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Abstract— Recent direct visual odometry and SLAM algo-
rithms have demonstrated impressive levels of precision. How-
ever, they require a photometric camera calibration in order
to achieve competitive results. Hence, the respective algorithm
cannot be directly applied to an off-the-shelf-camera or to a
video sequence acquired with an unknown camera. In this work
we propose a method for online photometric calibration which
enables to process auto exposure videos with visual odometry
precisions that are on par with those of photometrically
calibrated videos. Our algorithm recovers the exposure times
of consecutive frames, the camera response function, and the
attenuation factors of the sensor irradiance due to vignetting.
Gain robust KLT feature tracks are used to obtain scene
point correspondences as input to a nonlinear optimization
framework. We show that our approach can reliably calibrate
arbitrary video sequences by evaluating it on datasets for which
full photometric ground truth is available. We further show that
our calibration can improve the performance of a state-of-the-
art direct visual odometry method that works solely on pixel
intensities, calibrating for photometric parameters in an online
fashion in realtime.

Index Terms— Photometric calibration, online calibration,
visual odometry, visual SLAM.

I. INTRODUCTION AND RELATED WORK

Recently a number of direct methods for visual odomertry
and visual SLAM such as DSO or LSD-SLAM have been
proposed, working only on pixel intensities [1][2]. They
all rely on the underlying assumption, that a scene point
appears with constant brightness values across multiple
images. However, when taking images with auto exposure
video cameras, this assumption typically does not hold. The
automatic adjustment of the exposure times, the photometric
falloff of the pixel intensities to the sides of the image due
to vignetting as well as an often nonlinear camera response
function cause the observed pixel intensities to differ for the
same scene point. It has been shown that prior photometric
camera calibration can significantly enhance the performance
of DSO.

If the exposure of the camera can be controlled manually,
the photometric calibration can be obtained by acquiring
multiple images taken under different exposures [11][12]
and then estimating for a vignetting map by taking images
of a uniformly colored surface [3][16]. However, for many
video cameras the exposure times are automatically chosen
and cannot be influenced by the user. Furthermore, one
might want to run a visual odometry or SLAM algorithm on
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datasets where no photometric calibration is provided and no
access to the camera is given. In these cases, it is necessary
to use an algorithm that can provide calibrations for arbitrary
video sequences.

In the past a number of photometric calibration methods
in the setting of an unknown camera have been proposed.
Lin et al. [21] introduce a single image estimation method
aiming at the recovery of the response function from irra-
diance mixtures around edge regions using only a single
input frame. Zheng et al. [20] on the other hand recover
a vignetting function by identifying surfaces with identical
scene radiance, measuring their photometric falloff towards
the image borders. However, both of these methods can
only estimate for one of these two photometric parameters,
requiring knowledge of the other. Furthermore, using only a
single image does not allow for estimating exposure times.

Multiple image approaches focus on offline applications
such as panorama stitching of only a few input images
[9][14] for which the runtime of the algorithm is not critical
and a large number of pixel correspondences can be acquired
easily by aligning image pairs. Those approaches are not
well suited for providing an online calibration of videos
that can exhibit arbitrary motion. Nevertheless, we can adapt
their underlying optimization strategies for the photometric
parameter optimization.

Litvinov and Schechner [14][15] propose a linear opti-
mization framework solving jointly for response and vi-
gnetting functions in an inverse logarithmic formulation. Al-
though their approach is computationally rather inexpensive,
a linear least squares solution will be highly susceptible to
outliers. Furthermore, this formulation introduces a trivial
solution which must be manually excluded by introducing
a model prior. To avoid these problems, Goldman et al.
[6] model the optimization problem as a nonlinear energy
function which can be optimized using the Gauss-Newton
algorithm. They provide a framework optimizing jointly for
response function, vignetting, exposure ratios and scene point
radiances. However, they also focus on panorama stitching
applications, assuming that a large number of accurate cor-
respondences can be obtained from stitching only a few
images, rendering this approach impractical for auto expo-
sure video. Furthermore, they output the joint estimate of all
photometric parameters after several rounds of optimization,
which will be too slow for providing an online calibration
in realtime.

In order to avoid the necessity of performing image
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Fig. 1: In this paper we propose an approach for full photometric calibration of auto exposure videos, recovering the relative exposure
times, the camera response function and vignetting function, which can be used either offline for calibrating existing datasets, or online
in combination with state-of-the-art direct visual odometry or SLAM pipelines. Top: sequence from the EuRoc Mav dataset with strong
exposure changes. Bottom: the same sequence after photometric calibration.

alignment, Kim et al. [10] proposed to use short feature
tracks for calibrating arbitrary video sequences, assuming
that the tracks are not affected by vignetting due to their short
motion. However, calibration of the response function can
only be successful in their case if heavy exposure changes
are present within the tracked sequence. Also, their approach
can not recover the vignetting. To allow for calibration under
less drastic exposure changes, Grundmann et al. [5] propose
to use long feature tracks, however also under the additional
assumption that no vignetting is present.

Our algorithm builds on the work of [6], applying their
nonlinear estimation formulation to arbitrary video sequences
using gain robust feature tracking, recovering response func-
tion, vignetting, exposure times and radiances of the tracked
scene points. We track features with large radial motion
across multiple frames in order to recover the vignetting
reliably. In the case of vignetted video, we do not require any
exposure change to calibrate for the parameters, in contrast
to methods which only estimate for a response function. We
verify the effectiveness and accuracy of our algorithm by
recovering the photometric parameters of the TUM Mono
VO dataset [3] where full calibration ground truth is available
as well as on manually disturbed artificial sequences of the
ICL-NUIM dataset [4]. Furthermore, we show that using our
algorithm in parallel to a visual odometry or visual SLAM
method can significantly enhance its performance when run-
ning on datasets with photometric disturbances. Our method
can also be used to improve the results of other methods
in computer vision that rely on the brightness constancy
assumption, such as for example many implementations for
the optical flow problem [13].

II. PHOTOMETRIC IMAGE FORMATION PROCESS

A scene point is illuminated by a light source and reflects
the light back into space. The amount of light reflected is
called the radiance L of the scene point. If the radiance
received by a moving observer is independent of the ob-
servers viewing angle, the scene point is called to exhibit
Lambertian reflectance behavior. The radiance of the scene
point is captured by a sensor element of the camera. The total

amount of energy received at sensor location x is called the
Irradiance I(x).

One could expect scene points with identical radiance
at different spatial locations to result in identical sensor
Irradiance. However, for most cameras a radiometric fall off
of the pixel intensities can be observed towards the image
borders. This so called vignetting effect can be either due
to a partial blocking of light rays by the lens barrel or
induced by the lens geometry, modeled by the Cosine-Fourth
law [9]. The irradiance I(x) can therefore be obtained by
multiplying the scene points radiance with a vignetting factor
V : Ω → [0, 1] which is dependent on the spatial location
x ∈ Ω of the image sensor

I(x) = V (x)L.

When taking an image, the sensor irradiance is integrated
over a time window specified by the cameras exposure
time e. We assume the irradiance of a sensor element to
be constant over this window. The accumulated irradiance
value is therefore given as Iacc(x) = eI(x).
Iacc(x) is then mapped by the camera response function

(CRF) f : R → [0, 255] to an image output intensity. For
real cameras, the input of the CRF is limited by the cameras
dynamic range. If the accumulated irradiance falls outside
of the cameras dynamic range, the scene point is under or
overexposed and will be given either the pixel value 0 or
255 respectively. For our work, since the physical scale of
the radiances cannot be recovered, the dynamic range of the
camera is normalized to the unit interval [0, 1].

The entire image formation process mapping a scene
points radiance L to an image output intensity O can be
compactly written as

O = f
(
eV (x)L

)
. (1)

III. TRACKING FRONTEND

Given a set of image frames F for calibration, all the
variables in Eq. (1) are a priori unknown except for the output
intensities O. In order to obtain a photometric calibration, a
set of scene points P must be selected and their projections
onto the images where they are visible must be estimated.



Fig. 2: KLT tracking on a EuRoC sequence with challenging
illumination. Top row: Standard KLT tracks between two images
Bottom row: Gain adaptive KLT tracks between the same images.
Note how the standard implementation of the KLT tracker cannot
handle larger exposure time changes between images, while the
adaptive version handles these situations well.

Earlier works have used image alignment techniques to
obtain a large number of pixel correspondences. However,
these were mostly applied in systems performing panorama
stitching and will be inaccurate in case of unconstrained
camera motion. Instead we adopt a similar approach to [5],
using a pyramidal implementation of the KLT tracker to
obtain point correspondences. Whereas [5] assumes that the
brightness changes are small between consecutive frames,
we have observed that some datasets exhibit strong exposure
changes between images and, therefore, the standard KLT
tracker will fail in these cases. Hence, we use the implemen-
tation suggested by [10], optimizing jointly for the tracking
updates and a gain ratio between frames which can be done
efficiently using the Schur complement. Fig. 2 shows the
difference between the two trackers when applied on frames
with larger exposure change. We extract Shi-Thomasi corners
[19] which well constrain the solution to the optical flow
equation, constituting good candidate points for tracking.

In order to reliably recover the vignetting, it is important
to sample features uniformly across the image to cover the
entire radial range. Therefore the image is divided into a
number of grid cells and a total sum of N features is sampled
from all the cells. This is also beneficial in order to cover the
entire image intensity range which is required to constrain
the response function well. In case features are lost due to
occlusions or scene points moving outside of the image,
new features are extracted from cells currently containing
a lower number of features. We use long feature tracks in
order to increase radial movements, which are necessary for
vignetting estimation since, if the radial movements of the
tracked features are small, the changes of irradiance due to
spatial photometric fall-off will not be captured.

Since the scene points that cannot be reliably tracked over
a longer time (such as low gradient regions) can heavily

disturb the estimation result, the forward-backward tracking
error is evaluated to early filter badly tracked correspon-
dences [17]. Fig. 3 shows feature tracks in one of the
TUM Mono VO sequences with the error filter disabled and
enabled. It can be seen that the wrong updates of the features
on the low gradient region are entirely filtered out when
forward-backward tracking is enabled.

In order to increase the number of tracked scene points
without having to extract further features from the image,
a small image patch is extracted around tracked feature
locations. Another reason for why this is beneficial is that
the tracked features will typically be located on large im-
age gradients in order to be tracked reliably. Therefore,
already a small geometric tracking inaccuracy will cause a
large difference in image brightness for the correspondences.
Extracting an image patch aims at obtaining low gradient
correspondences, whose image intensity profiles will be less
sensitive with respect to small tracking errors.

IV. OPTIMIZATION BACKEND

Given a set of scene points P tracked across a range of
images where point p ∈ P is visible in frames Fp, we use
Eq. (1) to formulate an energy as

E =
∑
p∈P

∑
i∈Fp

wpi

∣∣∣∣∣∣∣∣Opi − f(eiV (xpi )L
p
)︸ ︷︷ ︸

r(f,V,ei,Lp)

∣∣∣∣∣∣∣∣
h

, (2)

where Opi is the output intensity of p in image i, ei is the
exposure time of image i, Lp is the radiance of p and xpi
is the spatial location of the projection of p onto image i.
wpi defines a weighting factor for each residual r. In contrast
to [6] where a least square error metric is used, we use the
Huber norm ||.||h for robust estimation, parametrized by h ∈
R. Note that this formulation of the energy assumes every
scene point to be located on a Lambertian surface.

As has been noted before, there exists an exponential
ambiguity in recovering the parameters when the response
function is unknown [18]. Given a solution, one can obtain
a different solution yielding the same energy by choosing
a constant γ ∈ R and defining f̃(x) = f(x1/γ), Ṽ (x) =
V (x)γ , ẽi = eγi , L̃

p = (Lp)γ . Determining γ requires the
introduction of some prior knowledge on the parameter
space. In [6] it is proposed to add a prior term to the energy
pulling one point on the response function to a certain user
defined value. This is especially required in the presence
of a trivial solution as in [14], where choosing the inverse
response as a constant function yields a minimum of the
energy. However, since our formulation does not include such
a trivial solution and a local optimization algorithm with a
prior parameter initialization is used, we have not found it
necessary to include any prior term to the energy. Instead,
we fix the value for γ by constraining the response to run
through a certain point after optimization has finished.

To model the CRF, we use the empiric model of response
(EMoR) introduced by Grossberg and Nayar [8]. A principle
component analysis (PCA) is applied to find the mean
response f0(x) and basis functions hk(x) which can be



Fig. 3: Comparison of tracking without and with evaluation of
the forward-backward error. The right image shows tracking when
filtering large forward-backward tracking inconsistencies, whilst the
left image shows standard KLT tracks. Note how the spurious tracks
in the left on the low gradient region are filtered out in the right
image.

linearly combinated to form the overall response function
fG(x) by choosing parameters ck ∈ R

fG(x) = f0(x) +

n∑
k=1

ckhk(x)

This model has been successfully used in previous applica-
tions [6][10] and exhibits desirable properties for a CRF such
as fG(0) = 0, fG(1) = 255 for all possible parametrizations.
Furthermore its derivative can be easily obtained by simply
deriving the median term and the base functions, which is
necessary for calculating the Jacobians used in the nonlinear
optimization. We use the first n = 4 basis functions which
have been shown to be sufficient to represent the empiric
space of responses well [9].

Since estimating a vignetting factor at every pixel location
of the image is not feasible without a very large number
of correspondences, we employ a flexible radial vignetting
model as used in [6], assuming that the attenuation factors are
symmetric around the image center. Furthermore, we assume
that the center of vignetting falls together with the center of
the image. It is modeled as a sixth order polynomial

V (x) = 1 + v1R(x)2 + v2R(x)4 + v3R(x)6,

where R(x) is the normalized radius of the image point
x with respect to the image center.

Eq. (2) is optimized using the Gauss-Newton algorithm
with Levenberg-Marquardt (LM) damping and analytic Ja-
cobians. Since the proposed point tracking approach gives
rise to a large number of irradiances to be estimated, jointly
optimizing for all the parameters is computationally inten-
sive. Therefore, the dependency structure of the optimization
problem is exploited to decouple the estimation of the
irradiances from the other parameters.

In the first step, the parameters for the response and
vignetting function as well as the exposure times are updated
by assuming the radiances of the corresponding scene points
Lp as constant and calculating for each residual r the
corresponding row of the Jacobian

J =

(
∂r

∂c
,
∂r

∂v
,
∂r

∂ei

)
,

where c = (c1, c2, c3, c4) and v = (v1, v2, v3). Let e
denote the vector of all exposure times. The state update
for the parameters ∆x = (∆c,∆v,∆e) can then be found
by solving the normal equation

(JTWJ + λ diag(JTWJ))∆x = JTWr,

where J denotes the full Jacobian matrix, diag(A) de-
notes the operation extracting the diagonal part of the input
matrix A, r is the stacked residual vector and λ ∈ R is the
damping factor for LM-optimization.

The diagonal weight matrix W is built by combining two
weighting factors, one for robust Huber estimation w

(1)
r ,

and a second one w
(2)
r chosen to down weight residuals

at image locations of high gradient since for these points,
small inaccuracies in the correspondence estimation result
in a large error in image intensity. We define the gradient
dependent weights w(2)

r for a residual r as

wr =
µ

µ+ ||∇Fi(xpi )||22
,

where µ ∈ R+ is a positive constant and ||∇Fi(xpi )||22 is
the squared L2 norm of the image gradient at location xpi
in image Fi. This will typically down weight residuals in
the center of the tracked image patch whilst giving higher
importance to the residuals in the immediate vicinity of the
tracked feature point. The final weight value for a residual
is then given by multiplying the two weights w(1)

r and w(2)
r .

In the second round, the radiances of the scene points are
updated. This can be done efficiently since the radiance of
a scene point is independent of the radiances of other scene
points and all other parameters are fixed during this optimiza-
tion round. Firstly one jacobian matrix Jp is constructed for
every p ∈ P containing the partial derivatives of its residuals
with respect to the scene points radiance

Jp =

(
∂r

∂Lp

)
.

The radiance update can then be computed for every scene
point independently by

∆L =
JTp Wprp

(1 + λ)JTp WpJp
,

where again Wp contains the optimization weights, rp is
the stacked residual vector and λ ∈ R is the damping factor
of the LM iteration.

The algorithm then performs multiple optimization rounds,
alternating between the optimization of the response, vi-
gnette, and exposure times in the first step, and radiances
in the second. Since every round is guaranteed to perform
a downhill step with respect to the energy, this scheme will
eventually converge to a local minimum.

We distinguish between running our algorithm in an offline
and an online fashion. When calibrating offline, we assume
to have access to the entire input sequence and no hard
constraints on the running time. In the online setting images



are received frame by frame and no information about future
frames can be obtained. Here, we aim at providing photomet-
rically calibrated frames as input to a direct method running
in parallel. In the following we describe the implementation
differences between the two modes.

Offline calibration. In offline calibration mode all the
photometric parameters can be optimized jointly, first track-
ing the entire input sequence in order to obtain scene
point correspondences and afterwards optimizing Eq. (1) as
described above. For large sequences, to speed up the esti-
mation process, we split the input into optimization blocks of
constant size and optimize for each block independently. Due
to the unknown scale of the exposure times, we let the blocks
overlap a certain number of frames and align the exposures
using a least square metric within these overlapping regions.
After a first convergence of the algorithm, we perform outlier
rejection by removing a fixed percentage of the residuals that
yield the largest error. Then the algorithm is run again to fit
the remaining inliers better.

Online calibration. For an online calibration setting the
photometric correction of the images must be provided as fast
as possible. Therefore, it is not feasible to first collect a large
number of images in order to optimize all the parameters
jointly. However, in order to estimate for the vignetting
and response function reliably, multiple frames are required
for calibration. Since exposure times can be estimated from
frame to frame, we suggest to decouple their estimation from
the other parameters, providing an exposure time estimate
immediately for an incoming frame. Our system keeps a
state for the current vignette and response estimates, which
is successively updated as more frames arrive, optimizing
Eq. (1). On the arrival of a new frame, it is corrected by
removing the response and vignette based on the current
estimate. Then we compute exposure times jointly for each of
the last M frames using a weighted linear least square error
energy formulation which rearranges the residual term of
Eq. (1), removing the response and vignette from the output
intensity

E =

M∑
i=1

∑
p∈Pi

wpi

(
f−1(Opi )

V (xpi )
− eiLp︸ ︷︷ ︸

r(ei,Lp)

)2

, (3)

where Pi denotes the set of scene points visible in the i’th
image and f−1 is the inverse of the response function. Each
residual is now only dependent on the exposure time of its
frame and the radiance of its scene point. When fixing the
radiances for the tracked points, Eq. (3) becomes a linear
optimization problem which can be solved efficiently. We
initialize the radiances with the average output intensities of
the tracked points.

Since incoming frames are immediately corrected based
on the current response and vignetting estimate, the rather
slow joint optimization of all the photometric parameters
does no longer constitute a bottleneck for performance, since
it can be performed independently in the background. Since
KLT tracking as well as the exposure optimization can be

(a) Response function (b) Vignetting

(c) Exposure times (d) Errors during optimization
Fig. 4: Recovered photometric parameters for one sequence of the
ICL-NUIM dataset with artificial photometric disturbances. Figure
(d) shows the reduction of the optimization energy in every iteration
before and after outlier rejection.

performed very fast, our algorithm is enabled for realtime
processing.

V. EVALUATION

The implemented system is evaluated on a number of
datasets, where for all sequences the tracking frontend keeps
around N = 500 active features in every frame, extracting
5× 5 image patches around each tracked feature point. The
patch size is chosen as large enough to avoid only estimating
using high gradient correspondences, whilst keeping the
computational effort feasible. The nonlinear optimization
backend is initialized with the unit response and slight vi-
gnetting. Radiances for the scene points were initially chosen
as the arithmetic mean of their pixel intensities, normalized
to the unit interval [0, 1]. The grids for extracting spatially
uniform features and checking for local motion consistency
were constructed from cells of size 32× 32 pixels.

In case of offline calibration, the input sequence is split
into optimization blocks of 200 frames, where each block
overlaps with its neighbors by 30 frames in order to perform
the exposure time alignment. For every block the calibration
is performed and the results are averaged. We find that
typically the scenes will provide sufficient radial feature
movement within this window for reliably calibrating for
the vignetting. If the tracked scene points do not exhibit a
substantial amount of radial motion across the tracked win-
dow, the estimation result is discarded since the vignetting
is not well constrained in these cases. A final estimate
of the vignette and response function can be obtained by
averaging the results for each block. All exposure times are
initially set to 1 and optimization is performed until only
an insignificant energy reduction is achieved. Then we reject
20% of the residuals yielding the largest errors, performing
another optimization round until convergence.

For the online calibration setting we keep a window of
the M = 10 most current frames in order to perform the
fast exposure estimation. To update the response function



(a) Response (b) Vignetting

(c) Exposure
Fig. 5: Recovered photometric parameters for sequence 50 of the
TUM Mono VO dataset. Calibration was performed several times
on different parts of the sequence, each time on an input block
of fixed size. The recovered responses and vignetting functions as
well as their averages are displayed in (a) and (b). The exposure
times for each optimization block have been concatenated and are
displayed in different colors in (c).

and vignetting, the optimization backend uses blocks of
100 tracked frames, where we only optimize for every fifth
exposure time within the block. This speeds up the estimation
process and is a valid approach since the frames in this
block have already been photometrically corrected using
the exposure time estimate from the linear optimization
and the exposure times from the optimization backend are
no longer required as an output. The rapidly approximated
exposure times are used as an initialization for the exposure
times in the nonlinear optimization. We only perform a few
optimization rounds on each incoming data block without
performing outlier rejection in order to further speed up our
implementation.

We first evaluate our algorithm in the offline setting. The
system is run on the artificially generated ICL-NUIM dataset,
where photometric disturbances in response, vignetting and
exposure have been applied. Figure 4 shows the sample
recovery of the parameters, where the unknown constant
for the exponential ambiguity is chosen to optimize the
alignment to the ground truth with respect to a least square
error metric. Since only the exposure ratios but not the
absolute exposure times can be recovered (as the physical
scale of the radiances is unknown), the exposure times are
additionally aligned by multiplying them with a constant
factor. We also show the stepwise reduction of the energy
after each round, the black line indicates the energy loss
after outlier rejection.

Further we ran our system on the sequences provided
by the TUM Mono VO dataset for which full photometric
ground truth is available. It utilizes two different cameras
with different response and vignetting functions and provides
ground truth for the exposure times for each frame. Fig. 8
shows an example offline calibration for sequence 50, show-
ing all the calibrated vignetting functions in (a) and responses
in (b), where each curve responds to one calibration block.

(a) Without calibration (b) With calibration

(c) Reconstructed scene without and with calibration.
Fig. 6: Results of running DSO on a manually disturbed sequence
of the ICL-NUIM dataset with and without pre-calibration of the
sequence. Note how without photometric calibration DSO entirely
fails, whereas using our calibration an accurate trajectory as well
as a good 3D-reconstruction are achieved.

The overall average estimation and the ground truth curves
are also shown. The estimated exposure times are appended
one after another and are shown in subfigure (c). The same
alignment strategy as for the ICL-NUIM dataset is used.
Note that for some of the optimization blocks, the exposure
time changes only insignificantly, but calibration can still be
performed reliably due to the presence of vignetting.

To show the applicability of our method to visual odom-
etry or visual SLAM, we run DSO on the 27 sequences
taken with the non-fisheye camera, calibrating for the pho-
tometric parameters online. Ten runs were performed for
each sequence in order to compensate for the probabilistic
aspects of DSO, evaluating the alignment error as defined in
[3]. Fig. 8 shows the alignment errors for each of the runs
using either the provided ground truth, our online calibration
method or no photometric calibration. Using our algorithm
significantly reduces the alignment errors compared to using
no calibration, yielding similar results to using the ground
truth.

We also run our online version of the algorithm on
a difficult sequence from the EuRoC Mav aerial dataset,
which does not provide any photometric calibration data
and exhibits a lot of abrupt brightness changes which are
particularly challenging for direct methods to handle. Fig. 1
shows qualitative results of the video sequence before and
after correction.

Fig. 7 shows a trajectory obtained by running DSO on the
difficult sequence of EuRoC using either no photometric cal-
ibration or using the online output of our calibrated method.
Since DSO as a monocular visual odometry method does
not provide the trajectory scale, a similarity transformation
is calculated to align the estimated trajectory with the ground
truth. Again, in order to account for probabilistic differences
within the results, we run the algorithm 10 times on both
input videos. Whilst in the case of no calibration, the direct
method yields large trajectory errors as well as large errors



(a) Without calibration (b) With calibration

(c) Trajectory error with and without calibration

(d) Qualitative result of the 3D-reconstruction without and
with online photometric calibration. Note the significant
improvement using our online photometric calibration as
input for the direct method.

Fig. 7: Results of running our algorithm on the challenging Euroc
Mav sequence ”Vicon room (difficult)” with and without prior
photometric calibration. The trajectory error (shown for several runs
of the same sequence) is significantly reduced.

Fig. 8: Comparison of the alignment error for running DSO
on sequences for one of the cameras of the TUM Mono VO
dataset using either the full ground truth calibration, no photometric
calibration or our online calibration.

in the 3D-reconstruction, we are able to achieve results with
much lower trajectory error and significantly improve the
reconstruct result. This also shows that the affine brightness
optimization provided by DSO does not work well for drastic
exposure changes.

VI. CONCLUSION

We propose a novel system for providing realtime online
calibration of auto exposure video for direct formulations of
visual odometry and visual SLAM, estimating for the pho-
tometric response function, vignetting, and exposure times.
We show that our algorithm provides an accurate and robust
photometric calibration for arbitrary video sequences and
significantly enhances the quality of direct methods for visual

odometry such as DSO. In future work, we plan to substitute
the KLT tracking by integrating the proposed online opti-
mization into existing direct methods where correspondences
are obtained based on a brightness constancy assumption to
jointly optimize for the photometric parameters, the camera
poses, and depth values.
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