
Online Learning of Joint-Muscle Mapping Using Vision in
Tendon-driven Musculoskeletal Humanoids

Kento Kawaharazuka, Shogo Makino, Masaya Kawamura, Yuki Asano, Kei Okada and Masayuki Inaba

Abstract— The body structures of tendon-driven muscu-
loskeletal humanoids are complex, and accurate modeling is
difficult, because they are made by imitating the body structures
of human beings. For this reason, we have not been able to move
them accurately like ordinary humanoids driven by actuators in
each axis, and large internal muscle tension and slack of tendon
wires have emerged by the model error between its geometric
model and the actual robot. Therefore, we construct a joint-
muscle mapping (JMM) using a neural network (NN), which
expresses a nonlinear relationship between joint angles and
muscle lengths, and aim to move tendon-driven musculoskeletal
humanoids accurately by updating the JMM online from data
of the actual robot. In this study, the JMM is updated online
by using the vision of the robot so that it moves to the correct
position (Vision Updater). Also, we execute another update to
modify muscle antagonisms correctly (Antagonism Updater).
By using these two updaters, the error between the target and
actual joint angles decrease to about 40% in 5 minutes, and
we show through a manipulation experiment that the tendon-
driven musculoskeletal humanoid Kengoro becomes able to
move as intended. This novel system can adapt to the state
change and growth of robots, because it updates the JMM
online successively.

I. INTRODUCTION

Tendon-driven musculoskeletal humanoids [1]–[4] are ex-
pected to play an active part in human society in the future,
because they have multiple degrees of freedom (multi-DOFs)
like the scapula and spine of human beings, can realize
variable stiffness, are soft in contact, etc. However, the accu-
rate modeling of tendon-driven musculoskeletal humanoids is
difficult, because they are made by imitating human beings
and so they have complex muscle arrangements and body
structures. It is difficult to move them accurately like ordinary
humanoids driven by actuators in each axis, if we use only
their geometric models (Fig. 1). Also, internal muscle tension
and slack of tendon wires tend to emerge because of the
model error between its geometric model and the actual
robot. Thus, in order for tendon-driven musculoskeletal hu-
manoids to gain popularity, we need a novel system by which
an exact geometric model is not necessary, and instead the
movement information of the actual robot is used in order
to move the robots accurately as intended.

In previous studies, various controls were developed in
order to move tendon-driven musculoskeletal humanoids
as intended, and decrease the internal muscle tension and
slack of tendon wires. Ookubo, et al. [5] and Jäntsch, et
al. [6] obtained data of joint angles and muscle lengths

Authors are with Department of Mechano-Informatics, Graduate School
of Information Science and Technology, The University of Tokyo, 7-3-1
Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan. [kawaharazuka, makino,
kawamura, asano, k-okada, inaba]@jsk.t.u-tokyo.ac.jp

Eye camera

Actual robot Estimated joint angle

Estimated marker position

from geometric model

Actual marker position

from eye camera

Fig. 1. Difficulty of movement to the intended position. This figure
shows the difference between the movement of a geometric model and the
movement of the actual robot when grasping object.

from the actual robot by moving the humanoid, acquired a
joint-muscle mapping (JMM) which expresses a nonlinear
relationship between joint angles and muscle lengths by
polynomial regression of the data, and moved it accurately
by using this JMM. Also, Kawaharazuka, et al. [7] estimated
the muscle antagonism and decreased the internal muscle
tension and slack of tendon wires by inhibiting antagonist
muscles against agonist muscles. However, these methods
do not update JMM online, and cannot adapt to the state
change of the actual robots according to the elongation of
tendon wires. Also, in the studies of [5] and [6], we must
obtain numerous data from the actual robot, and it is difficult
to apply these methods to JMMs including multi-DOFs like
human beings due to its computational complexity. In other
studies, several controls consider muscle synergy [8]. Among
them, Diamond et al. [9] implemented an algorithm using
muscle synergy and reinforcement learning for a reaching
task. This method realizes a simple algorithm using muscle
synergy, and the reaching movement can be improved in
each trial, but the experiment is done only in a simulation
environment, and there are some problems regarding the
number of trials, lack of versatility, etc.

To solve these problems, we propose a novel system which
conducts online learning of JMM using the vision of tendon-
driven musculoskeletal humanoids. In this system, JMM is
expressed using neural network (NN), and muscle jacobian
is obtained by differentiating the JMM. The humanoid itself
looks at part of its body such as its hands and feet, and
becomes able to move accurately by modifying the JMM

ar
X

iv
:2

40
4.

05
29

5v
1

 [
cs

.R
O

]
 8

 A
pr

 2
02

4

online using data of the actual robot. At the same time,
we do another online update of the JMM to correct internal
muscle tension and slack of tendon wires. This study does
not consider the influence of muscle compliance, and deals
with only the condition in which no forces, except for gravity,
are applied to the robot. Also, we assume that the geometric
model regarding the joint structure of the robot is correct.

Using this proposed system, manipulation tasks, which
were challenging for tendon-driven musculoskeletal hu-
manoids to execute using only its geometric model, can be
done by updating JMM accurately online using the data of
the actual robot. Thus, this system can be adapted to the
growth and state change of robots.

This paper is organized as follows. In Section I, we stated
the motivation and the goal of this study. In Section II, as
an introduction to this system, we will explain the method
of training JMM, obtaining muscle jacobian, updating JMM
online, and estimating joint angles. In Section III, we will
explain the overview of this system and two types of online
learnings of JMM. In Section IV, we will conduct some basic
experiments about respective components of this system, and
discuss the effectiveness of this study through a manipulation
task experiment. Finally, in Section V, we will state the
conclusion and the future works.

II. Learning of Joint-MuscleMapping using a Neural
Network

To express JMM, methods using table-searching [10],
polynomial regression [5], [6], and NN [11] have been
proposed. The methods using table-searching and polyno-
mial regression have a problem that the computational cost
increases exponentially in accordance with the increase of
included joints, and are not good at online updating of JMM.
The positive side to using polynomial regression is that
we can obtain smooth muscle jacobian by differentiating.
In comparison, the expression using NN is good at online
updating, but we cannot obtain smooth muscle jacobian by
differentiating. Jäntsch, et al. [11] collected the data set to
train NN only at first, and there is no discussion about the
methods to obtain smooth muscle jacobian, to estimate joint
angles, and to update JMM online.

Thus, in this study, we express JMM using NN in order
to make online learning of JMM possible. At first, though
the difference between the geometric model and the actual
robot is large, we construct JMM using the information of the
geometric model. After that, we modify the JMM obtained
from the geometric model using the information from the
movement of the actual robot. In this section, we will explain
the method of training JMM from a geometric model, ob-
taining smoothened muscle jacobian, updating JMM online,
and estimating joint angles. The overview of the expression
of JMM using NN is shown in Fig. 2, and we will explain
the respective components below.

Joint-Muscle Mapping (JMM)

Joint

angle
Muscle

length

(𝜃𝑚𝑜𝑑𝑒𝑙 , 𝑙𝑚𝑜𝑑𝑒𝑙)1
:
:

(𝜃𝑚𝑜𝑑𝑒𝑙 , 𝑙𝑚𝑜𝑑𝑒𝑙)𝑛

Initial training

using geometric model
Joint angle estimator by EKF

Obtaining muscle jacobian

M
u

sc
le

 l
en

g
th

 [
m

m
]

Joint angle [rad]

Secondary approximation

and differentiating

M
u

sc
le

 l
en

g
th

 [
m

m
]

Joint angle [rad]

Random value from JMM

Observed actual value

Online learning by actual robot

update

𝐺(muscle jacobian)

𝑙 = 𝑓(𝜃)

𝐺 =
𝑑𝑙

𝑑𝜃

Predict

𝜃𝑘|𝑘−1 = 𝜃𝑘−1|𝑘−1 + 𝐺𝑘−1
−1 ∆𝑙

𝑃𝑘|𝑘−1 = 𝑃𝑘−1|𝑘−1 + 𝑄

Update

𝑒𝑘 = 𝑧𝑘 − 𝑓 𝜃𝑘|𝑘−1
𝑆𝑘 = 𝑅 + 𝐺𝑘−1𝑃𝑘|𝑘−1𝐺𝑘−1

𝑇

𝐾𝑘 = 𝑃𝑘|𝑘−1G𝑘
𝑇𝑆𝑘

−1

𝜃𝑘|𝑘 = 𝜃𝑘|𝑘−1 + 𝐾𝑘𝑒𝑘
𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐺𝑘−1)𝑃𝑘|𝑘−1

Not smooth

Fig. 2. Overview of the expression of joint-muscle mapping using neural
network.

A. Initial Training of Joint-Muscle Mapping from a Geomet-
ric Model

In this study, a function which expresses a nonlinear
relationship between joint angles and muscle lengths:

l = f (θ) (1)

is expressed by neural network, which has 3 layers: an input
layer of joint angles, a hidden layer, and an output layer of
muscle lengths. l is muscle lengths and θ is joint angles.

First, we construct a simple geometric model of a tendon-
driven musculoskeletal humanoid. In this study, we use
Kengoro [4] (the details are in Section IV-A). This geometric
model is a simple one composed of muscles in which the
starting point, relay points, and end point are connected
(the lower left figure of Fig. 2). Next, we construct JMM
for each respective body part such as the shoulder, scapula,
neck, and so on. For the example of the shoulder, when we
construct the JMM including 3 DOFs glenohumeral joint
and 1 DOF elbow joint, we pick up muscles which move
these 4 DOFs (in this study, 10). If these muscles include
polyarticular muscles which move other DOFs beside these
4 DOFs, we must add those other DOFs to the JMM of the
shoulder. Thus, the JMM of 4 DOFs around the shoulder is
the nonlinear relationship between 10 muscles which move
these 4 DOFs and all joints which these 10 muscles can move
(for example, the pectoralis major muscle can move scapula
joints in addition to the shoulder joints). In this case, there are
8 DOFs including the 4 DOFs scapula (we limit the DOF of
the scapula to 4 DOFs: roll and yaw of sternoclavicular joint,
and roll and pitch of acromioclavicular joint). Through this
process, the JMM of the shoulder is composed of 8 DOFs
and 10 muscles. We construct the other JMMs likewise.
Although it is possible to construct a JMM including all
DOFs and muscles of the entire body, this is difficult due to
its computational complexity, and this is one of our future
works.

Finally, we train these JMMs by the geometric model
of the tendon-driven musculoskeletal humanoid. We move
respective joint angles of the geometric model little by little,

calculate the muscle lengths, and construct a data set. Using
this data set, we train NN of JMM.

The JMM obtained from the geometric model has almost
the same value as the geometric model. However, as shown
in Fig. 1, there is a large error between this JMM and the
actual robot, so we need to modify it using the information
from the movement of the actual robot.

B. Derivation of Muscle Jacobian from Neural Network

We obtained JMM by training NN using the data set of
the geometric model. An important component in control-
ling tendon-driven musculoskeletal humanoids is the muscle
jacobian:

G(θ) = dl/dθ = d f (θ)/dθ (2)

and we must differentiate NN to obtain this muscle jacobian.
However, though the JMM expressed using NN is differen-
tiable, because the JMM is the superposition of activation
functions, differentiation results in the appearance of each
function’s features. For example, when we use sigmoid as an
activation function, the differentiated value can be wavy due
to the feature of sigmoid, and when we use ReLu, the value
can be jagged in the same way. To solve this problem, we
obtain muscle jacobian by secondary approximation using
some sample points. When joint angles of the robot is θ,
to obtain the muscle jacobian Gi j of a certain muscle i and
joint j, we get some sample points of muscle i length when
moving joint j by degrees (in this study, we sampled 5
points: θ j and 4 points which have d1 = 10, d2 = 20[deg]
interval each from θ j in the positive and negative direction),
solve secondary approximation from the data set, and obtain
smoothened muscle jacobian by differentiating it.

x j = {· · · , θ j − d2, θ j − d1, θ j, θ j + d1, θ j + d2, · · · } (3)

y j = {· · · , f

θ0
...

θ j − d1
...

 , f

θ0
...
θ j
...

 , f

θ0
...

θ j + d1
...

 , · · · } (4)

Σx4

j Σx3
j Σx2

j
Σx3

j Σx2
j Σx j

Σx2
j Σx j Σ1

ai j

bi j

ci j

 =

Σx2

jyi j

Σx jyi j

Σyi j

 (5)

Gi j = 2ai jθ j + bi j (6)

where ai j, bi j, ci j are coefficients of secondary approximation,
and yi j is the muscle i length of y j.

In addition, there are several other methods to smoothen
muscle jacobian, such as the weight decay and minimization
of network structure.

C. Online Learning of Joint-Muscle Mapping from Move-
ment Data of the Actual Robot

In order to become able to move the actual robot accu-
rately, we need to update the weights of NN obtained from
the geometric model. However, if we simply update NN, a
difference in update frequency emerges among joint angles,
and this can cause over-fitting. To decrease the difference of

update frequency among joint angles, in addition to the data
(θupdate, lupdate) which we want to update, we use the data
of the initial value (0,0) (meaning when all joint angles are
0, muscle lengths are also 0) and the sets of data which are
collected randomly from the current JMM (in this study, 8
sets of data), and update NN by dataset D as minibatch.

D = {(θupdate, lupdate), (0,0), (θrand, f (θrand))1···N} (7)

The concept is shown in the upper left figure of Fig. 2.
We succeeded in updating NN online gradually without
destroying the entire value of JMM.

D. The Estimation of Joint Angles

Tendon-driven musculoskeletal humanoids do not have
sensors measuring joint angles such as encoders and poten-
tiometers because they have many ball joints imitating joints
of human beings. So, we need to estimate current joint angles
from expansion and contraction of muscles. In this study, to
estimate joint angles, we use the method of Ookubo, et al.
[5]. This method uses extended kalman filter (EKF), and we
substitute the NN output of this study for the muscle jacobian
and the function calculating muscle lengths from joint angles
in this method. Specifically, for muscle jacobian G and the
function f in the state equation and observation equation
of EKF as shown below, we use the value obtained by NN
output.

θk|k−1 = θk−1|k−1 +G−1(θ)δl (8)
l = f (θk|k−1) (9)

III. Online Learning System

A. Overview

The overview of this system is shown in Fig. 3. We
express JMM using NN, and we move the actual robot and
estimate joint angles using this JMM. Also, we update this
JMM online using two types of methods. The first method
is online learning using estimated joint angles and the actual
muscle lengths (Antagonism Updater). By this method, we
can modify the slack of tendon wires and internal muscle
tension between agonist and antagonist muscles that occur
due to the model error between the geometric model and
actual robot. The second method is online learning using
the actual joint angles estimated by vision and target muscle
lengths sent to move the actual robot (Vision Updater). By
this method, we can decrease the model error between the
geometric model and actual robot, and become able to move
the actual robot accurately as intended.

B. Antagonism Updater

This online learning method is very simple; we update
JMM using the method explained at Section II-C in which
the data set is the current estimated joint angles θest and
actual muscle lengths l as shown below.

(θupdate, lupdate) = (θest, l) (10)

We update JMM when the change of muscle lengths is
smaller than a certain value and when θest is further from

Joint-Muscle Mapping

Joint

angle
Muscle

length

Actual Robot

Joint -Angle Estimator

(based on EKF)

𝑙 → 𝜃𝑒𝑠𝑡

Muscle Stiffness Controller

𝑙, 𝑙𝑡𝑎𝑟𝑔𝑒𝑡 , 𝐾𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 → 𝑇𝑡𝑎𝑟𝑔𝑒𝑡

Updater.2: Vision Updater

𝜃𝑒𝑠𝑡 , 𝑃𝑣𝑖𝑠𝑖𝑜𝑛 → 𝜃𝑖𝑘

Updater.1: Antagonism Updater

Geometric Model

𝜃𝑚𝑜𝑑𝑒𝑙 → 𝑙𝑚𝑜𝑑𝑒𝑙

Motor Current

Controller

𝑇𝑡𝑎𝑟𝑔𝑒𝑡 → 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

1[ms] cycle

Target-Length Request Server

𝜃𝑡𝑎𝑟𝑔𝑒𝑡 → 𝑙𝑡𝑎𝑟𝑔𝑒𝑡

8[ms] cycle

20[ms] cycle

𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑇𝑡𝑎𝑟𝑔𝑒𝑡

𝑙, 𝜃𝑒𝑠𝑡

𝑙𝑃𝑣𝑖𝑠𝑖𝑜𝑛, 𝑙𝑡𝑎𝑟𝑔𝑒𝑡

(𝜃𝑖𝑘 , 𝑙𝑡𝑎𝑟𝑔𝑒𝑡)
(𝜃𝑒𝑠𝑡 , 𝑙)

(𝜃𝑚𝑜𝑑𝑒𝑙 , 𝑙)

𝜃𝑡𝑎𝑟𝑔𝑒𝑡

𝜃𝑡𝑎𝑟𝑔𝑒𝑡
𝑙𝑡𝑎𝑟𝑔𝑒𝑡

𝑙𝑡𝑎𝑟𝑔𝑒𝑡

Online learning

Initial training

Use Joint-Muscle Mapping

Fig. 3. System overview.

previous θupdate by more than a certain value. We will
explain the reason why this online learning is able to modify
muscle antagonism correctly. First, we move the tendon-
driven musculoskeletal humanoid using the procedure below.

1) We set the target joint angles.
2) We calculate target muscle lengths by inputting the

target joint angles into JMM.
3) We calculate target muscle tensions using muscle stiff-

ness control [12], and send these to the actual robot.
The equation of muscle stiffness control is shown as below.

Ttarget = Tbias +max{0,Ksti f f (l − ltarget)} (11)

This control permits muscle length errors to a certain degree,
meaning that it can inhibit internal muscle tension and slack
of tendons to a certain degree. This effect of inhibition
becomes large when we make Ksti f f smaller and Tbias

bigger. If there are slack of tendons, Tbias makes the slack
decrease, and by using the Antagonism Updater in this
situation, the antagonism relationship is modified correctly
in the direction that decreases the slack of tendons. Also,
if there is large internal muscle tension, l becomes longer
than ltarget due to muscle stiffness control, and the internal
muscle tension decreases. By using the Antagonism Updater
in this situation, we can modify the antagonism relationships
correctly in the direction that decreases the large internal
muscle tension. Thus, if the sent target muscle lengths are
impossible to be executed and large internal muscle tension
and slack of tendons emerge, this problem can be solved by
updating NN using estimated joint angles and actual muscle
lengths which in actuality have no slack of tendon wires
and smaller internal muscle tension than the original due to
muscle stiffness control.

C. Vision Updater

In this section, we will explain the method to modify JMM
using the RGB camera of Kengoro and AR marker attached

to the hand of Kengoro. This method can be applied to not
only the hand but also any other part of the body, and we can
use the feature value of the body or the value of IMU instead
of the AR marker. The procedure of this online learning is
stated as below.

1) By looking at the AR marker attached to the hand from
the RGB camera in the head, we can obtain the relative
position and orientation from the camera to the hand.

2) We obtain the actual joint angles θik by solving inverse
kinematics (IK), in which the initial joint angles are the
current estimated joint angles, the target position and
orientation are Pvision as stated above, and the links are
the head, thorax, collarbone, scapula, humerus, ulna
and radius.

θik = IK(θinitial = θest,Ptarget = Pvision) (12)

3) Having omitted any mistakes of the IK (omitted if the
actual joint angles θik are too different from the current
estimated joint angles θest), we execute online learning
using the sent target muscle lengths and actual joint
angles.

(θupdate, lupdate) = (θik, ltarget) i f ||θik − θest ||2 < C
(13)

where || · ||2 expresses L2 norm and C is a threshold.
Like the Antagonism Updater, we update JMM when the
change of muscle lengths is smaller than a certain value and
when θik is further from previous θupdate by more than a
certain value.

This method is different from the Antagonism Updater
in that this updater can modify the JMM to become able
to move the actual robot accurately as intended. We can
use the actual muscle lengths l instead of the target muscle
lengths ltarget, in which case we are also able to modify
JMM accurately to a certain degree. However, due to muscle
stiffness control, there is a difference between the sent muscle
lengths and actual muscle lengths. So when using l, it is
difficult to meet requirements needed to move the actual
robot to the intended position, and using ltarget is better
regarding tracking accuracy.

IV. Experiments

We conducted some experiments using the proposed sys-
tem. First, we will discuss the construction of JMM using
NN, and next, we will verify the two types of online learn-
ings, respectively. After that, we will integrate the two online
learnings, and execute quantitative analysis on the realization
of intended joint angles. Finally, through a manipulation
experiment, we will verify the effectiveness of this proposed
system.

A. Basic Experiments of Joint-Muscle Mapping

First, we will consider the initial training of JMM from
a geometric model. The joint structure of Kengoro’s upper
limb (Fig. 4) is the same as in human beings, and we divided
it into 4 groups: the neck, scapula, shoulder, and forearm.
As stated in Section II-A, we constructed 4 JMMs using NN

Radioulnar joint(1DOF)

3-DOF Spherical Joints

1-DOF Rotational Joints

Acromioclavicular joint(3DOF)

Elbow joint(1DOF)

Glenohumeral joint(3DOF)

Wrist joint(2DOF)

Sternoclavicular joint(3DOF)

Joint Arrangement Overview Links

Neck joint(3DOF)

Neck-top joint(3DOF)

Fig. 4. Joint structure of Kengoro upper limb.

#3

#6

#4

#5 #7

#2#1

#8

#9

#16

#13

#14

#15

#18

#17

#11

#10

#12

#20

#19

#21
#22

#23

#24

#25

#26

#27

#28

Muscle Name

1 Obliquus capitis superior

2 Splenius capitis

3 Longus colli

4 Scalenus

5 Sternocleidomastoid

6 Trapezius (upper)

7 Trapezius (lower)

8 Rhomboid

9 Serratus anterior

10 Pectoralis minor

11 Pectoralis major

12 Latissimus dorsi

13 Deltoid(front)

14 Deltoid(middle)

15 Deltoid(rear)

16 Infraspinatus

17 Subscapularis

18 Biceps brachii

19 Triceps brachii

20 Brachialis

21 Supinator

22 Palmaris longus

23 Extensor carpi radialis longus

24 Pronator quadratus

25 Extensor carpi radialis brevis

26 Flexor pollicis longus

27 Flexor digitorum profundus

(index, middle)

28 Flexor digitorum profundus

(ring, little)

Fig. 5. Muscle arrangement of Kengoro upper limb.

regarding these respective groups. In this study, the number
of hidden layer units is 1000, and the activation function of
NN is sigmoid. In the preliminary experiment considering
the structure of NN, in the case of 8 DOFs and 10 muscles
included in the shoulder JMM, which is the biggest in this
study, we verified that one hidden layer and 1000 units in the
hidden layer are enough to express the JMM (loss of training
is under 1 [mm] as shown in Fig. 6). The unit of input
joint angles is [rad], and the unit of output muscle lengths is
[mm]. As an example, we show the muscle arrangement of
Kengoro upper limb in Fig. 5 and the JMM of the shoulder
of Kengoro in Fig. 6. The data set of joint angles and muscle
lengths is obtained by equally dividing the range of each joint
movement into 5–9 parts and moving the joint angles of the
geometric model by each value, and the number of total data
was 2646000. In this initial training, the size of minibatch
is 5, the number of epoch is 20, the optimization method
is Adam, and we used one-fifth of the data set randomly
as validation. The loss transition, or the root mean squared
error (RMSE), when training is shown in the left graph of
Fig. 6. As an example, we show the change of 10 muscle
lengths from NN when moving the shoulder pitch axis in the
right graph of Fig. 6. From these graphs, we can see that the
weight of NN is trained well to a value similar to that of the
geometric model.

Second, regarding muscle jacobian, we show the muscle

jacobian in the pitch direction during shoulder flexion in Fig.
7. In other words, it is a differentiation of the right graph
of Fig. 6. When we differentiated simply using analytical
differentiation of NN, the graph fluctuated as shown in the
left graph of Fig. 7. In comparison, when we differentiated
using the method of Section II-B, a smooth and natural graph
was obtained as shown in Fig. 7.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20

R
M

S
E

 [
m

m
]

Epoch

RMSE of initial training

-100

-50

0

50

100

-120 -90 -60 -30 0 30

M
u

sc
le

 l
en

g
th

 [
m

m
]

Joint angle [deg]

Muscle length

Pectoralis major

Latissimus dorsi

Infraspinatus

Subscapularis

Deltoid(front)

Deltoid(middle)

Deltoid(rear)

Triceps brachii

Brachialis

Biceps brachii

Fig. 6. The result of the initial training experiment. Left graph shows
the loss transition of initial training using the geometric model; right graph
shows example of muscle length change during shoulder flexion.

-100

-50

0

50

100

-120 -90 -60 -30 0 30

M
u
sc

le
 l

en
g
th

 [
m

m
]

Joint angle [deg]

Simple Muscle Jacobian

Pectoralis major

Latissimus dorsi

Infraspinatus

Subscapularis

Deltoid(front)

Deltoid(middle)

Deltoid(rear)

Triceps brachii

Brachialis

Biceps brachii
-100

-50

0

50

100

-120 -90 -60 -30 0 30

M
u
sc

le
 l

en
g
th

 [
m

m
]

Joint angle [deg]

Smoothened Muscle Jacobian

Fig. 7. Muscle jacobian in the pitch direction during shoulder flexion. Left
graph is the analytical differentiation of NN; right graph is the differentiation
of NN using the method of Section II-B.

B. Experiment of Antagonism Updater using Elbow Joint

We will show the effectiveness of Antagonism Updater
stated in Section III-B through an experiment using the
elbow joint. In the elbow joint, there are mainly 3 muscles:
the brachialis, biceps brachii, and triceps brachii. In this
experiment, we moved the elbow joint of Kengoro up to 90
[deg] by 30 [deg] in 2 second intervals (Fig. 8) continuously.
We show the muscle tensions during this experiment in Fig.
9. The graph shows that the two agonist muscle tensions
became equal and the antagonist muscle tension decreased
gradually during the movement of the elbow joint. In this
experiment, maximum muscle tension decreased from 370
[N] to 250 [N] in 11 trials. Although there was a large
difference in muscle tensions among agonist muscles (the
brachialis and biceps brachii) at first, the difference decreased
gradually during the trials. By this experiment, we could
verify the effectiveness of the Antagonism Updater. However,
as shown in Fig. 8, the joint angles are largely different from
the intended angles. This updater only modifies the muscle
antagonism. In order to move the actual robot as intended,
we conducted an experiment of Vision Updater next.

1 2 3 4

30 [deg] 60 [deg]0 [deg] 90 [deg]

Fig. 8. The movement of Antagonism Updater experiment using the elbow
joint. We repeated this movement 11 times.

0

50

100

150

200

250

300

350

400

0 50 100 150 200

M
u
sc

le
 t

en
si

o
n
 [

N
]

Time [sec]

Muscle tension

Triceps brachii

Brachialis

Biceps brachii

370 [N]

250 [N]

Fig. 9. The result of Antagonism Updater experiment using the elbow
joint. This graph shows muscle tension change during elbow flexion.

C. Experiment of Vision Updater

In order to verify the effectiveness of Vision Updater, we
will show the correct modification of estimated joint angles
during an experiment moving the upper limb of Kengoro
and looking at the limb. In this experiment, we sent various
joint angles to Kengoro’s upper limb, Kengoro looked at
the AR marker attached to the hand from eyes in the head,
and updated JMM online using the information. The correct
modification of JMM by this updater is shown in Fig. 10.
The left figure shows how the estimated position of the AR
marker from the current JMM and the position of the AR
marker from Kengoro’s RGB camera became close using
this updater. Although there was a difference among the two
AR marker positions at first, the positions became closer and
finally overlapped. The right graph shows the transition of
RMSE of the difference between the estimated joint angles
from JMM and the actual joint angles estimated using vision,
and the RMSE became smaller gradually. For example, the
RMSE of the shoulder was about 16 [deg] at first, but it
finally decreased to about 3 [deg]. By this experiment, we
verified the effectiveness of Vision Updater.

D. Experiment of Antagonism Updater and Vision Updater

We will integrate the two updaters: Antagonism Updater
and Vision Updater, apply them to the actual robot, and
show quantitative analysis regarding realization of intended
joint angles. We evaluated the average and standard devia-
tion of RMSE of the difference between the estimated and
actual joint angles (RMSE of (θest − θactual), RMS E joint)
by repeating the movement from randomized start postures
to target postures. As a reference, θest is almost equal to
the θtarget we sent, because θest is estimated using muscle
lengths l = f (θtarget). First, we sent several postures to

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

R
M

S
E

 [
d

eg
]

Time [sec]

RMSE

neck

collar

shoulder

forearm
Eye camera

Estimated marker position

from joint-muscle mapping

Actual marker position

from eye camera

overlapped

Before After

decrease

Fig. 10. The result of Vision Updater experiment. Left figure shows how
this experiment was carried out; right graph shows RMSE of the difference
between the estimated joint angles from JMM and the actual joint angles
using the RGB camera.

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6

R
M

S
E

 [
d

eg
]

Posture

RMSE of the difference between

estimated and actual joint angles

Before learning After learning

0

50

100

150

200

250

300

0 1 2 3 4 5 6

D
is

ta
n

ce
 [

m
m

]

Posture

Distance between estimated and

actual hand position

Before learning After learning

Fig. 11. RMSE of the difference between the estimated and actual joint
angles RMS E joint and the distance between the estimated and actual hand
xyz position Distancehand , regarding before and after the online learning
using Antagonism Updater and Vision Updater. We showed the average
and standard deviation among several trials. The error bar of this graph is
the standard deviation.

the robot successively, conducted online learning using the
actual robot, and obtained modified JMM. The number of
postures we sent during online learning was 27 in 300 [sec].
Next, we generated 5 target postures (named posture 1–5;
we checked these postures are feasible and absolute error
of joint angles between these postures and all postures we
sent during the online learning are distant by at least 20
[deg]), and repeated the movement from 10 randomized
start postures to postures 1–5, respectively. We moved the
robot from randomized start postures in order to consider
the influence of hysteresis and reproducibility. We conducted
these trials before and after the online learning (total: 100
trials), and showed RMS E joint in Fig. 11. There are some
differences among target postures 1–5, but the average of
RMS E joint decreased from before to after the online learning
regarding all postures. The standard deviation is very small.
Also, we showed the distance between the estimated and
actual hand xyz position Distancehand in Fig. 11. We can see
Distancehand decreases regarding all target postures 1–5. In
total, the average of RMS E joint among all trials decreased

Looking at can.

Grasping can;

it fails.

Learning the actual joint angles

and antagonistic relationships.

Retrying to grasp;

improvement can be seen.

Looking at can.

Learning the actual joint angles

and antagonistic relationships.

Retrying to grasp;

it succeeds.

t = 5[s] t = 15[s] t = 25[s] t = 60[s] t = 80[s] t = 90[s]

t = 125[s] t = 150[s] t = 170[s] t = 195[s] t = 220[s] t = 240[s]

Fig. 12. The result of can grasping experiment. This figure shows how the experiment was carried out.

from 12.49 [deg] to 4.99 [deg]: about 40%, and that of
Distancehand decreased from 217.95 [mm] to 57.53 [mm]:
about 26%, regarding before and after the online learning.
Thus, the two types of online learning do not compete, have
generalization ability, and work effectively.

E. Experiment of Can Grasping

We conducted a manipulation experiment of looking at a
can and grasping it, by integrating the entire system proposed
in this study. In all experimental movements, the proposed
two updaters are executed. How this experiment was carried
out is shown in Fig. 12. Also, RMSE of the difference
between the estimated joint angles and the actual joint angles
using the RGB camera and muscle tensions during this
experiment are shown in Fig. 13. We will explain the detailed
movements of this experiment. First, Kengoro looked at a
can with an AR marker, solved IK at the position of the
AR marker, and moved the hand to the position in order to
grasp it. However, at first, there were some errors between
the geometric model and actual robot, and Kengoro could not
move the hand to the intended position. Second, Kengoro
moved the upper limb to various positions, and looked at
the hand. During these movements, JMMs that are accurate
to a certain degree were obtained using Vision Updater.
Then, Kengoro approached the can again. The approach to
the can became better, but Kengoro could not approach it
completely, so he looked at the upper limb again and updated
JMM online. Finally Kengoro was able to approach the can
correctly and grasp it. In this experiment, the positions at
which IK is solved are completely the same, but each actual
position of the moved hand is different every time, because
the JMM is modified correctly during the movement. Also,
as shown in Fig. 13, the RMSE and the required muscle

tensions decreased gradually. Finally, in order to visualize
the difference of the JMM before and after its update, as an
example, we show the transition of 10 muscle lengths in the
shoulder during shoulder flexion before and after the update
in Fig. 14. Although the overall shape is not destroyed, we
can see a difference of 15 [mm] at -120 [deg] between before
the update and after.

By this experiment, we verified that this study is effective.

0

50

100

150

200

250

300

350

400

0 50 100 150 200

M
u

sc
le

 t
en

si
o

n
 [

N
]

Time [sec]

Muscle Tension
Pectoralis major

Latissimus dorsi

Infraspinatus

Subscapularis

Deltoid(front)

Deltoid(middle)

Deltoid(rear)

Triceps brachii

Brachialis

Biceps brachii

0

3

6

9

12

15

0 50 100 150 200

R
M

S
E

 [
d

eg
]

RMSE

neck

collar

shoulder

forearm

Learning by vision updater

Learning by antagonism updater

Fig. 13. The result of can grasping experiment. Upper graph shows RMSE
of the difference between the estimated joint angles and the actual joint
angles using the RGB camera; Lower graph shows the muscle tensions
during this experiment.

V. CONCLUSION
In this study, we showed the method of online learning

of joint-muscle mapping (JMM) which modifies the JMM
accurately using vision and the actual robot information,
in tendon-driven musculoskeletal humanoids which have

-120

-90

-60

-30

0

30

60

90

120

-120 -90 -60 -30 0 30

Pectoralis major

-120

-90

-60

-30

0

30

60

90

120

-120 -90 -60 -30 0 30

Latissimus dorsi

-120

-90

-60

-30

0

30

60

90

120

-120 -90 -60 -30 0 30

Infraspinatus

-120

-90

-60

-30

0

30

60

90

120

-120 -90 -60 -30 0 30

Subscapularis

-120

-90

-60

-30

0

30

60

90

120

-120 -90 -60 -30 0 30

Deltoid (front)

-120

-90

-60

-30

0

30

60

90

120

-120 -90 -60 -30 0 30

Deltoid (middle)

-120

-90

-60

-30

0

30

60

90

120

-120 -90 -60 -30 0 30

Deltoid (rear)

-120

-90

-60

-30

0

30

60

90

120

-120 -90 -60 -30 0 30

Triceps brachii

-120

-90

-60

-30

0

30

60

90

120

-120 -90 -60 -30 0 30

Brachialis

-120

-90

-60

-30

0

30

60

90

120

-120 -90 -60 -30 0 30

Biceps brachii

x-axis: Joint angle [deg]

y-axis: Muscle length [mm]

Before

After

Fig. 14. The result of can grasping experiment. These figures compare the
transition of the 10 muscle lengths in the shoulder during shoulder flexion
between before the update of JMM and after.

large model error between the geometric model and actual
robot. Although JMM is usually expressed by polynomial
regression, table-searching, and so on, we expressed JMM
by neural network (NN), allowing for the online update of
JMM. We discussed the method of initial training from a
geometric model, online learning that prevents over-fitting,
and obtaining smooth and natural muscle jacobian. Also,
we developed two online updaters of JMM. First, online
learning using the current estimated joint angles and actual
muscle lengths can modify muscle antagonism correctly,
preventing large internal muscle tension and slack of tendon
wires (Antagonism Updater). Second, online learning using
the actual joint angles estimated from vision and sent target
muscle lengths can modify the JMM so that the robot can
move to the intended position (Vision Updater). By these
online learning methods of JMM, the error between the
target and actual joint angles decrease to 40% in 5 minutes,
and a manipulation task by tendon-driven musculoskeletal
humanoids which have not been done until now due to the
model error between the geometric model and actual robot
becomes possible. This study is one step for tendon-driven
musculoskeletal humanoids to approach and exceed ordinary
humanoids driven by actuators in each axis.

In future works, we would like to try two tasks. First,
although in this study, we used AR markers attached to the
hand in order to obtain the hand position and orientation, the
robot should recognize the movement of the hand itself and
obtain the information about position and orientation. Sec-
ond, we want to add the effect of muscle tension to JMM, and
manipulate objects more accurately while changing muscle
stiffness. In this study, we were unable to consider muscle
elongation due to muscle compliance, so next, we should
implement online learning of a new model l = f (θ,T) which
updates not only joint-muscle mapping, but also the influence
of muscle compliance.

References
[1] Y. Nakanishi, S. Ohta, T. Shirai, Y. Asano, T. Kozuki, Y. Kake-

hashi, H. Mizoguchi, T. Kurotobi, Y. Motegi, K. Sasabuchi, J. Urata,
K. Okada, I. Mizuuchi, and M. Inaba, “Design approach of
biologically-inspired musculoskeletal humanoids,” International Jour-
nal of Advanced Robotic Systems, vol. 10, no. 4, p. 216, 2013.

[2] S. Wittmeier, C. Alessandro, N. Bascarevic, K. Dalamagkidis, D. De-
vereux, A. Diamond, M. Jäntsch, K. Jovanovic, R. Knight, H. G.
Marques, P. Milosavljevic, B. Mitra, B. Svetozarevic, V. Potkonjak,
R. Pfeifer, A. Knoll, and O. Holland, “Toward anthropomimetic
robotics: Development, simulation, and control of a musculoskeletal
torso,” Artificial Life, vol. 19, no. 1, pp. 171–193, 2013.

[3] M. Jäntsch, S. Wittmeier, K. Dalamagkidis, A. Panos, F. Volkart,
and A. Knoll, “Anthrob - A Printed Anthropomimetic Robot,” in
Proceedings of the 2013 IEEE-RAS International Conference on
Humanoid Robots, 2013, pp. 342–347.

[4] Y. Asano, T. Kozuki, S. Ookubo, M. Kawamura, S. Nakashima,
T. Katayama, Y. Iori, H. Toshinori, K. Kawaharazuka, S. Makino,
Y. Kakiuchi, K. Okada, and M. Inaba, “Human Mimetic Musculoskele-
tal Humanoid Kengoro toward Real World Physically Interactive Ac-
tions,” in Proceedings of the 2016 IEEE-RAS International Conference
on Humanoid Robots, 2016, pp. 876–883.

[5] S. Ookubo, Y. Asano, T. Kozuki, T. Shirai, K. Okada, and M. Inaba,
“Learning nonlinear muscle-joint state mapping toward geometric
model-free tendon driven musculoskeletal robots,” in Proceedings of
the 2015 IEEE-RAS International Conference on Humanoid Robots,
2015, pp. 765–770.

[6] M. Jäntsch, S. Wittmeier, K. Dalamagkidis, and A. Knoll, “Computed
muscle control for an anthropomimetic elbow joint,” in Proceedings
of the 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2012, pp. 2192–2197.

[7] K. Kawaharazuka, M. Kawamura, S. Makino, Y. Asano, K. Okada,
and M. Inaba, “Antagonist Inhibition Control in Redundant Tendon-
driven Structures Based on Human Reciprocal Innervation for Wide
Range Limb Motion of Musculoskeletal Humanoids,” IEEE Robotics
and Automation Letters, vol. 2, no. 4, pp. 2119–2126, 2017.

[8] C. Alessandro, I. Delis, F. Nori, S. Panzeri, and B. Berret, “Muscle
synergies in neuroscience and robotics: from input-space to task-space
perspectives,” Frontiers in Computational Neuroscience, vol. 7, p. 43,
2013.

[9] A. Diamond and O. E. Holland, “Reaching control of a full-torso,
modelled musculoskeletal robot using muscle synergies emergent
under reinforcement learning,” Bioinspiration & Biomimetics, vol. 9,
no. 1, p. 016015, 2014.

[10] Y. Nakanishi, K. Hongo, I. Mizuuchi, and M. Inaba, “Joint pro-
prioception acquisition strategy based on joints-muscles topological
maps for musculoskeletal humanoids,” in Proceedings of The 2010
IEEE International Conference on Robotics and Automation, 2010,
pp. 1727–1732.

[11] M. Jäntsch, C. Schmaler, S. Wittmeier, K. Dalamagkidis, and A. Knoll,
“A scalable Joint-Space Controller for Musculoskeletal Robots with
Spherical Joints,” in Proceedings of the 2011 IEEE International
Conference on Robotics and Biomimetics, 2011, pp. 2211–2216.

[12] T. Shirai, J. Urata, Y. Nakanishi, K. Okada, and M. Inaba, “Whole
body adapting behavior with muscle level stiffness control of tendon-
driven multijoint robot,” in Proceedings of the 2011 IEEE Interna-
tional Conference on Robotics and Biomimetics, 2011, pp. 2229–2234.

	INTRODUCTION
	Learning of Joint-Muscle Mapping using a Neural Network
	Initial Training of Joint-Muscle Mapping from a Geometric Model
	Derivation of Muscle Jacobian from Neural Network
	Online Learning of Joint-Muscle Mapping from Movement Data of the Actual Robot
	The Estimation of Joint Angles

	Online Learning System
	Overview
	Antagonism Updater
	Vision Updater

	Experiments
	Basic Experiments of Joint-Muscle Mapping
	Experiment of Antagonism Updater using Elbow Joint
	Experiment of Vision Updater
	Experiment of Antagonism Updater and Vision Updater
	Experiment of Can Grasping

	CONCLUSION
	References

