOGY

The problem of inverse kinematics refers to the conversion
of a set of Cartesian trajectories to joint-space. These trajecto-
ries which are called tasks hereafter, describe the translational
or rotational motion of interesting points of the robot, for
example CoM, hands, or feet. Given that sometimes tasks
cannot be realized exactly due to the singularities or joint
position limits, one might compromise a few, depending on
the application and precision requirements. Imagine we have
x ∈ RM tasks, where a subset of size N ≤M can be compro-
mised. If the robot has q ∈ RK Degrees of Freedom (DoF),
the goal is to find q that satisfies f (q) = x+

[
δ 0

]T where
the slack variable δ ∈ RN is to be minimized. Alternatively,
one can find q̇ that satisfies [∂ f (q)/∂q]q̇ = ẋ+

[
δ 0

]T and
integrate to get q over time. In case of adding limitations, an
inequality of the form lb ≤ g(q, q̇)≤ ub should be satisfied as
well, where lb,ub ∈RK represent limits and g(q, q̇) could be a
nonlinear function. Is it better to optimize positions and then
differentiate to find velocities or alternatively, find velocities
first and then integrate them to get positions? This question
has many aspects, including computational cost, tracking pre-
cision, robustness in singularities, ability to approach joint
limits and ability to escape from singularities safely. Here,
we consider five different IK algorithms and compare them
regarding the previously mentioned criteria. The first three
(IK1, IK2 and IK3) are common in robotics while the other
two (IK4 and IK5) are new ones proposed in this paper.

A. IK1: Error integration

Similar to [14], one can find joint delta angles based on the
task error and then integrate over time. To handle singularities,
we also introduce damping factors (diagonal positive definite
matrix R), resulting in the following unconstrained quadratic
optimization problem:

min
∆q,δ

δ
T Qδ +∆qT R∆q (1)

f (q−)+
∂ f (q−)

∂q−
∆q = x+

[
δ

0

]
where q− is the previous desired trajectory and ∆q ∈ RK is
motion adjustment to be found. The matrix R ∈ RKxK is the
well-known damping in least-square methods [14]. Imagine
SN is a selection matrix which takes the N compromised tasks



out of the vector x if multiplied from left, i.e. SNx. Similarly,
SM−N selects the rest of the tasks. Defining the Jacobian J =
∂ f (q−)/∂q− and the error E = x− f (q−), the optimization
of (1) has a closed form solution, calculated by setting the
derivative of the Lagrange equation to zero:[

∆q
λ

]
=

[
JT ST

NQSNJ+R JT ST
M−N

SM−NJ 0

]† [JT ST
NQsN

SM−N

]
E (2)

where † is Moore-Penrose pseudo-inverse and λ is Lagrange
coefficient for M−N exact constraints. The desired trajectory
and its derivative are then found by:

q = q−+∆q, q̇ =
∆q
∆t

(3)

where ∆t is the time-step. This fast formulation is equivalent
to integrating velocities, only requiring to solve a linear system
of certain dimensions. Note that the error, however, converges
to zero over time-steps with certain dynamics.

B. IK2: Conjugate gradient method

In this method, we perform all iterations in a single opti-
mization at each time-step:

min
q,δ

δ
T Qδ (4)

f (q) = x+
[

δ

0

]
This optimization is solved via conjugate gradient method
where each iteration is solved similar to (2) with same
damping mechanism. The velocities are then found by solving
the following optimization:

min
q̇,δ

δ
T Qδ +∆t2q̇T Rq̇ (5)

∂ f (q)
∂q

q̇∆t = ẋ∆t +
[

δ

0

]
where the time-step ∆t is used to preserve consistency with
(1). This optimization can be solved in closed form, similar
to (2). Here, we find the exact solution for both positions and
velocities at each time-step, yet without inequality constraints.

C. IK3: Integrating errors with inequality constraints

To handle position and velocity limits, one can introduce
boundary conditions to (1), i.e. constraining the first stage of
IK1. An arbitrary safety criterion can also be defined as a
function of q and q̇. For example:

g(q, q̇) =
(2q− (ql +qu))2

(qu−ql−2qs)2 +
q̇2

q̇2
max
−1≤ 0 (6)

which represents an ellipse spanning between minimum and
maximum joint limits ql ,qu ∈RK , allowing for maximum ve-
locity q̇max in the middle and zero velocity in boundaries (refer
to Fig.5A). Reducing velocity boundaries when approaching
joint limits helps avoiding impacts and sudden stopping which
is harmful for the mechanical hardware. The variable qs is a
safety margin for the joint limit. If position controllers of the
real robot overshoot in certain trajectories, this variable helps

avoiding reaching the limit and producing impacts. Equation
(6) is element-wise, though we avoid indices for simplicity.
One can define polygon-based safe regions as well, similar to
[20]. The quadratic optimization problem for this stage will
be:

min
∆q,δ

δ
T Qδ +∆qT R∆q (7)

f (q−)+
∂ f (q−)

∂q−
∆q = x+

[
δ

0

]
g(q−+∆q,∆q/∆t)≤ 0

Next, the unknown positions q and velocities q̇ are calculated
in a similar way to (3).

D. IK4: Direct position optimization

The formulation of our proposed IK method is similar to
(4), though with inequality constraints:

min
q,δ

δ
T Qδ (8)

f (q)+ γ[
∂ f (q)

∂q
(q−q−)− ẋ∆t] = x+

[
δ

0

]
g(q,(q−q−)/∆t)≤ 0

The regulator γ is introduced to help the joint getting out
of singular positions faster, as explained in the next section.
The novel formulation of IK4 is similar to IK2, although the
optimization method is not conjugate gradient anymore and
velocities result from differentiation, instead of being linked
to the derivatives of the task ẋ directly.

E. IK5: Two-slack optimization

The flexible formulation of IK4 allows for escaping the
singularity by incorporating the knowledge of ẋ into the
optimization. A similar way is to define a new slack variable
on velocities:

min
q,δ ,ε

δ
T Qδ + γε

T Qε (9)

SN [
∂ f (q)

∂q
(q−q−)− ẋ∆t] = ε

f (q) = x+
[

δ

0

]
g(q,(q−q−)/∆t)≤ 0

which decouples velocity and position equations, resulting
in slightly faster convergence shown later. The behavioral
performance however remains the same as IK4.

Note that IK1 and IK3 are similar in the sense that they
both integrate velocities to find positions. The integration in
these methods is over time, where trajectories reach the target
with particular dynamics. On the other side, IK2, IK4 and IK5
are similar because they perform all iterations at once to reach
the desired reference trajectory faster. In IK3, IK4 and IK5, we
add inequality constraints to make sure the motion is feasible
whereas in IK1 and IK2, there is not such guaranty.



III. RESULTS

The five IK methods are evaluated in this section over
different symmetric and asymmetric balancing tasks for our
robot Coman [8]. This kid-size robot weighs about 30kg and
is about 1m tall. Disabling the upper body of the robot, we
have K = 18 DoF out of which six degrees are floating base
variables for the pelvis of the robot. We consider six Cartesian
tasks of three dimensions: orientations of the two feet and torso
(three tasks), positions of the feet and position of CoM (three
tasks). In this paper, we do not explore redundant systems
and limit our application to a fully actuated case (M = 18).
We also compromise the CoM position task (N = 3) to handle
singularities better. The position and orientation of both feet
are fixed in our experiments. All closed form solutions like
(2) are calculated with LU factorization of Eigen library while
inequality-constrained optimizations are solved with SNOPT.
This package uses sequential quadratic programming and a
similar factorization method. Besides, the damping factors R
are already implemented in SNOPT which provide numerical
stability of trajectories in singular conditions. The model of the
robot is also calculated by SD-Fast and forward simulations
are done in Webots. For this paper, we consider a unit-diagonal
Q matrix that gives equal weight to different CoM tasks. In
optimization-based methods (IK2, IK3, IK4, IK5), we iterate n
times and always use the solution of the previous time-step to
make the optimization faster, i.e. warm starting. In general,
the optimization is continuous but non-convex, because of
nonlinear constraints. Previous solutions however help to find
locally optimal continuous solutions. Simulations and control
of the real robot are done on a Core-i5 1.7GHz CPU in C++
language, using no balancing feedback and purely sending
position commands. All parameters are listed in Table.I.

Parameter simulations real robot
Q diag([1 .. 1]) diag([1 .. 1])
R diag([1e-2 .. 1e-2]) diag([1e-2 .. 1e-2])
γ 10 10
n 15 iterations 15 iterations

q̇max 4 rad/s 2 rad/s
qs 0 degrees 5 degrees

ql and qu joint specific joint specific

TABLE I: All parameters used in our IK formulations. Except γ and R to be
tuned, the rest of these parameters are robot specific or for safety reasons.
The matrix R is manually tuned to ensure precise and robust tracking of our
fast motions. The parameter γ depends on the speed of motion. Larger values
make our fastest task numerically unstable. For slow tasks however, this value
can be increased.

A. Symmetric squatting without singularity

The first trivial task is an up-down motion of CoM (at
1Hz) without reaching limits or singularities. This scenario
merely compares baseline performance of the algorithms.
Although iterating n = 15 times is enough, we explore fewer
iterations as well to investigate the effectiveness of this extra
computational cost. Note that our optimization package uses
SQP method, and we only limit major iterations, not those
performed at each QP stage. Fig.1 demonstrates the tracking
error of the five IK methods in logarithmic scale as well as
the computation time. On average, IK4 and IK5 are better

than others, even after reducing the number of iterations.
IK2 and IK3 are more sensitive to the number of iterations,
however. We can also notice that extra iterations of IK4 and
IK5 are not improving the error considerably. For this simple
yet fast scenario, IK1 seems to have enough precision and light
computation time which makes it attractive for many robotic
applications. However, we will show that it is not well-suited
for singular motions.

B. Symmetric squatting with singularity

One is now interested to know how these IK methods
behave when going to singular postures. The results of this
test are shown in a similar squatting task of a larger CoM
excursion in Fig.2. In this case, the reference trajectory goes
beyond limitations, though all IK algorithms can comply with
it, thanks to flexible formulations. Although they all approach
the singularity without vibration, they leave this posture with
different dynamics. Integration based methods (IK1 and IK3)
are slower while direct position-based methods (IK2, IK4 and
IK5) escape faster. The motion of IK1 is infeasible as it
goes beyond q̇max. It is expected, though, because there is
no boundary imposed. Here, IK4 and IK5 are less sensitive
to iteration numbers, and the extra iterations do not improve
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Fig. 1: Simple symmetric squatting simulations are shown in A) without
reaching singularities. We repeat the test for n = 15 in B) and n = 3 iterations
in C). In each group, top: task error, middle: task derivative error and bottom:
computation time (filtered). All IK methods provide convincing tracking down
to few millimeters. IK2, IK4 and IK5 perform roughly 2 orders of magnitude
better, thanks to exact nonlinear equations. With fewer iterations, IK2 and
IK3 perform worse while IK4 slightly loses precision. This means that most
of the work is done in minor iterations of the first QP step in the nonlinear
optimization. The fastest algorithm is IK1 in this simple test, but less precise.



the precision considerably. Other algorithms (IK2 and IK3) are
very sensitive, though, often introducing large delays.

C. Asymmetric squatting with singularity

So far we only explored symmetric tasks with few joints
being active. One is also interested to know how these al-
gorithms perform in asymmetric cases where only one leg
goes to singularity at a time. Here, we simulate similar
squatting with singularities and add a tilt and roll motion
to the torso. Fig.3 shows the resulting trajectories, where we
observe that IK1, IK2 and IK3 fail. IK4 and IK5 are both stable,
though IK5 freezes with n = 3 iterations. Here, IK4 and IK5
cost more computation times (with n = 15) but guarantee a
feasible motion. Unlike symmetric cases, IK1 and IK2 produce
infeasible motions here which are not desired. Even though
IK3 was able to handle symmetric singularities and satisfy
safety criteria, it is not able to handle asymmetric motions due
to its limited integrating nature. This test proves the capability
of our proposed formulations (IK4 and IK5) to handle different
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Fig. 2: Large symmetric squatting simulations are shown in A), spending few
moments in singularity. We repeat the test for n= 15 in B) and n= 3 iterations
in C). In each group, top: CoM trajectory, middle: knee angle and bottom:
computation time (filtered). Although the reference trajectory is infeasible,
except IK3, other algorithms can comply, i.e going to singular posture without
vibration and coming out. IK1 and IK3 have a large delay when coming
out of the singular posture. They result in large velocities (often infeasible)
afterwards to catch up with the actual trajectory. IK2, IK4 and IK5 come out
faster however. When performing fewer iterations, IK4 and IK5 can still do the
job while IK2 and IK3 perform worse. IK4 requires more iterations than IK5
on average. Considering the version with fewer iterations however, it turns
out that the extra computation is not practically useful in this case.

arbitrary tasks, where IK4 only needs few iterations which cost
around 2ms of computation time.

D. Simulating other joint limits

Along with singularities, we mentioned that joint limits are
also important for IK algorithms. Here, we simulate a large
tilting motion of the torso where the CoM is also required to
be high. Leaning forward is fine, but when leaning backward,
the hip-pitch joints reach the limit, where the IK algorithm
must leave the singular position in the knee, compromise the
CoM task more, and eventually respect the limit in the hip.
This task is not doable with IK1 and IK2 due to violating
boundaries and with IK3 due to the slow integrating nature.
IK4 is, however, able to handle the task demonstrated in Fig.4.
If we use IK2, the robot ignores infeasible hip trajectories
which might affect the actual CoM position and endanger the
overall balance shown in the accompanying video.

E. Effect of boundary design

One might be interested in using polygon boundary models
[20] instead of circular ones (6). The ultimate effect depends
on the task velocity and the design of such polygon. As
observed in Fig.5, polygons can generally add a delay when
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Fig. 3: Large asymmetric squatting simulations are shown in A), where each
leg spends few moments in singularity, but not at the same time. We repeat
the test for n = 15 in B) and n = 3 iterations in C). In each group, top:
CoM trajectory, middle: knee angle and bottom: computation time (filtered).
Here, only IK5 (n = 15) and IK4 can survive the motion, while other versions
either get frozen or lead to falling eventually. It is also observed that IK1 and
IK2 can cause infeasible knee angles which is not desired. IK5 requires more
iterations to perform the task while IK4 can still survive with few iterations.



coming out of the singularity, since the derivative of velocity
with respect to position is bounded close to joint limits. With
a circular shape, however, the joint can quickly accelerate and
escape the singularity.

F. Effect of γ

As said before, the variable γ ≥ 0 mainly influences dynam-
ics of recovering from singularities in IK4 and IK5. Consider
Fig.6, where the real robot is performing symmetric squatting
with singularity. In the case of γ = 0, although the joint can
still leave the singularity (with more delay), when reaching the
actual knee trajectory, it suddenly changes velocity which is
not desired (demonstrated in Fig.5C too). Large accelerations
cause high currents which are harmful for electronics of the
robot. Here, γ helps to get out of singularity faster, by using
the knowledge of ẋ which is negative (Fig.5B). Besides, γ

A) IK2 : Motion sequence

B) IK4 : Motion sequence
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Fig. 4: When leaning backward, the robot must leave the singular posture in
the knee to respect the joint limit in the hip-pitch joint. IK2 gives infeasible
hip angles A) and keeps the knee in a straight posture while IK4 can easily
handle the task B). Trajectories of the knee and hip joints are shown in C)
and D) respectively. Refer to the accompanying video for full demonstrations.

can smoothen the transition when joining the actual trajectory
too. Although slower tasks might still be stable with larger
γ , we found that γ = 10 is enough to cover all simulations
mentioned in this paper. Larger values make IK4 and IK5
unstable in very fast motions. One can also think of limiting
accelerations by adding more inequalities, but this might add
unwanted oscillations [20]. Besides, such constraints do not
help to get out of singularity faster, because the knowledge of
ẋ is missing.

G. How singularities improve power consumption

We tested a rather simple motion on the real robot both in a
singular and multiple crouched postures to compare the power
consumption. Demonstrated in Fig.7, the robot is performing
a lateral motion with torso twisting. This scenario is com-
putationally hard due to asymmetry, but IK4 can still handle
it even with n = 3 iterations. We have plotted the average
power consumption of the robot in all scenarios as well. It
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Fig. 5: The role of joint boundaries and the parameter γ in our IK algorithms.
A) and B) reference and actual CoM height trajectories, C) knee trajectories
in position-velocity space. Starting from an arbitrary point within the feasible
boundaries, the knee joint approaches the singularity in 0 degrees over the
defined boundary. It spends few moments in the singular position without
vibrations and then comes out with certain dynamics. The boundaries limit
hyperbolic velocities of the joint when approaching singularity. When coming
out, however, it takes time for the joint to catch the actual trajectory again.
Different boundaries might introduce certain delays, depending on the task.
Here, a too safe design of polygon boundary proposed by [20] leads to a high
delay. Note also that removing γ results in a delayed escape from singularity
and instantaneous jump in the velocity which is not desired (refer to Figure.6
too).



is known that humanoids consume more power in crouched
postures. Here we fit a line to experimental measurements to
quantify the steep rise of power consumption. In the most
crouched scenario which is quite similar to many humanoid
robot demonstrations, Coman consumes over three times the
power of stretched leg scenario (because of nearly zero knee
torques in stretched-leg postures, similar to Fig.6D). This test
motivates the benefit of our proposed IK method in many
balancing tasks to reduce power consumption and provide
more human-like postures.
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Fig. 6: The real robot in A) is performing large and symmetric squatting
motions (like Fig.2) with IK4 while reaching singularities. This task requires
large velocities demonstrated in B) when approaching or coming out of
singularity. One can clearly observe that the current C) and joint torque D)
decrease drastically in singular position. Thanks to circular boundaries, the
knee joint does not hit the limit with high current, i.e. safely approaches the
joint limit and singularity. Coming out of singularity, however, the algorithm
without γ results in a momentary peak in current while introducing γ can
decrease this dangerous peak. Another remarkable point is that the joint
produces negative current directly after leaving singularity. In these short
moments, the robot transfers weight to the knee and loses potential energy.

IV. CONCLUSION

Balancing with crouched knees is very popular for hu-
manoids as it provides full controllability properties. However,
it brings many mechanical problems in the long term and
requires more electrical power. Motivated by solving these
practical issues, we formulated and tested traditional IK al-
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A) stretched and B) crouched knees. C) One can observe that crouched
postures consume much more power on average. Here, the consumptions of
electronics (about 108 watts) and quiet stretched-leg stance (about 10 watts)
are subtracted.



gorithms, aiming at performing balance with stretched legs.
Thanks to flexible damped least-squares formulations, these
algorithms were numerically robust in singular positions and
could handle to some extent, the safety criteria when reaching
joint limits. However, due to the integrative nature, they largely
fail in arbitrary symmetric and asymmetric tasks where rapid
escape from singularity plays an important role in tracking.
These algorithms often freeze or even lead to falling in such
scenarios. Besides, in the literature, most of the straight-knee
walking algorithms use preplanned trajectories which limit the
generality of an IK block for arbitrary balancing tasks.

We formulated nonlinear optimizations instead to remove
the time integration and introduced constraints to handle safety
criteria. The idea of using damped least-squares, boundaries,
and nonlinear optimizations is adapted from literature. The
novelty of this work, however, lies in combining them together
and incorporating the knowledge of task derivatives to improve
the behavior, especially when coming out of singularities.
This is the key feature to handle arbitrary balancing tasks
where each knee might go to singularity and come out at
different times (refer to the accompanying video). To the extent
of our knowledge, no other IK method combines position
and velocity variables together and mix them with inequality
constraints.

All IK methods were compared extensively over tasks of
different nature. Control-related difficulties faced with sin-
gularities are not limited to numerical stability. We showed
that the two proposed IK algorithms have superior perfor-
mance in approaching singularities and coming out of them as
well. IK5 is generally faster than IK4, but behaves similarly.
Over asymmetric tasks however, it requires same computation
times and shows more sensitivity to the number of iterations.
Therefore, IK4 outperforms all other algorithms, even with
a fewer number of iterations. We also showed that for our
nonlinear formulation, handling the typical 18 DoF of a
balancing humanoid is computationally affordable (about 2
milliseconds). We consider implementation improvements and
extension to more DoF for future works.

An interesting secondary result was also presented, com-
paring the power consumption of stretched and crouched
balancing tasks. The steep rise of power motivates application
of our proposed IK algorithm as a low-level block that robustly
transforms arbitrary Cartesian tasks to joint-space motions.
Such block can improve power consumption and mechanical
durability of humanoid hardware. In future, we are going to
use the ideas we developed here in our ID formulation [8]
to provide a general framework that handles geometrical and
dynamical limitations while tolerating difficulties of singular
postures.
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