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Abstract

Haptic feedback affects not only the quality of training but can also influence the physical design 

of robotic gait trainers by determining how much force needs to be applied to the user and the 

nature of the force. This paper presents the design of a variable damping force tunnel and explores 

the effect of the shape and strength of the damping field using ALEX III, a treadmill-based 

exoskeleton developed at Columbia University. The study consists of 32 healthy subjects who 

were trained for 40 minutes in the device. The subjects were trained to follow a footpath with a 

50% increase in step height, so the foot would have 1.5 times the ground clearance. Subjects were 

assigned to one of four groups: linear high, linear low, parabolic high, and parabolic low. Linear or 

parabolic denotes the shape of the damping field, and high or low denotes the rate of change 

(strength) of the field based on error. It is shown that the new controller is capable of inducing gait 

adaptations in healthy individuals while walking in the device. All groups showed adaptations in 

step height, while only the high strength groups showed changes in normalized error area, a 

measure of how closely the desired path was followed.

Index Terms
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I. Introduction

Robot assisted gait training (RAGT) is gaining popularity due to its ability to reduce manual 

effort for physical therapists, record quantitative measures of improvement, and provide 

patients with consistent and repeatable therapy. Even with these benefits, there have been 

mixed results in terms of outcomes [1]–[10]. It should be noted for most studies that showed 

RAGT to have greater improvements over conventional therapy, RAGT was done in addition 

to conventional therapy and/or was used in sub-acute populations. This may be a limitation 

of the therapy type which is targeted at providing assistance to the subject in completing the 

task. However, alternatives that are more challenging may better serve the needs of higher 

functioning individuals.
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Prior control strategies have fallen primarily into three categories: prescribed motion, assist-

as-needed (AAN), or error enhancing. Prescribed motion was one of the earliest strategies 

used and consists of defining a desired motion and having the device move the person 

through that motion [11]–[14]. One limitation of this method is user involvement, as the 

wearer can remain passive in the device and not put in any effort to achieve the motion, and 

as a result not receive the full benefit of the training. To remedy this, AAN strategies were 

developed that rely on some form of user engagement to perform the task. These can vary 

from requiring the subject to initiate movement before the robot starts to apply force [15], 

[16], to those that provide limited guidance when following a path [17]–[20]. While these 

assist-as-needed strategies do enhance user engagement, the user may adapt to the level of 

assistance, and only put in as much effort as required to complete the motion. This reduced 

effort to increase the level of assistance from the device is referred to as “slacking”. In order 

to prevent this and enhance training, AAN controllers that adapt to “slacking” have been 

proposed that reduce the aid from the device if the person is relying too heavily on it [17]. 

An alternative to these approaches that aid the subject in performing the task are error-

enhancing strategies. These increase the amount of error, forcing the user to actively resist 

the device to achieve the goal [21]–[23].

Assistive controllers have also been explored in conjunction with resistive forces. For gait, 

Wu et al. have developed a cable driven device capable of resisting or assisting in gait. This 

uses the position error to create an assistive force and the velocity error to create a resistive 

force [24], [25]. The Lokomat has been used with a fixed damping coefficient [26], which 

can also be determined before each training session based on the maximum voluntary 

contraction and walking speed [27].

As for movement training of the upper limb, a 2-DOF device that can simulate virtual 

objects with spring-damper properties using electrorheological clutches was proposed in 

[28]. In this work, forces were computed based on position and damping coefficients were 

constant. The MIT-Manus has been used with viscous force fields for perturbation, however, 

these did not behave as dampers, as the force applied was not in the direction of travel but 

rather at a predefined angle [29]–[31]. Emken and Reinkensmeyer have used a similar 

approach for gait training where an upward force was applied based on the horizontal 

velocity of the ankle [32]. Huang, Patton, and Mussa-Ivaldi have used negative damping in 

unimpaired individuals [33], and Huang and Patton have used the same approach with stroke 

survivors to improve task performance in a circle following task [34].

While these various feedback strategies have shown some benefits, the field is still in the 

early stages of exploration and other haptic feedback strategies may be more effective in 

general or for specific populations. Prior feedback methods have been primarily prescriptive 

in nature, providing information as to what needs to be done to correct error through forces 

related to the direction of error [35], [36]. Descriptive feedback would instead only provide 

information on the error but no indication as to how to correct the error. This requires the 

individual to explore movements to find those that reduce the error.

The current paper will present a new type of haptic feedback and provide a proof of concept 

using healthy individuals. This new haptic feedback which resists motion as opposed to 
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directing the ankle towards or away from the path, utilizing the hypothesis that humans are 

trying to minimize their energy expenditure during walking. This is done through the use of 

a viscous damping field, which represents a more descriptive form of knowledge of 

performance by describing the magnitude of the error but provides no information on how to 

correct it. The purpose of this study is to test two hypotheses: 1) If an error based damping 

field is applied during gait training, then subjects will adapt to the new gait pattern. 2) If a 

damping field changes more gradually, then the subject will adapt better to the trained gait 

pattern.

The next section will present this novel feedback strategy. This will be followed by the 

experimental setup and the results of a study used to validate the strategy on healthy young 

adults. To the best of the authors’ knowledge, the use of a variable damping field based on 

position error is largely unexplored.

II. Haptic Feedback Design

The current controller is built from prior work using force tunnels [18], [20], [23], [37]–[39]. 

Now, as the distance outside the tunnel increases, the damping coefficient applied to the foot 

increases till it reaches saturation:

(1)

(2)

(3)

Here F is the Cartesian force vector applied at the ankle and Vankle is the Cartesian velocity 

vector of the ankle. D0 is the tunnel width and d is the distance of the current ankle point 

from the desired path. B1 and B2 are the damping coefficient gains for the linear and 

parabolic fields respectively, Fig. 1. B is the damping coefficient and is calculated from (1) 

or (2), depending on the desired shape of the field. Bmax is the saturation point for the 

damping coefficient.

III. Study Protocol

Thirty-two right leg dominant, healthy individuals, with no neurological or physical 

impairments that would affect their ability to walk in the device or adapt to new gait patterns 

were recruited (Table I). Each subject performed a single testing session using the ALEX III 
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device, Fig. 2. Details of the device have been previously presented [20], [40]. Subjects were 

separated by gender, and randomly assigned to one of four groups, linear low (B1 = 1732N 
s/m2), linear high (B1 = 2389N s/m2), parabolic low (B2 = 200012N s/m3), and parabolic 

high (B2 = 380340N s/m3). Corresponding to the rate of increase of the damping coefficient, 

(1) and (2). The saturation point was set, for safety, to a value at which healthy individuals 

would still be able to complete a step (Bmax = 15N s/m). For consistency with prior work, 

the values for B1 and B2 were selected so the distance from the desired path where 

saturation occurred was the same distance as in previously used strategies [41]. This was 

done to determine which setting should be used for future experiments and to evaluate the 

effectiveness of the feedback strategy. It was hypothesized that a more gradual change in the 

damping field would make it easier for subjects to feel the damping gradient. Using the 

gradient, subjects could determine how to attain the target path. Additionally, more gradual 

changes would allow them to feel the gradient at a larger distance from the target path prior 

to saturation.

Each session, Table II, began by finding the subject’s comfortable walking speed in the 

device. Next, the subject walked for ten minutes to acclimate to walking in the device. After 

a break, a five minute baseline bout was performed to record their normal walking in the 

device. The average baseline footpath was then modified to create a footpath with a 50% 

increase in step height in early swing. This new path was the target path used in training. An 

increase in step height was chosen as stroke survivors typically have difficulty achieving foot 

clearance, and as a result, many will be trained to a gait pattern with an increased step 

height. This approach has previously been used in healthy individuals for this reason [23], 

[42].

Subjects then performed four ten minute training bouts with the damping field applied to 

their left leg and intermittent visual feedback, alternating on/off every 2.5 minutes (50% 

frequency). It has been established that continual feedback can be detrimental to retention as 

individuals will depend on the feedback to correct their actions [35]. Kim et al. have 

previously shown that providing intermediate visual feedback with haptic guidance improves 

adaptation and retention over haptic or visual feedback alone [43].

Each training bout was followed by a thirty second catch-trial, a one minute break, and one 

minute mid-test, all without force or visual feedback. Catch trials began with the first step 

immediately following the removal of the force to capture the response to the removal of the 

force feedback. The last catch trial was followed by a one minute break and a 5 minute post-

test instead of a one minute mid-test. Two more post-tests followed with five minute breaks 

separating them. All post-tests were performed without force or visual feedback. During 

training, subjects were given verbal encouragement when they were performing the task 

well. Subjects were instructed before training to walk in the way that they were trained for 

the mid-tests, i.e. when the force was removed. Subjects were given no specific directions 

regarding how to walk during post-tests.

A. Data Analysis

Analysis was performed on both the normalized error area (NEA) and the normalized step 

height (NSH) of the mean path for the session, Fig. 3. The NEA is the area between the 
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average path for the session, Psession, and the target path, Ptarget, divided by the area between 

the baseline path, Pbaseline, and the target path:

(4)

This provides a measure of how well the overall path was followed [44]. Values closer to 

zero indicate that the target path was followed more closely, values less than one indicate 

that the subject was closer to the target path than they were during their baseline session. 

The NSH takes the maximum ankle height, ysession, minus the minimum ankle height of the 

session’s mean path and divides it by the same value calculated from the baseline path, 

ybaseline:

(5)

This gives a measure of how well the subjects were able to achieve the dominant feature of 

the path, the increase in step height. A value of 1 has the same step height as baseline 

whereas a value of 1.5 has the same height as the target path.

One-sample t-tests were performed on both dependent variables by pooling the values for all 

three post-tests for each subject to evaluate if their mean was significantly different from 1, 

and the Bonferroni-Holm correction was applied. The value of one was used for comparison 

for both tests as it indicates baseline performance. Next, repeated measures ANOVA was 

performed on the posttest sessions with session as the within-subject factor and strength and 

shape as the between-subject factors. If Mauchly’s Test of Sphericity indicated that the 

sphericity assumption had been violated, the appropriate correction was applied. This test 

was to indicate if there was any degradation of performance over time, and to determine if 

there was an effect of strength or shape. Repeated measures ANOVA was performed in the 

same way on the training sessions, to examine if there was a change in how the subjects 

responded to the damping field. For all tests, α = 0. 05.

IV. Results

The results of the one sample t-test can be found in Table III. The groups with high damping 

coefficient gains showed statistically significant differences from 1 in NEA. All groups 

showed statistically significant differences from 1 in NSH. The NEA and NSH for the post 

training evaluations can be seen in Fig. 4 and Fig. 5. The NEA and NSH for the training 

sessions can be seen in Fig. 6 and Fig. 7.

For the repeated measures ANOVA of the NEA of the mean, in the post-tests, path 

Mauchly’s Test of Sphericity indicated that the sphericity assumption had been violated, 

χ2(2) = 8.9, p = 0.012, so the Huynh-Feldt correction, ε = 0.91, was applied. There was no 

main effect of session, F(1.81, 50.8) = 0.37, p = 0.673. Analysis of the between subject 

factors revealed the null hypothesis for strength could be rejected F(1, 28) = 5.10, p = 0.032, 
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but could not be rejected for shape, F(1, 28) = 2.32, p = 0.139. Subjects in the high strength 

groups had significantly lower normalized error area, and from the one sample t-tests both 

were significantly different from one.

For the repeated measures ANOVA of the NSH of the mean path, in the post-tests, 

Mauchly’s Test of Sphericity indicated that the sphericity assumption had been violated, 

χ2(2) = 15.6, p < 0.001, so the Greenhouse-Geisser correction, ε = 0.70, was applied. There 

was no main effect of session, F(1.39, 38.9) = 2.72, p = 0.095. Analysis of the between 

subject factors revealed the null hypothesis could not be rejected for strength, F(1, 28) = 

0.03, p = 0.867, or shape, F(1, 28) = 0.22, p = 0.641.

For the repeated measures ANOVA of the NEA of the mean path, in the training session, 

Mauchly’s Test of Sphericity indicated that the sphericity assumption had been violated, 

χ2(5) = 30.7, p < 0.001, so the Greenhouse-Geisser correction, ε = 0.61, was applied. There 

was no main effect of session, F(1.81, 50.8) = 1.23, p = 0.299. Analysis of the between 

subject factors revealed that the null hypothesis for the strength by shape interation could be 

rejected, F(1, 28) = 5.43, p = 0.027. As a result, separate analyses were run for both the 

linear and parabolic shaped fields using repeated measures ANOVA. Mauchly’s Test of 

Sphericity indicated that the sphericity assumption had been violated for both linear, χ2(5) = 

22.9, p = 0.001, and parabolic shapes, χ2(5) = 11.2, p = 0.049, so the Greenhouse-Geisser 

correction was applied, linear ε = 0.51, and parabolic ε = 0.72. Again, no effect for session 

was found, linear F(1.54, 21.6) = 0.863, p = 0.409, and parabolic F(2.15, 30.0) = 0.641, p = 

0.544. For the analysis of the linear group no effect of strength was found, F(1, 14) = 1.48, p 
= 0.244. For the analysis of the parabolic group there was an effect for strength, F(1, 14) = 

4.81, p = 0.046.

For the repeated measures ANOVA of the NSH of the mean path, in the training session, 

Mauchly’s Test of Sphericity indicated that the sphericity assumption had not been violated, 

χ2(5) = 10.07, p = 0.074. There was no main effect of session, F(3, 84) = 2.24, p = 0.091. 

Analysis of the between subject factors revealed the null hypothesis could not be rejected for 

strength, F(1, 28) = 0.198, p = 0.660, or shape, F(1, 28) = 0.068, p = 0.447.

V. Discussion

All groups increased their step height as a result of training, and this did not significantly 

degrade during the 26 minutes of post-test. This change was not significantly affected by the 

strength or shape of the field. This indicates that subjects are able to adapt to the coarse 

shape of the target. However, any effect of shape or strength had a smaller effect size than 

this study could detect.

Only the high strength groups showed adaptation in terms of NEA, and this was significantly 

different from the low strength groups. This indicates that the faster rate of change of the 

damping coefficient improved the adaptation to the finer details of the foot path. From this, 

it appears the original hypothesis, that a more gradual change in the damping field would 

allow subjects to follow and retain the path better, was not correct. The effect may not be as 

simple as a faster change in damping coefficient produces better results. Alternatively, the 
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effect may not be a result of the rate change, but could be an effect from decreasing the 

distance from the path where the tunnel saturates. While not statistically significant, the 

parabolic low group did have better performance with respect to NEA than the linear low 

group. This trend indicates that the rate of change may be more important than the saturation 

point, as both low groups saturated at the same distance from the path but the parabolic low 

group had a faster rate of change as it approached saturation. Although, due to the lack of 

significance, this statement needs further validation to confirm.

The parabolic high group most closely maintained the path during training, as shown by the 

lower NEA values. While training performance does not necessarily translate to retention in 

the post-tests, in this case it does not appear to be detrimental. This greater performance 

during training combined with the adaptation in both NEA and NSH, indicates that of the 

given choices of parameters for training the parabolic high set produces a good combination 

of performance during both training and post-tests. This is likely due to the rate of change of 

the damping field being the greatest for this group, and as a result these subjects may have 

had a greater focus on the overall path shape, and not simply on the increase in step height. 

With this in mind it may be worth exploring the extreme case of saturation at the tunnel 

width, as would be the case with a step function, to examine if this is sufficient to achieve 

adaptation. This should be explored in both the Cartesian and joint space.

The use of resistance training with gait has been show to increase speed and balance in 

individuals with spinal cord injuries (SCI) [24], and can improve knee flexion [26], [27]. 

These studies indicate that some populations may benefit from resistive forces. Whether this 

can be enhanced by variable viscous damping remains an open question. Studies in 

unimpaired individuals using AAN strategies have shown similar performance in terms of 

path following, although differences in methods prevent direct comparison [44], [45]. The 

damping field had a similar magnitude of adaptation during the first ten minute following 

training when compared to tests using a similar target path for both error-enhancing and 

AAN strategies [23]. A validation of the variable damping field for stroke survivors, as well 

as a direct comparison to error-enhancing and AAN strategies in unimpaired individuals are 

currently planned, now that this new strategy has been validated.

If simple step functions in joint space are effective, exoskeletons for gait training could be as 

simple as a rotary damper and a clutch which engages the damper when the subject is 

outside of the prescribed tunnel. Alternatively generators which could be bypassed when the 

subject is inside the tunnel could replace the dampers. In this configuration, rather than 

generating heat, the energy removed from the system could power the electronics. These, in 

turn, would only need to determine position and engage/disengage the generators, and this 

would require very little power. The batteries could then be smaller and lighter, as they 

would frequently be recharged, or they could potentially be replaced entirely by capacitive 

storage. Regardless of the use of step responses, this move to dissipative forces could have a 

drastic impact on exoskeleton design for rehabilitation, as they reduce the device’s 

dependence on its power source, which currently either require devices to be tethered or to 

carry large batteries with them. By dissipating power, an untethered device which can run all 

day is within the realm of possibility. This can result in devices that easier to use and also 

means that therapy can potentially move outside of the clinic and be applied for longer 
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duration. However, this method must first be validated in populations in need of 

rehabilitation.

This study was performed on a relatively small set of subjects and as a result may not have 

had sufficient power to detect differences with a small effect size resulting in type II errors. 

With a larger study the parabolic low group may show adaptation in NEA and an effect for 

session may appear. Subjects were also given no specific instructions about what to do 

during the post-tests. This lack of direction had been intended to encourage subjects to walk 

without trying to follow a specific path, in order to look for inherent adaptation. However, in 

the future we will provide explicit instructions to prevent ambiguity and reduce variability in 

subject performance. Additionally, the results from this study may not apply to stroke 

survivors, who may not be able to walk in this type of damping field, or who may adapt 

differently to the force. It is likely that severely impaired individuals will not be able to 

tolerate this type of feedback. However, non-ambulatory individuals are currently better 

served by current forms of RAGT, than ambulatory individuals [10]. Damping fields are 

likely more appropriate for these higher functioning individuals. Although, it is still 

unknown if the damping field is more beneficial for these individuals than traditional RAGT, 

and this can only be determined through further testing. An additional concern for stroke and 

other neurological conditions is spasticity. If performed in conjunction with stretching it is 

not anticipated that this new feedback modality will increase spasticity, as while there is 

limited research done on strength training’s impact on spasticity, the work that has been 

done indicates that it does not increase spasticity [46].

VI. Conclusion

This paper presented a new haptic feedback strategy for robot assisted gait training, based on 

variable viscous damping. The controller was able to induce gait changes in healthy 

individuals, which lasted at least 25 minutes following training. Increasing the rate the 

damping coefficient changes with the distance from the path improved the subjects’ ability 

to closely follow the path. However, increasing the strength did not have a significant effect 

on how well subjects were able to achieve the main feature of the path, i.e. the step height. 

The shape of the damping field does not play a significant role in the performance, although 

there are some trends which may have a smaller effect size than could be determined with 

the current study. This primary finding informs what parameters will be used in future 

studies with this feedback type.

The exploration of new types of feedback can potentially improve physical therapy and 

recovery from injury and change the architecture of rehabilitation robots. Proving the 

effectiveness of damping force fields could potentially dictate major design changes in 

future robotic gait trainers that will not require large electrical motors to provide forces, but 

could instead use variable dampers such as magnetorheological dampers, variable dashpots, 

electrostatic brakes, or even simple brakes with small engagement motors. Alternatively, 

regenerative braking could be used so that the device powers itself with only small energy 

storage requirements. Finally, this new type of feedback strategy may be able to better serve 

individuals that have not previously responded well to RAGT, by providing a more 

challenging training modality.
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Fig. 1. 
Damping fields used in the experiment. The damping fields used in the study are identified 

as ph, pl, lh, and ll for parabolic high, parabolic low, linear high, and linear low, respectively.
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Fig. 2. 
Researcher walking in ALEX III.
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Fig. 3. 
Representation of the areas and heights used for calculations of the Normalized Error Area 

and Normalized Step Height. Values are calculated based on the average ankle path of the 

session being evaluated. Step height for a curve is defined as max(y) − min(y). Area between 

curves are defined as P1 ⊕ P2 where P1 and P2 are the two ankle paths and ⊕ denotes the 

xor operator.
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Fig. 4. 
The normalized error area of the post-test evaluations, with the standard error shown.
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Fig. 5. 
The normalized step height of the post-test evaluations, with the standard error shown.
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Fig. 6. 
The normalized error area of the training sessions, with the standard error shown.
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Fig. 7. 
The normalized step height of the training sessions, with the standard error shown.
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TABLE I

Subjects Information

Group Sex Age
(yrs)

Mass
(kg)

Height
(m)

Lin Low 6 M, 2 F 24.1±5.1 73.0±9.9 1.80±0.06

Lin High 5 M, 3 F 27.6±4.7 81.5±17.8 1.79±0.08

Par Low 6 M, 2 F 25.5±4.4 80.0±21.1 1.77±0.09

Par High 5 M, 3 F 21.6±2.6 69.1±9.1 1.75±0.08
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TABLE III

Statistics Table for Pooled Post-Test Sessions

Group Normalized Step Height t(7) Corrected p

Lin Low 1.31± 0.27 3.21 0.030

Lin High 1.27± 0.25 3.15 0.016

Par Low 1.31± 0.19 3.40 0.035

Par High 1.29± 0.18 4.52 0.011

Group Normalized Error Area of Mean Path t(7) Corrected p

Lin Low 1.01± 0.41 0.08 0.942

Lin High 0.66± 0.20 −4.70 0.007

Par Low 0.74± 0.29 −2.52 0.080

Par High 0.63± 0.17 −6.14 0.002
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