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Abstract— A key prerequisite for planning manipulation with
locomotion of humanoid robots in complex environments is to
find a valid end-pose with a stable stance location and a collision-
free, balanced full-body configuration. Prior work based on the
Inverse Reachability Map assumed that the feet are placed next
to each other around the stance location on a horizontal plane.
Additionally, the success rate was correlated with the coverage
density of the sampled space, which is in turn limited by the
memory needed for storing the map.

We present a Paired Forward-Inverse Dynamic Reachabil-
ity Maps that extends the inverse Dynamic Reachability Map
(iDRM) by integrating it with forward reachability maps accord-
ing to the inherent kinematic structure of the robot. By exploiting
the combinatorics of this modularity, greater coverage in each
map can be achieved while keeping a low number of stored
samples. This enables us to draw samples from a much richer
dataset to effectively plan end-poses for single-handed as well as
bimanual tasks on uneven terrain. We demonstrated the method
on the 38-DoF NASA Valkyrie humanoid utilizing the whole body
to exploit redundancy for accomplishing manipulation tasks on
uneven terrain while avoiding obstacles.

I. INTRODUCTION

Humanoid robots are designed with human-like morphology
for better adaptations in environments designed for people
without changing the infrastructures. Their high-dimensional
kinematic structure offers excellent dexterity but, in turn, its
complexity makes the motion synthesis extremely challenging
particularly for safe and reactive tasks in close proximity to
people. To date, our limited solution is to manually provide
information to the robot, e.g. a stance location and full-
body configuration, in order to make planning and operation
practical. For instance, to grasp a distant object, the robot
needs to first walk closer to a pre-grasp stance location,
then plan and execute a grasping motion. In this scenario,
the pre-grasp stance location and the grasping configuration
(so-called end-pose) are often provided by the operator. The
end-pose is not always guaranteed to be feasible, making
the human-in-loop the limiting factor towards better robot
autonomy. Therefore, an efficient algorithm for finding an
appropriate and sufficient end-pose is a fundamental problem
whenever robots need to explore kinematic redundancies and
high number of degrees-of-freedom to work in cluttered and
complex environments.

Since the DARPA Robotics Challenge (DRC), many studies
attempted to relieve human operators from manually pro-
viding the end-pose for mobile manipulators and humanoid
robots [1]. Zacharias et al. [2], [3] proposed a robot capa-

Fig. 1: Motion planning of grasping on uneven terrain. The robot
automatically chooses appropriate standing locations and grasping
configurations on uneven terrains.

bility/reachability map (RM) to analyze, record, and access
the information about how a fixed-base manipulator can reach
different workspace poses. The concept of reachability has
also been applied in other domains, such as human-robot
interaction [4] where the RM is used to guide the robot
movement; and multi-contact locomotion [5], [6] where the
reachability is used to automatically find possible contacts for
legged systems.

Though the reachability map (RM) was originally designed
for fixed-base robots, research has directly extended RM to
mobile systems by randomly or systematically selecting differ-
ent base positions [7], [8]. Vahrenkamp et al. [9] introduced the
inverse reachability map (IRM) by encoding the reachability
information in the end-effector frame rather than in the fixed
base frame, which allows floating-base robots to automatically
find appropriate stance locations and reaching configurations
given a desired end-effector pose. The IRM method only



considers kinematic feasibility of the reaching problem with-
out taking into account collisions between the robot and its
environment. Collisions have to be checked online. This was
applied to a humanoid robot to find SE(2) (flat terrain) stance
locations which vastly improves the success rate for humanoid
manipulation [10]. Yang et al. [11] proposed the inverse
dynamic reachability map (iDRM) in which the IRM was
extended by utilizing a configuration-to-workspace occupation
mapping [12] to enable efficient collision updates. Thus,
iDRM is able to remove a large number of colliding samples
and find collision-free end-poses in real-time as the collision
computation and encoding is part of the pre-processing, while
online, the map is only filtered and the highest scoring sample
is selected.

Similar to [10], iDRM [11] only considers single stance
locations on a flat plane in SE(2) (2D position, 1D orien-
tation), i.e. the relative positions of two feet are fixed with
the same orientations on the horizontal surface. Moreover, the
method only resolves end-pose problem for reaching using
a single arm as a proof of concept. These simplifications
make it possible to solve a majority of manipulation scenarios
interactively in real-time, as demonstrated in [11].

In order to make full use of dual arms and bipedal nature
of humanoid robots, it is essential to find appropriate end-
poses for bimanual manipulation tasks in environments with
uneven terrains (i.e. SE(3) for each foot instead of SE(2) only
for the mid-point of the two feet). However, it is non-trivial
to directly extend the iDRM method to include both dual-
arm and bipedal features due to the curse of dimensionality,
as the memory required to ensure a sufficient workspace
coverage increases exponentially making it infeasible to run
on nowadays commodity hardware.

To resolve this issue, we propose a hybrid approach which
combines the advantages of both the Forward Dynamic Reach-
ability Map (DRM) and the Inverse Dynamic Reachability
Map (iDRM) to plan end-poses for humanoid robots in com-
plex and rugged environments. We use an upper-body iDRM to
first find valid upper-body configurations and pelvis poses. We
then use a lower-body DRM to find valid leg configurations on
uneven floors. A valid full-body end-pose is then obtained by
combining valid upper-body and lower-body configurations.
After finding the end-pose, we then employ state-of-the-art
walking planners such as [13] to plan footsteps for the robot
to walk to that desired end-pose. Finally after arriving at
the pre-action stance location, we can use full-body motion
planners such as [14] to generate full-body reaching motions
to complete the task. We have validated our work on the
38-DoF NASA Valkyrie humanoid robot and demonstrated
that the proposed method is able to find valid, i.e. balanced
and collision-free, end-poses for humanoid robots online for
grasping tasks on uneven terrains.

II. HUMANOID MOTION SYNTHESIS

It is important to take full advantage of the mobility of
humanoids for grasping and manipulating distant objects. A
grasping task can be decomposed into three main actions
similar to [11]:

1) End-pose planning: find an appropriate pre-grasp stance
location and grasping configuration,

p∗,q∗ = EndPosePlan(ps,qs,y∗) (1)

2) Footstep planning and execution: plan and execute a
sequence of footsteps to walk to the pre-grasp stance
location,

p[0:T ] = FootstepPlan(ps,p∗) (2)

3) Motion planning and execution: plan and execute a full-
body collision-free motion to complete the task,

q[0:T ] = MotionPlan(q∗) (3)

where ps and qs are the current stance location and robot
configuration, y∗ = {y∗lhand,y

∗
rhand} ∈ 2×SE(3) are the desired

poses for the left and right hands. An end-pose contains the
desired stance location p∗ = {p∗lfoot,p

∗
rfoot} ∈ 2× SE(3) and

reaching configuration q∗ ∈ RN , which will later be used as
the goal configuration in the motion planning module.

In most practical applications, the end-pose is provided
manually by the operator because an automated solution is
non-trivial, especially on uneven terrains. To improve robot
autonomy, we focus on solving the key issue of end-pose
planning in this work, and use existing methods which can
already efficiently plan footsteps and full-body motion.

We first explain the DRM and iDRM methods in Section III,
and then discuss how to utilize the strengths of both to plan
valid end-poses for dual-arm humanoid robots in complex
environments with uneven terrains in Section IV.

III. DYNAMIC REACHABILITY MAPS

The forward and inverse dynamic reachability maps, i.e.
DRM and iDRM, are the mappings from robot configuration
space to workspace with an efficient indexing technique that
updates the collision status of millions of configurations in
real-time. DRM and iDRM are defined with respect to the
base frame and the end-effector frame respectively. In other
words, DRM encodes information of “when fixing the base,
what is the reachable space of the end-effector”, whereas
iDRM encodes “to reach a desired pose, where to best place
the base”. However, from an algorithmic perspective, DRM
and iDRM are very similar, and both of them has two stages:
offline preprocessing and online planning.

A. Offline preprocessing

The offline preprocessing phase contains four major steps
for both DRM and iDRM, as highlighted in Fig. 2. First, the
workspace is discretized into a bounded 3D voxel grid V. The
grid of DRM is defined with respect to the base frame while
the grid of iDRM has its origin in the end-effector frame. In
this paper, we use root link to refer to the reference link, i.e.
the base link for DRM and the end-effector link for iDRM.
Also, we use tip link to refer to the end-effector link for DRM
and the base link for iDRM. Both DRM and iDRM can only
have one root link but multiple tip links. Next, we generate N
number of valid samples1, which are then transformed to the

1A valid sample has to satisfy a combination of robot’s kinematic joint
limits, be self-collision-free, balanced, etc.
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Fig. 2: Examples of DRM and iDRM offline map construction.
From left to right: 1) discretized space; 2) generate valid samples;
3) transform samples to map origin; and 4) generate reach and
occupation lists.
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Fig. 3: Examples of DRM and iDRM online update. From left to
right: 1) problem setup; 2) transform map to root pose; 3) validate
collision status; and 4) check tip pose constraints and find valid
samples.

origin of the corresponding map. The last step generates the
reach list Rv and occupation list Ov for each grid voxel v ∈V.
The reach list Rv stores the indices of samples whose tip link
falls into this voxel v. For a robot with K tip links, the reach
list stores a list of paired values specifying both sample and
tip indices, i.e. Rv = {(n,k) . . .}, where n ∈ N is the sample
index and k ∈ K is the tip index. Note that in Fig. 2, we use
a robot model with only one tip link for clarity. Finally, the
occupation list Ov is generated storing the list of samples that
intersect with voxel v.

B. Online update

During the online update phase, our goal is to find samples
that are collision-free and satisfy tip link constraints Ctip given
the root pose p∗root, as highlighted in Fig. 3. Ctip defines valid
position and orientation regions for different tip links. Firstly,
the DRM/iDRM map is transformed to p∗root. Conventional
collision checking is then deployed to identify the colliding
voxels, then iteratively invalidate samples in the occupation
list Ov of all colliding voxels. Finally, we check the reach

Tip 1 of upper-body iDRM

Root of lower-body DRM

Right Foot
Tip 1 of lower-body DRM

Left Foot
Tip 2 of lower-body DRM

Pelvis

Left Hand
Root of upper-body iDRM

20 DoF Upper-body iDRM

12 DoF Lower-body DRM

Tip 2 of upper-body iDRM

Right Hand

Fig. 4: Upper-body iDRM and lower-body DRM for the 38 DoF
NASA Valkyrie Robot. Each leg has 6 DoF and each arm has 7
DoF, the robot torso has 3 DoF and the neck has 3 DoF. The pelvis
represents an extra 6 DoF virtual joint that connects the robot to the
world.

lists of candidate voxels to find valid samples that satisfy
collision-free and Ctip so the output samples are guaranteed
to be collision-free. For example, in Fig. 3, two samples from
the DRM satisfy the tip pose constraint, but only sample 1
was selected since the other sample was invalidated during
the collision update step. In the iDRM case, sample 1 was
excluded from the result as it was in collision and violated
the tip pose constraint.

IV. END-POSE PLANNING FOR BI-MANUAL TASKS ON
UNEVEN TERRAIN

The iDRM can be used directly for humanoid end-pose
planning with the constrained positions of two feet [11], which
is limited to flat ground only. As the iDRM can have multiple
tip links, a direct and naı̈ve approach is to create an iDRM
with one root link and three tip links, where one hand is
selected as the root and the rest three limbs are treated as tip
links. However, this significantly increases the dimensionality
of the problem, i.e. the number of samples has to increase
exponentially with each tip link to cover the high dimensional
space (see Section V). Consequently, the required memory size
is so large that it becomes infeasible to run on any commodity
hardware.

To plan end-poses on uneven terrain while keeping a
manageable number of samples and memory size, we take
advantage of the robot’s inherent structure to treat upper-body
and lower-body separately. We separate the robot at the torso
pelvis joint, as illustrated in Fig. 4. We create an iDRM for
the upper-body and a DRM for the lower-body. We choose
one hand as the root of the upper-body iDRM, and the other
will become a tip link. We could further split the kinematic
structure to obtain more but smaller components, i.e. further
split the upper-body into left and right arms. However, as we
will show later in V-C.2, the proposed splitting approach is
more efficient considering the trade-off between success rate
and planning time. In the rest of this section, we will discuss
how to create the two maps, and combine them to plan end-
poses on uneven terrains.



Fig. 5: Left: the upper-body’s full reachability map; right: the
reachability map constrained to the front of the robot. All colored
voxels are reachable by the robot and greener voxels are regions
with high reachability scores. Only part of the map is plotted for
clarity (the whole map is sphere shaped).

Fig. 6: Left: the lower-body’s unconstrained reachability map, only
part of the map is plotted for clarity; right: the reachability map
constrained to feet placed below the pelvis.

A. Constructions of DRM/iDRM for humanoids

1) Upper-body iDRM: In this case study, the left hand is
selected as the root link of the upper-body iDRM, and the right
hand and pelvis are treated as two tip links. Several iDRM
datasets with different number of samples (all with 10cm
workspace voxel resolution) are generated for the 20-DoF
upper-body of Valkyrie. Traditionally, samples of an inverse
reachability should cover the whole configuration space, i.e.
for the case of a humanoid, samples of the map should
reach behind the robot. However, since the robot’s sensor are
predominantly facing forward, we want to express a preference
for stable stance locations that give us reasonable manipulabil-
ity. We adopt a heuristic in our method, where we only store
samples with both hands reaching comfortable manipulation
poses in front of the robot, as shown in Fig. 5. Note that the
robot can still manipulate objects that are currently far away
or behind the robot by walking to an appropriate pre-action
stance location, which is the key point of end-pose planning.

2) Lower-body DRM: The lower-body of Valkyrie has 12-
DoF (6-DoF per leg). Though the legs have a large range
of motion, the manifold of balanced configurations is much
smaller even on uneven terrain. Therefore, we have reduced
the “reachability” map for the lower-body so that the legs
have the range to adapt to the uneven terrain but they won’t
reach most unnatural poses2. To this end, we generate lower-

2Though a metric of being “unnatural” appears to be subjective, it has
meaningful implications for achieving such poses on a real robot in terms of
joint range and sustainable power. In our work, we define the terms natural
and comfortable as the distance in the configuration space from a chosen
nominal configuration derived from the posture shown in Fig. 4.

body configurations with two feet placed in a region below
the pelvis (0.8−1.1 meter for Valkyrie), as shown in Fig. 6.
This ensures that the lower-body DRM has sufficient samples
to adapt to uneven terrain without demanding extra memory
for storing poses that can’t provide support for the robot, e.g.
poses where the feet reach above the pelvis.

B. End-pose planning

Let Mupper be the upper-body iDRM and Mlower be the
lower-body DRM. Given a task y∗=(y∗lhand,y

∗
rhand), start states

ps,qs and the environment Env, the end-pose planner needs
to find an end-pose that contains p∗ = (p∗lfoot,p

∗
rfoot) and q∗.

Firstly, we create two tip pose constraints C = {Cpelvis,Crhand}
for the upper-body iDRM, where Cpelvis constrains the pelvis
link to be inside a feasible height region and approximately
perpendicular to the ground (i.e. upright), and Crhand constrains
the right hand to be near y∗rhand. Algorithm 1 highlights
our proposed end-pose planning method for bimanual tasks
on uneven terrain, where in lines 1-7 Mupper is used to
find collision-free upper-body configurations that satisfy the
constraints C, such that two hands can reach the goal y∗ with
the pelvis pose Tpelvis.

It is worth emphasizing that, given a upper-body configura-
tion qn, the global pose of a link can be calculated by forward
kinematics, but it is not necessary since we can retrieve these
poses directly from iDRM. For each tip link, i.e. pelvis and
right hand, the iDRM reach pose is referenced in the root (left
hand) frame. Given the desired root pose y∗lhand, the global
pose of a tip link is

T tip,world
n = y∗×T tip,root

n (4)

where T tip,world
n and T tip,root

n represent the tip pose of sample
n in global and root frames accordingly. Here T tip,root

n is pre-
computed for each sample during offline processing and y∗ is
given for each task. Hence, computing the global poses of the
pelvis and the right hand is very efficient in our approach.

After retrieving the global poses, we can then check if the
configurations satisfy the pelvis and right hand constraints.
For a candidate upper-body configuration qn, we transform
Mlower to Tpelvis and find valid lower-body configurations, i.e.
collision-free and valid contacts with the terrain, as shown in
lines 8-12 of Algorithm 1. To check foot contacts, we first
extract the step regions from the environment. Similar to Eq.4
with Tpelvis as the y∗, we can obtain the tip (foot) poses in the
global frame and check if the foot is within the step regions.
If the lower-body configuration has valid contacts, we then
combine the candidate upper and lower body configurations
to acquire the full-body configuration. Since multiple valid
end-poses may exist, we iterate though Mupper and Mlower
to find the best candidate based on the cost function f (q).
Different cost functions can be defined for different tasks and
environments. In general, for humanoid robots, it is desirable
to have an end-pose with minimum travelling distance that is
close to the start/nominal configuration. The following cost
function is used in our implementation

f (q) = ‖Tpelvis(q)−Tpelvis(qs)‖W1 +‖q−qs‖W2 , (5)

where W1,W2 are weights.



Fig. 7: The first figure highlights the upper-body iDRM and lower-
body DRM samples, followed by two examples of selected end-poses
in different scenarios.

Algorithm 1 Humanoid End-Pose Planning

Require: y∗lhand, C
Ensure: p∗lfoot,p

∗
rfoot,q

∗

1: y∗root = y∗lhand
2: Transform Mupper to y∗root // Fig.3b(2)
3: CollisionUpdate(Mupper) // Fig.3b(2-3)
4: Q = /0
5: for ∀qn ∈ collision-free subset of Mupper do
6: Tpelvis,Trhand =TipGlobalPoses(qn,y∗root)
7: if SatisfyConstraint(Tpelvis,Trhand,C) then // Fig.3b(4)
8: Transform Mlower to Tpelvis // Fig.3a(2)
9: CollisionUpdate(Mlower) // Fig.3a(2-3)

10: for ∀qm ∈ collision-free subset of Mlower do
11: plfoot,prfoot =TipPoses(Tpelvis(qn),qm)
12: if ValidTerrainContact(plfoot,prfoot) then

// Fig.3a(4)
13: q = {qn,qm}
14: if q is balanced then
15: Q = Q∪ (plfoot,prfoot,q, f (q))
16: p∗lfoot,p

∗
rfoot,q

∗ =LowestCost(Q)
return p∗lfoot,p

∗
rfoot,q

∗

After end-pose planning, the last step is to refine the output
and ensure all necessary constraints are satisfied, e.g. the
hand(s) need to precisely reach the target, the feet need to
be perfectly in contact with the terrain, and the pose needs
to be statically balanced. A non-linear optimization-based
solver [15] is used to adjust the candidate end-pose with
respect to these constraints by applying a sequential quadratic
programming (SQP) solver in the form of

q∗ =arg min
q∈RN+6

‖q−qs‖2
Qq

subject to bl ≤ q≤ bu

ci(q)≤ 0,ci ∈ C

(6)

where Qq � 0 is the weighting matrix, bl and bu are the lower
and upper joint bounds, and C is the constrain set. If the solver
fails or the solution is in collision, the optimization is repeated
with the next best candidate end-pose.

C. Footstep and Motion Planning

After finding the end-pose, a footstep planner is invoked
to plan a set of footsteps to enable walking from current

stance location ps to pre-grasp stance location p∗, followed
by a motion planner to generate a valid full-body trajectory
to realize the end-pose q∗. Footstep and motion planning are
not the main focus of this work, and any suitable algorithms
could be used. The footstep planner from [13] and the full-
body motion planner from [14] are implemented here.

V. EVALUATION

A. Construction of dynamic reachability maps

We have generated maps with different root/tip links and
number of samples to analyse how different splitting of the
map affects the performance:
• Φ1: A upper-body iDRM with the left hand as the root,

pelvis and right hand as the tips. Three datasets are gen-
erated with different number of samples: 100,000(Φ1a),
1,000,000(Φ1b) and 4,000,000(Φ1c).

• Φ2: A upper-body iDRM with the left hand as the
root, pelvis and right shoulder as the tips. Three
datasets are generated with different number of samples:
10,000(Φ2a), 100,000(Φ2b) and 1,000,000(Φ2c).

• Φ3: A right arm DRM with right shoulder as the root and
right hand as the tip. Three data sets are generated with
different number of samples: 10,000(Φ3a), 100,000(Φ3b)
and 1,000,000(Φ3c).

• Φ4: A lower-body DRM with the pelvis as the root, left
and right feet as the tips. Four datasets are genreated with
different number of samples : 1,680(Φ4a), 44,400(Φ4b),
227,400(Φ4c) and 742,560(Φ4d).

All datasets are created with 10cm workspace grid resolution.
The construction time and file size are highlighted in Table I.
The construction time of Φ1 maps are relatively longer because
many of the samples are discarded and only these with both
hands fall into the region of interest are kept. The Φ1 maps are
also expensive to store since the kinematic structure includes
the entire upper-body with two arms. It is worth emphasizing
that the file size of Φ1 is similar to Φ2 and Φ3 combined with
same number of samples, e.g. Φ1b ≈Φ2c +Φ3c.

The proposed end-pose planning method can be obtained by
combining Φ1 and Φ4, for example, combining Φ1a and Φ4a
gives a dataset with a theoretical 105×1680= 168 million full-
body configurations; combining Φ1c and Φ4c gives a dataset
with a theoretical 909.6 trillion full-body configurations. A
further split method can be obtained by combining Φ2, Φ3 and
Φ4, for example, combining Φ2c, Φ3c and Φ4c gives a dataset
with a theoretical 2.274× 1017 full-body configurations. It
is clear that the total number of full-body configurations
increases exponentially with the number of components. How-
ever, combining these maps significantly slows down the on-
line planning (see Section V-C.2).

B. End-pose planning benchmarking setup

We have crated a set of benchmark problems by passing
random hands and feet pose constraints, as well as quasi-static
balance constraint , into the full-body IK solver to obtain a ran-
dom but balanced configuration. The configurations are filtered
for self-collisions. We then populate spherical obstacles into
the free environment randomly but not colliding with the robot



TABLE I: Map construction analysis.

Map No.
samples

Construction
time (min)

File size
(MB)

Upper-body
two arms

Φ1a 105 28.8 108
Φ1b 106 289.7 1,082
Φ1c 4×106 1090.8 4,352

Upper-body
left arm

Φ2a 104 0.25 9
Φ2b 105 2.61 91
Φ2c 106 25.0 879

Right arm
Φ3a 104 0.05 2
Φ3b 105 0.58 22
Φ3c 106 6.19 217

Lower-body
two legs

Φ4a 1,680 0.24 1
Φ4b 44,400 6.15 33
Φ4c 227,400 30.0 160
Φ4d 742,560 103.5 535

TABLE II: End-pose planning performance across different lower-
body datasets and using the non-linear full-body IK.

Method
Map

success
rate

IK
success

rate

Final
success

rate
Avg. time(s)

Φ1b +Φ4a 72.7% 71.8% 71.4% 0.08±0.02
Φ1b +Φ4b 73.7% 72.8% 72.5% 0.09±0.03
Φ1b +Φ4c 80.7% 79.0% 78.7% 0.13±0.10
Φ1b +Φ4d 86.3% 84.8% 84.2% 0.23±0.33

Non-Linear IK - 99.8% 59.3% 0.03±0.01

until a required number of obstacles is reached. Finally, we can
extract the height and position of each foot from the generated
configuration and create terrain areas accordingly. A valid end-
pose planning problem is thereby generated. We also store
the desired poses for both hands, collision environments and
terrain areas. Note that the robot configurations are generated
to ensure the problem is solvable with at least one solution.
The configuration is not known to the candidate algorithm, and
the algorithm is allowed to find a different but valid solutions
if multiple solutions exist. In our benchmarking, we created
1000 random problems, each of which contains 20 spherical
obstacles with 15-20cm radius.

C. Simulation benchmarking

1) Different lower-body datasets: As we have mentioned,
the lower-body is used for maintaining balance rather than
for maximum reachability. Thus, we should use a dataset
that contains enough samples which is sufficient for finding
balanced configurations rather than having a dataset with
millions of samples that consumes huge amount of memory
and slows down on-line computation. We combine Φ1b with
different Φ4 maps to analysis the affects different lower-body
maps might introduce and therefore select the suitable one
for other experiments. We also evaluated the performance by
directly applying the non-linear IK without using DRM/iDRM.
Table II shows the success rate and average planning time
using different methods. The map success rate is the rate of
DRM/iDRM reports finding valid candidate end-poses, which
is then passed to the IK adjustment function. The IK success
rate is the rate of non-linear IK successfully adjusted the
candidate poses and satisfy all constraints. The pose is then

passed to a collision checking function, a final success is
reported if the pose is collision-free.

We notice that these methods can not achieve 100% success
rate, which is caused by several factors: firstly, although we
have created each map with millions of configurations, it
is still inefficient to cover the high dimensional full-body
configuration space (38 dimension for Valkyrie); secondly, in
the interest of time, we only allow the method to try the first
10 different poses from Q, where a valid pose with relatively
high cost might be discarded; lastly, some valid poses which
are not in collision may get invalidated due to aliasing of the
occupancy grid. Such artefacts can be reduced by using a finer
workspace grid, but they can’t be completely eliminated. This
is a common issue with all grid-based methods.

It is interesting that the final success rate is very close
to the initial map success rate, which means that once the
DRM/iDRM maps find candidate end-poses, those poses are
very likely to be valid. On the other hand, the direct non-linear
IK method reports a 99.8% success rate, but only 59.3% is
finally valid, e.g. collision-free. The result suggests that using
only the non-linear IK is inefficient in cluttered environments,
and the proposed method is indeed improving the success rate.

The benchmarking was done in randomized and complex
environments designed to fully evaluate different approaches.
Although the methods do not achieve 100% success rate in
the benchmarking, as we will show later in Section V-D, they
are sufficient for solving practical problems. Based on the
result we conclude that the success rate as well as planning
time increase with the number of lower-body samples. We use
the lower-body dataset Φ4c for the rest of the experiments.
However, other datasets with more samples might be used
depending on the different demands between success rate and
planning time.

2) Different map combinatorics: We choose to split the
humanoid robot into two parts at pelvis. However, one can
further split the upper-body into smaller parts, e.g. left body
part (Φ2) and right arm (Φ3). Table III shows the end-pose
planning result of using different upper-body maps, where the
success rate and planning time increases with the number of
samples as expected. However, the further splitting (Φ2+Φ3+
Φ4) leads to a much longer planning time while the success
rate is not significantly improved compare to the proposed
splitting (Φ1 +Φ4). Furthermore, in the case of using further
split method with maps Φ2c + Φ3c + Φ4c, the final success
rate is lower than using proposed split method with maps
Φ1c +Φ4c. Note that the map reports a 96.9% success rate,
but dropped to 85.0% after IK adjustment, most of which
were caused by fail to satisfy balance constraint. This means
further splitting the body leads to higher chance of violating
the balance constraint of the full-body. Splitting the upper- and
lower-body at the pelvis link thereby is proved to be the most
practical considering the trade-off between coverage, planning
success rate, and algorithm runtime. We use the proposed split
method with datasets Φ1c for upper-body and Φ4c for lower-
body for the following experiments on robot hardware,



TABLE III: End-pose planning performance analysis of using same lower-body dataset with different upper-body datasets. Considering the
trade-off between success rate and planning time, the method Φ1c +Φ4c is used for hardware experiments.

Method Total No. samples Map success rate IK success rate Final success rate Avg. time (s)
Φ1a +Φ4c 2.274×1010 57.9% 57.1% 56.8% 0.04±0.01
Φ1b +Φ4c 2.274×1011 80.7% 79.0% 78.7% 0.13±0.10
Φ1c +Φ4c 9.096×1011 88.6% 85.7% 85.1% 0.40±0.37

Φ2a +Φ3a +Φ4c 2.274×1013 70.0% 65.1% 63.7% 0.10±0.05
Φ2b +Φ3b +Φ4c 2.274×1015 91.3% 83.5% 80.4% 0.56±0.39
Φ2c +Φ3c +Φ4c 2.274×1017 96.9% 85.0% 81.2% 8.08±4.68

D. Hardware experiments

To demonstrate the capability of end-pose planning on
uneven terrain, we created three bimanual box-picking tasks
with different terrain types. In the first scenario B1 (Fig. 8a),
the robot has to walk onto a higher floor, which in theory
can be found by classic iDRM as well; in the second case B2
(Fig. 8b), the robot has to stand on surfaces at two different
heights; in the last scenario B3 (Fig. 8c), the robot needs to
avoid a collision between its right leg and a large obstacle
during the picking task. Our method is capable of finding
different collision-free end-poses in these environments. We
found that the possible pelvis poses are quite limited in
practice for bimanual tasks, i.e. the robot has to stand directly
in front facing the box in order to pick it up with two hands.
Nevertheless, our DRM/iDRM hybrid method provides a valid
solution for the robot to perform bimanual picking tasks in
presence of uneven terrain.

We further validated two single-arm grasping tasks where
the target was placed at different locations, as shown in Fig. 9.
A upper-body iDRM is created with the left hand as root link
and pelvis as tip link. The right arm joints are set to a pre-
defined nominal configuration for all samples, as shown in
Fig. 7. The constrain set C then contains pose constraints only
for the pelvis but not for the right hand. In the first scenario S1
(Fig. 9a), the target was placed at the edge of the table, where
the robot could easily grasp without being too close. So, the
robot could stay away from the high surface, while keeping the
target at a reachable distance. Whereas in the second task S2
(Fig. 9b), the target was placed further away from the edge of
the table and enclosed by the obstacle. The end-pose planner
found a feasible configuration to place two feet on different
surfaces so the robot was close enough for grasping the target.

We would like to highlight that with the modular and com-
bined forward inverse dynamic reachability maps presented in
this work, we are able to find end poses which include lunging
body or taking a sidestep (in scenarios B3 and S1) for increas-
ing the reachable workspace by leveraging the advantage of
the legged system. This is in contrast with the prior work [10],
[11] which limited the foot poses to a constant distance and
planning for the mid-feet point. A supplementary video can
be found at https://youtu.be/o-05EHf-gg8.

VI. CONCLUSION

We presented a novel end-pose planning algorithm that
combines the Dynamic Reachability Map (DRM) and inverse
Dynamic Reachability Map (iDRM), which allows humanoid
robots to automatically find appropriate end-poses in presence

of uneven terrain. Using NASA’s Valkyrie humanoid as a
testbed, we demonstrated the effectiveness of the proposed
method in planning end-poses for both single-arm and biman-
ual tasks on uneven terrains.

A current limitation of our method is the amount of memory
required for storing the maps, e.g. 4.5GB for Valkyrie using
the datasets Φ1c and Φ4c. Our future work involves investigat-
ing new methods of encoding the configuration-to-workspace
mapping for better memory efficiency. This will allow us to
increase the resolution of the voxel grid and improve the
success rate of our method.
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