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Abstract— We present a novel solution to the camera pose
estimation problem, where rotation and translation of a camera
between two views are estimated from matched feature points in
the images. The camera pose estimation problem is traditionally
solved via algorithms that are based on the essential matrix or
the Euclidean homography. With six or more feature points in
general positions in the space, essential matrix based algorithms
can recover a unique solution. However, such algorithms fail
when points are on critical surfaces (e.g., coplanar points)
and homography should be used instead. By formulating the
problem in quaternions and decoupling the rotation and trans-
lation estimation, our proposed algorithm works for all point
configurations. Using both simulated and real world images, we
compare the estimation accuracy of our algorithm with some of
the most commonly used algorithms. Our method is shown to be
more robust to noise and outliers. For the benefit of community,
we have made the implementation of our algorithm available
online and free1.

I. INTRODUCTION

Many applications in computer vision and robotics require
measurements of the rotation and translation (i.e., pose)
changes of an object as it moves through an environment. In
photogrammetry, for example, by knowing the pose changes
of the camera, 3D model of a scene can be constructed from
a set of 2D images [1]. In robotics, pose estimated from
images can be used for navigation [2], [3], or fused with
other sensor measurements (e.g., IMU and GPS) to increase
the reliability and accuracy [4]. Camera pose estimation has
further applications in simultaneous localization and map-
ping (SLAM) [5], autonomous vehicles [6], and augmented
reality [7].

Camera pose estimation techniques are often based on
image features (e.g., edges, corners, etc., in an image) that
can be detected and matched in two or more images [8],
[9]. Figure 1 shows an example where feature points
are detected and matched as indicated by yellow lines
in two images. Many existing methods [10]–[13] use the
coordinates of feature points on the image to construct the
essential/fundamental matrix or the Euclidean homography
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Fig. 1. Pairs of matched feature points across two images shown side by
side (image courtesy of MathWorks).

matrix, from which relative rotation and translation of the
camera can be recovered. Although these approach are fast
and easy to implement, they are subject to drawbacks: the
essential matrix based algorithms fail when feature points are
on critical surfaces (e.g., coplanar points), while homography
based algorithms only work when points are coplanar.

In this work, we present a novel formulation of the camera
pose estimation problem using quaternions and present a
solution to estimate the pose under this formulation. Our
approach, which we refer to as the Quaternion Estimation
(QuEst) algorithm, does not use the homography or es-
sential matrices, and decouples the estimation of rotation
and translation. Consequently, common problems such as
degeneracy for special 3D point configurations are avoided.
We present two methods to recover the rotation from seven
and six matched feature points. We then show how the
unique correct solution can be detected from among the
set of recovered solutions. The performance of QuEst is
compared with algorithms that are based on the homography
or essential matrix in the presence of noise in image point
coordinates. The performance is further vetted by using real
world image datasets that come with the ground truth camera
pose information.

The main contributions and benefits of the proposed
algorithm can be summarized as follows.

• As illustrated in Table I, unlike the homography or
essential matrix based algorithms, QuEst provides an
accurate pose estimate for both general point config-
urations and points that are on critical surfaces, e.g.,
coplanar points. To initialize the bundle adjustment in
SLAM applications [5], often heuristic methods are used
to detect the coplanarity of the points and select the
appropriate algorithm correspondingly. QuEst can be
used to initialize the bundle adjustment regardless of
the feature point configuration in the space.

• By recovering the translation, QuEst simultaneously
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TABLE I. QuEst compared with homography and essential matrix based
algorithms.

Advantage
Approach

Works for 
general points

Works for 
coplanar points

Essential matrix (8-6 point)  
Euclidean homography  
QuEst (6 point)  

recovers depths of the feature points. Therefore, a 3D
model of the scene can be reconstructed. The recovered
translation and depths share a common scale factor,
hence, the magnitude of the recovered translation vector
goes to zero as the camera translation between two
views approaches zero. The translation recovered from
the essential matrix always has unit norm, which is not
desirable in applications such as visual servoing.

• Tests performed using both simulated and real world
images show that the pose recovered from QuEst is
more accurate and robust to noise and outliers compared
to the existing algorithms.

The rest of the paper is organized as follows. We briefly
review related approaches in Section II, before we formulate
the pose estimation problem using quaternions in Section III.
We present the QuEst algorithm in Section IV and evaluate
its performance under noise in Section V. In Section IV, we
further vet the performance of QuEst using the real world
image datasets.

II. RELATED WORK

Pose estimation using images can be traced back to at
least 1913, when Kruppa [14] proved that two camera views
of five 3D points could be used to estimate the translation
and rotation separating two camera views. However, the
lack of sufficient computational resources limited further
development until the landmark introduction of the 8-point
algorithm [10], [11]. The 8-point algorithm used the epipolar
constraint, embodied in the essential matrix, to solve a set of
linear equations that are generated from a set of 8 or more
feature points.

It has been shown that to ensure a finite number of
solutions for the pose estimation problem, a minimum of five
feature points are required [11], [15]. However, in general
this is not sufficient to recover the pose uniquely. Philip
showed that when 6 or more general points are available,
the pose estimation problem is linear and produces a unique
solution [16].

What previous work have in common is the use of the es-
sential matrix in the problem formulation and the assumption
that points are in general positions. In the special case where
feature points are coplanar, methods based on the homogra-
phy matrix should be used instead to estimate the pose [12],
[13]. However, for a general point configuration that does
not contain at least four coplanar points, homography does
not return the correct solution.

Fig. 2. Projection of a 3D point onto the image plane at two views.

We previously used quaternion formulation to solve the
pose estimation via an optimization-based method [17]. The
drawback of this initial work was its reliance on an accurate
initial estimate for the pose. The method proposed here is
based on formulating an eigenvalue problem, which does not
require an initial guess for the solution.

III. CAMERA POSE ESTIMATION

We introduce the notation and assumptions, followed by
formulating the pose estimation problem in quaternions.

A. Notation and Assumptions

Throughout the paper, we assume that the camera calibra-
tion matrix is known; this matrix can be easily found through
the existing camera calibration routines [18].

Scalars are represented by lower case (e.g., s), vectors by
lowercase and bold (e.g., v), and matrices by upper case
and bold letters (e.g., M). All vectors are column vectors.
The Moore-Penrose pseudo inverse of matrix M is shown by
M†. Binomial coefficients are denoted by

(n
k

)
:= n!

k!(n−k)! . By
norm of a vector, we imply the l2-norm. Degree 4 monomials
in variables w, x, y, z are single term polynomials waxbyczd ,
such that a+b+ c+d = 4, for a,b,c,d ∈ {0,1,2,3,4}.

B. Problem Formulation

Consider images of a scene taken by a camera at two
views (e.g., Fig. 1). Let R ∈ SO(3) and t ∈ R3 respectively
represent the relative rotation and translation of the camera
frame between the views. Assume that feature points are
detected and matched, and their x-y coordinates are read
from the images. (In practice, the coordinates are in pixels,
and should be mapped via the camera calibration matrix to
Cartesian coordinates on the image plane.)

For each matched feature point the rigid motion constraint

uRm+ t = vn (1)

must hold, in which m, n∈R3 are homogeneous coordinates
(i.e., a 1 is appended to the x-y coordinates) of the feature
point in two images. Scalars u and v represent depths of
the 3D point at each view, and as shown in Fig. 2, are
the projections of the point onto the z-axis of the camera
coordinate frame. Point coordinates m and n are known from
the images, and the unknowns in (1) are u, v, R, and t, which
need to be recovered.

We need to point out that in the pose estimation problem,
translation and depths of the points can only be recovered
up to a scale factor. This can be seen from (1), where any



constant multiplied into both hand sides can be absorbed by
unknown variables u, v, and t.

Example 1. Consider pictures shown in Fig. 1, where feature
points are matched and their coordinates on the image are
determined. For the matched feature point with coordinates
(−0.1,−1.5) in the left image and (0.2,−1.2) in the right
image, from (1) we get

u1 R
[−0.1
−1.5

1

]
+ t = v1

[ 0.2
−1.2

1

]
, (2)

where scalar u1 and v1 are the depths of the 3D point at each
view. Similarly, for two other matched pairs we can write

u2 R
[−2.3

1.6
1

]
+ t = v2

[−2.0
1.8
1

]
, (3)

u3 R
[

0.6
0.9
1

]
+ t = v3

[
0.9
1.1
1

]
, (4)

where subscripts are used to distinguish the depths of the
points (scalars u and v). Notice that rotation matrix R and
translation vector t are the same in all equations.

Equation (1) uses the matrix representation of rotation, in
which R is a 3×3 orthonormal matrix. That is, R> = R−1,
and det(R) = 1. Representing the rotation in the matrix
form with orthonormality constraints makes the problem
very nonlinear and challenging to solve. Instead, we use
quaternions, which represent a rotation by four elements
w, x, y, z ∈ R such that w2 + x2 + y2 + z2 = 1. Although (1)
can be formulated directly in quaternions, for simplicity and
to avoid introducing the quaternion algebra we only mention
what is essential to solve the problem here: if w, x, y, z ∈ R
are elements of a rotation quaternion, the associated rotation
matrix is given by

R =

[
w2+x2−y2−z2 2(xy−wz) 2(xz+wx)

2(xy+wz) w2−x2+y2−z2 2(yz−wz)
2(xz−wz) 2(yz+wy) w2−x2−y2+z2

]
. (5)

Quaternions provide a singularity free representation of ro-
tation, and by restricting the first element to nonnegative
numbers (i.e., w ≥ 0), there is a one to one and onto
correspondence between rotation matrices and quaternions.

To recover the pose, we first eliminate the unknowns u, v
and t, and derive a system of equations in terms of the
quaternion elements. From solving this system all rotation
solution candidates are found. Subsequently, the translation
and depths of the points are recovered. By taking (1) for two
different feature points and subtracting the equations, t can
be eliminated. Subsequently, u and v can be eliminated from
the resulting equations by noting that they form a null vector
for the matrix consisting of the point coordinates and their
rotations. The following example illustrates this procedure.

Example 2. Consider Example 1. By subtracting (3) and (4)
from (2), respectively, and bringing terms to the left hand
side we get

u1 R
[−0.1
−1.5

1

]
− v1

[ 0.2
−1.2

1

]
−u2 R

[−2.3
1.6
1

]
+ v2

[−2.0
1.8
1

]
= 0, (6)

u1 R
[−0.1
−1.5

1

]
− v1

[ 0.2
−1.2

1

]
−u3 R

[
0.6
0.9
1

]
+ v3

[
0.9
1.1
1

]
= 0, (7)

in which the unknown translation t has been eliminated. We
can represent (6) and (7) in the matrix-vector form

R
[−0.1
−1.5

1

] [−0.2
1.2
1

]
R
[ 2.3
−1.6

1

] [−2.0
1.8
1

]
0 0

R
[−2.0

1.8
1

] [−0.2
1.2
1

]
0 0 R

[−0.6
−0.9

1

] [
0.9
1.1
1

]


︸ ︷︷ ︸
M



u1

v1

u2

v2

u3

v3


=0, (8)

which implies that matrix M∈R6×6 has a null vector. There-
fore, its determinant must be zero. Calculating determinant
of M with R given in the parametric form (5) gives

−0.1w4 +2.4w3x+35.6w2x2−11.4wx3 +0.3x4 + . . .

−19.8y2z2−168wz3 +9.4xz3−17.8yz3 +0.3z4 = 0. (9)

Equation (9) consists of all degree 4 monomials in w, x, y, z
(i.e., terms such as w4,w3x,w2x2, . . . ), with coefficients that
depend on the feature point coordinates. Note that since M
is a 6× 6 matrix, one may expect its determinant to have
degree six monomials, however, due to special structure of
M, it is always possible to factor out w2 +x2 +y2 + z2 from
the determinant expression. Since w2 + x2 + y2 + z2 = 1, the
degree four polynomial equation (9) follows.

What we showed in Example 2 was that three matched
feature points generate a polynomial equation of the form
(9). This equation is in terms of degree four monomials in
w, x, y, z. Note that there are 35 such monomials, and their
coefficients are in terms of the feature point coordinates.
In practice, we do not need to calculate the determinant
of M to find these coefficients. By replacing the feature
point coordinates with symbolic expressions the determinant
can be computed symbolically, and explicit formulas for the
coefficients can be derived. By substituting the numerical
values of point coordinates in these formulas the coefficients
are calculated directly. Due to the space limitation we do not
give the explicit formulas here.

Since any three feature points give a polynomial equation
of the form (9), from n points

(n
3

)
equations can be generated.

These equations can be stacked into a matrix-vector form,
where the vector consists of the unknown monomial terms.
The following example illustrates this point.

Example 3. Consider
(6

3

)
= 20 polynomial equations of the

form (9), generated from 6 feature points. These polynomial
equations can be represented in the matrix-vector form

−0.1 2.4 35.6 · · · 0.3
−0.1 0.1 −7.6 · · · −0.2
...

...
...

. . .
...

0.0 −0.2 4.6 · · · 0.1


︸ ︷︷ ︸

A


w4

w3x
w2x2

...
z4


︸ ︷︷ ︸

x

= 0 (10)

where the coefficient matrix A ∈ R20×35 depends on the
feature point coordinates, and vector x ∈ R35 consists of all
degree 4 monomials. Our goal is to find all w, x, y, z, for
which (10) is satisfied.



The problem of recovering the rotation is henceforth
equivalent to solving a system of equations of the form (10),
where the goal is to find all x for which

Ax = 0 (11)

is satisfied. In (11), the coefficient matrix A is known from
the feature point coordinates, and vector x is unknown with
entries in degree four monomials of w, x, y, z.

IV. THE QUEST ALGORITHM

In what follows we first show how rotation solution
candidates can be recovered from 7 and 6 matched fea-
ture points. Given a rotation solution candidate, it is then
shown how the associated translation vector and depths
are recovered. Lastly, we show how the unique solution
can be distinguished by discarding the physically infeasible
solution candidates. The Matlab implementation of QuEst is
accessible at https://goo.gl/QH5qhw.

We will not discuss why the pose estimation problem has
always more than one mathematically feasible solution (e.g.,
2 for general points and 4 for coplanar points) since these
results are well-known. Interested readers are referred to [19]
for further discussion and mathematical proofs on the number
of solutions.

A. Recovering Rotation From 7 Points

Consider the system of equations (11) for 7 matched
feature points. Since 7 points generate

(7
3

)
= 35 equations,

in this case A is a 35×35 matrix. Due to the mathematical
multiplicity of solutions however, A cannot be full rank (oth-
erwise, only one solution exists, which is a contradiction).

Let us arrange the entries of x ∈ R35 in (11) such that

x =

[
x1
x2

]
, where x1 ∈ R4 and x2 ∈ R31 are defined as

x1 :=


w4

w3x
w3y
w3z

 , x2 :=


x3w
x4

x3y
x3z
...

 . (12)

Let A = [A1 A2], where A1 ∈ R35×4 is the first 4 columns
of A, and A2 ∈ R35×31 is the remaining part. Equation (11)
is equivalent to

A1 x1 +A2 x2 = 0, (13)

from which, by multiplying the pseudo inverse of A2 from
the left, we obtain2

x2 =−A†
2 A1 x1. (14)

Let B̄ :=−A†
2 A1 ∈ R31×4. The first 4 rows of (14) imply

x3w
x4

x3y
x3z

= B


w4

w3x
w3y
w3z

 , (15)

2For a general point configuration A2 has rank 31, and thus A†
2A2 = I,

where I is the identity matrix.

where B ∈ R4×4 is the matrix consisting of the first 4 rows
of B̄. By factoring x3 from the left hand side vector and w3

from the right hand side vector of (15) we get

x3

w3


w
x
y
z

= B


w
x
y
z

 , (16)

which is an eigenvalue problem of the form λv = Bv, with
λ = x3

w3 and v = [w x y z]>. Hence, 4 solution candidates are
found by calculating the (unit norm) eigenvectors of B.

We should mention that the choice of x1 and x2 are
somewhat arbitrary. For example, we could have chosen x2

as x2 :=
[
y3w y3x y4 y3z . . .

]>, and derive a similar
eigenvalue problem with λ = y3

w3 . We will later use this fact
to distinguish the unique solution.

B. Recovering Rotation From 6 Points
Consider equation (11) for 6 feature points. Since 6 feature

points generate
(6

3

)
= 20 equations, in this case A is a 20×35

full rank matrix.
We split x ∈ R35 into two vectors x1 ∈ R20 and x2 ∈ R15,

where x =

[
x1
x2

]
, x1 is the vector of all monomials that

contain a power of w (e.g., w4, w3x, w3y, . . . , wy3, wz3),
and x2 consists of the rest of the monomials (e.g.,
x4, x3y, x2y2, . . . , yz3,z4). Let A = [A1 A2], where
A1 ∈ R20×20 consists of the first 20 columns of A,
and A2 ∈ R20×15 is the remaining part. Equation (11) is
equivalent to

A1 x1 +A2 x2 = 0, (17)

from which, by multiplying the pseudo inverse of A2, we
obtain

x2 =−A†
2A1 x1. (18)

Since x1 consists of monomials that have at least one power
of w, we can factor out w and represent the remaining vector
by v ∈ R20, i.e., v = 1

w x1. Thus, (18) can be written as

x2 = w B̄v, (19)

where B̄ :=−A†
2A1 ∈ R15×20.

Equation (19) allows us to construct an eigenvalue prob-
lem of the form λv = Bv, with B ∈ R20×20. Indeed, let us
choose λ = x

w , and consider the eigenvalue problem

xv = wBv. (20)

The entries of vector xv either belong to x2 or x1. For
entries that belong to x2, the associated rows of B are chosen
from the corresponding rows of B̄ in (19). For entries that
belong to x1, rows of B are chosen as [0 . . . 0 1 0 . . . 0]. The
following example illustrates this procedure.

Example 4. Suppose entries of x1 and x2 are arranged as

x1 =


w3x
w2x2

wx3

...

wz3

 , x2 =


z4

xz3

yz3

...

x4

 , v =
1
w

x1 =


w2x
wx2

x3

...

z3

 , (21)

https://goo.gl/QH5qhw


and assume that from the feature point coordinates we have
derived (19) as

x2 =


z4

xz3

yz3

...

x4

= w


−0.1 5.2 22.9 ··· 14
0.1 −6.7 −4.4 ··· −15
0.0 −4.7 −1.1 ··· −11
...

...
...

. . .
...

−0.1 −0.4 26.2 ··· 46

v. (22)

From (22) we can construct the eigenvalue problem (20) as

xv =


w2x2

wx3

x4

...

xz3

= w


0 1 0 ··· 0
0 0 1 ··· 0
−0.1 −0.4 26.2 ··· 46

...
...

...
. . .

...

0.1 −6.7 −4.4 ··· −15

v,

(23)
where the first two entries of xv belong to x1 = wv, and
hence their associated rows in B consist of zeros except for
a single one entry. The third and last entries of xv belong to
x2, and their associated rows come from B̄ in (22).

Once the eigenvalue problem (20) is constructed, 20
solution candidates for v are derived by computing the
eigenvectors of B. For each solution candidate, w, x, y, z are
found by calculating the third root of the w3, x3, y3, z3 entries
in v. The recovered solution can be normalized to meet the
unit norm constraint w2 + x2 + y2 + z2 = 1. Notice that by
choosing x1 or λ differently (e.g., λ = y

w ) it is possible to
derive different eigenvalue problems of the form (19).

C. Recovering Translation and Depths

Once quaternion elements w, x, y, z are recovered, the
corresponding rotation matrix R is given by (5). Having R,
the rigid motion constraint uRm+t= vn can now be written
for all matched feature points, and stacked into the matrix-
vector form I Rm1 −n1 0 0 ··· 0 0

I 0 0 Rm2 −n2 0 0
...

...
. . .

...
I 0 0 0 0 ··· Rmk −nk


︸ ︷︷ ︸

C


t

u1
v1
u2
v2
...

uk
vk


︸ ︷︷ ︸

y

= 0 (24)

where I∈R3×3 is the identity matrix, k is the number feature
points, C ∈R3k×2k+3, and y ∈R2k+3. Equation (24) implies
that y is in the null space of C. Thus, y can be found by cal-
culating the rightmost singular vector of C (i.e., eigenvector
of C>C corresponding to the zero eigenvalue). Notice that y
consists of the translation vector and feature point depths.
Therefore, these parameters are recovered simultaneously
and with a common scale factor.

D. The Unique Solution

Before we proceed with finding the unique solution, we
need to briefly talk about the critical surfaces. Critical
surfaces are special configurations of 3D points in the space
for which one cannot distinguish a unique solution. (In
this case the problem always has more than one physically

realizable solution.) Perhaps the most important and practical
example of such surfaces is when all 3D points lie on a plane,
i.e., coplanar points. Coplanar points are abundant in aerial
images (due to large distance of points from the camera) or
images of the man-made environments (due to points lying
on walls, floor, etc.). In what follows we will discuss the
case of general and coplanar points separately.

Since feature points that are reflected with respect to the
origin of the camera frame produce the same image, to
detect the physically infeasible solutions one should check
the chirality. Solution with the wrong chirality correspond to
points that are behind the camera, and therefore have negative
depths. Hence, physically infeasible solution candidates can
be detected and discarded after recovering the depths.

1) General points: As discussed at the end of Sections IV-
A and IV-B, by choosing other values for λ (e.g. λ = y

w ,
z
w )

similar eigenvalue problems of the form (16) and (20) can be
derived. Since the correct solution must satisfy the eigenvalue
problem regardless of the chosen λ , solution candidates that
do not satisfy λ v = Bv for all values of λ can be discarded.
In this case, two mathematically feasible solutions remain,
from which the unique solution is determined by checking
the chirality.

2) Coplanar points: When points are coplanar (or more
generally lie on critical surfaces), four mathematically fea-
sible solutions remain after checking λ v = Bv for different
values of λ . Two of these solutions can be discarded by
checking the chirality. To determine the solution uniquely
further information is required (e.g., a third view or the
normal vector to the plane).

Although in theory the methods discussed above can elim-
inate infeasible solution candidates, in practice pixelization
noise and matching imperfections may result in choosing
the wrong solution. For instance, in applications where
parallax is small (i.e., translation between the views is much
smaller than the average distance of the 3D points to the
camera), recovering the depths becomes an ill-conditioned
problem. Thus, checking the chirality may result in the wrong
conclusion. Furthermore, with noise, coplanar points may
appear as if they are at general positions and instead of two
only one solution is returned. It is therefore recommended
to always keep the best four solution candidates, and use the
Random Sample Consensus (RANSAC) algorithm to find the
unique solution.

V. NOISE AND TIME BENCHMARKS

We benchmark our proposed algorithm against some of
the most well-known algorithms such as the essential matrix
8-point [10], 7-point, and 6-point algorithms [19], and the
Euclidean homography algorithm [20]. For the first three
algorithms the Stewenius’s implementation [21], and for the
latter Hartley’s implementation in Matlab are used. We refer
to the algorithms presented in this paper for 6 and 7 points
respectively as QuEst 6 and QuEst 7.

Each Monte Carlo simulation consists of eight randomly
generated 3D points with uniform distribution inside a rect-
angular parallelepiped in front of the camera at the initial



location. The camera is moved to a second location by a
random translation and rotation quaternion, with uniform
distribution within a bounded box of R3 and on the 3-
sphere, respectively. Coordinates of the feature points on the
image plane are computed by projecting the 3D points on the
image planes. Each algorithm is provided with the minimum
number of points it requires to compute the pose.

A. Noise Benchmarks

To evaluate the performance under noise, Gaussian noise
with zero mean and standard deviation ranging from 0 to
10 pixels is added to all image coordinates. The noise
standard deviation is increased by 0.1 pixel increments, and
for each noise increment 100 simulations are generated.
As mentioned in Section IV-D, the chirality condition is
sensitive to noise, so to avoid choosing the wrong solution,
the solution candidate that is closest to the ground truth is
chosen as the best pose estimate for each algorithm. The
estimation error for rotation is defined by

ρ(q,q∗) =
1
π

arccos(dot(q, q∗)) ∈ [0,1] (25)

where q = [w x y z]> is the rotation estimated from the noisy
images, and q∗ is the ground truth rotation in quaternions.
Note that (25) defines a metric on the rotation quaternion
space [22]. Similarly, the estimation error for translation is
defined by

ρ(tn, t∗n) =
1
π

arccos(dot(tn, t∗n)) ∈ [0,1] (26)

where tn and t∗n are the estimated translation vector and
the ground truth, respectively, normalized to have unit norm
(because the magnitude of the recovered translation vector
can vary depending on the algorithm).

Figure 3 shows the mean rotation and translation esti-
mation errors at different noise standard deviations for all
algorithms. Since the feature points are randomly generated
and are generally non-coplanar, the homography algorithm,
which only works for coplanar points, fails to correctly
estimate the pose. Essential matrix based algorithms however
are not affected. QuESt 6 and 7-point algorithms have the
best performance for rotation, while QuESt 6 and QuESt 7
have the best performance for translation estimates. Unlike
the 7-point algorithm, translation estimated by QuESt 7
benefits from the extra points and is comparable to QuEst 6.
We should mention that for large noise standard deviations
(e.g., 10 pixels) the results can be interpreted as how robust
an algorithm is to incorrectly matched feature points.

To analyze the performance when points are on critical
surfaces, the previous analysis is repeated for coplanar
points, where the points are chosen randomly on a bounded
plane with uniform distribution. The mean of the rotation
and translation estimation errors for noise standard deviation
varying from 0 to 2 is shown in Fig. 4. As can be seen
from the figure, homography shows the best noise resilience
when the standard deviation is small (approximately 1 to
1.5 pixels). This is because the homography algorithm is
specifically designed to recover the pose when points are
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Fig. 3. Comparison under Gaussian noise on feature point coordinates
when points are in general 3D configuration.
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Fig. 4. Comparison under Gaussian noise on feature point coordinates
when points are in coplanar configuration.

coplanar. QuEst 6 has the next best estimation accuracy.
When points are on critical surfaces matrix A2 in (13) loses
rank and becomes rank 27. Hence, multiplication by A†

2 will
not result in (13), and QuEst 7 fails to recover the pose. On
the other hand, A2 used for QuEst 6 in (17) remains full
rank due to having smaller dimensions. Lastly, none of the
algorithms that are based on the essential matrix can recover
the pose in this case, regardless of the number of points
used in the algorithm or the magnitude of noise (see [19]
for further explanation).

In conclusion, QuEst 6 shows the best performance since
the pose is estimated correctly regardless of the 3D point
configuration, and the estimation is robust to noise and
outliers.

B. Time Benchmarks

Table II lists the average execution time of all algorithms
in milliseconds, where 1000 Monte Carlo simulations with



TABLE II. Average execution time of essential matrix based algorithms,
homography algorithm, and QuEst algorithms.

Algorithm Average execution time (ms)

Essential 8 point 0.0440

Essential 7 point 0.0288

Essential 6 point 0.0829

Euclidean homography 0.0475

QuEst 7 point 0.5564

QuEst 6 point 0.7728

both coplanar and general points and various noise magni-
tudes are used to generate the results. All algorithms are
implemented as Mex files in Matlab, and tested on the same
platform with Intel’s 4th Gen i-7 CPU. Algorithms that use
homography or essential matrix have smaller execution time
since fewer operations are needed to estimate these matrices.
QuEst has a larger execution time since the rotation and
translation are recovered independently. We should empha-
size that although QuEst is not at fast as other algorithms,
it is fast enough to be used with RANSAC in real-time
applications. Furthermore, since QuEst recovers the pose
regardless of the 3D point configuration, no prior effort is
required to detect the coplanarity and choose the appropriate
algorithm correspondingly.

VI. REAL WORLD PERFORMANCE

To further assess the accuracy and robustness of QuEst,
images from four real world datasets are used to estimate the
pose and compare the results with the ground truth that is
provided by the dataset. Datasets used for the comparison
are ICL [23], KITTI [24], NAIST [25], and TUM [26],
where SURF image feature points are extracted and matched
between two consecutive keyframes. Each algorithm is pro-
vided with the minimum number of points it requires to
estimate the pose, where points with the highest matching
score are chosen. To test the robustness of the algorithms,
RANSAC is not used, and the provided set of matched points
can occasionally have outliers.

The ICL-NUIM dataset consists of computer-generated
renderings of 3D scenes. These artificial images are ac-
companied by exact ground truth information, and their
main purpose is to benchmark 3D reconstruction algorithms.
The KITTI and TUM datasets were created to evaluate
SLAM algorithms. The KITTI dataset consists of outdoor
stereo image sequences taken from a moving vehicle. The
images are accompanied by LIDAR, IMU and GPS mea-
surements, so full pose information is provided in the left
camera frame. The TUM dataset is comprised of indoor
images as well as point depth information from a RGB-D
camera. The RGB-D camera poses were recorded by using
an optical tracking system, with millimeter-level accuracy.
The NAIST campus sequences are part of an Augmented
Reality benchmark called TrakMark. The ground truth files
for these sequences were created by solving a PnP problem
from known 3D world point coordinates, acquired using high

precision surveying equipment. The images come from a
handheld camera, with the operator walking while capturing
some sequences and running for others.

Figure 5 shows the rotation and translation estimation
errors associated to each algorithm for all datasets. As shown
in the figure, most algorithms perform well on the ICL
benchmark, due to its lack of image noise. The translation
error for all algorithms is the lowest for the KITTI sequences.
This can be explained by the camera motion, since most of
the time the camera is moving forward, in the direction of its
z-axis. The sequences labeled as NAIST were challenging for
every algorithm, since the camera motion is erratic at times
and changes quickly. The TUM sequences, while generated
by a handheld sensor, do not contain motions as abrupt as
those in NAIST. The performance of all algorithms on the
TUM sequences is better than for the NAIST sequences, but
below their performance on the ICL image sets.

Since the chosen feature points may not be coplanar, the
homography algorithm does not return the correct solution
in general. The pose estimated by the 6-point and 7-point
algorithms has smaller median error compared to the 8-
point algorithm. The translation estimated by QuEst 7 has
the smallest median error due to the additional point. The
rotation estimated by Quest 6 shows the best performance
due to having smaller median errors, 0.25 and 0.75 quartiles,
and outliers for all datasets.

VII. CONCLUSION AND FUTURE WORK

By using quaternion representation of rotation, we formu-
lated the camera pose estimation problem and presented the
QuEst algorithm to recover the relative pose between two
camera views. Unlike the existing homography or essential
matrix based methods, QuEst decouples the rotation and
translation estimation, and recovers the pose correctly for
both cases of general and coplanar points. QuEst can be used
to initialize the bundle adjustment algorithm in applications
such as SLAM without needing to resort to heuristic methods
to detect the coplanarity of the points. Using both simulated
and real world images, we demonstrated the estimation accu-
racy and robustness of QuEst in comparison to the commonly
used algorithms. We have made the Matlab implementation
of QuEst available online and free. Future work includes
the online release of the C++ implementation of QuEst with
RANSAC.
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