
 
 

Delft University of Technology

Mixture of Attractors
A novel movement primitive representation for learning motor skills from demonstrations
Manschitz, Simon; Gienger, Michael; Kober, Jens; Peters, Jan

DOI
10.1109/LRA.2018.2792531
Publication date
2018
Document Version
Final published version
Published in
IEEE Robotics and Automation Letters

Citation (APA)
Manschitz, S., Gienger, M., Kober, J., & Peters, J. (2018). Mixture of Attractors: A novel movement primitive
representation for learning motor skills from demonstrations. IEEE Robotics and Automation Letters, 3(2),
926-933. https://doi.org/10.1109/LRA.2018.2792531

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/LRA.2018.2792531
https://doi.org/10.1109/LRA.2018.2792531


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



926 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 2, APRIL 2018

Mixture of Attractors: A Novel Movement Primitive
Representation for Learning Motor Skills

From Demonstrations
Simon Manschitz , Michael Gienger, Jens Kober , and Jan Peters

Abstract—In this letter, we introduce Mixture of Attractors, a
novel movement primitive representation that allows for learn-
ing complex object-relative movements. The movement primitive
representation inherently supports multiple coordinate frames, en-
abling the system to generalize a skill to unseen object positions and
orientations. In contrast to most other approaches, a skill is learned
by solving a convex optimization problem. Therefore, the quality of
the skill does not depend on a good initial estimate of parameters.
The resulting movements are automatically smooth and can be of
arbitrary shape. The approach is evaluated and compared to other
movement primitive representations on data from the Omniglot
handwriting dataset and on real demonstrations of a handwriting
task. The evaluations show that the presented approach outper-
forms other state-of-the-art concepts in terms of generalization
capabilities and accuracy.

Index Terms—Learning from demonstration, learning and
adaptive systems, motion control.

I. INTRODUCTION

D ESPITE impressive results in the recent years, some of the
main challenges in the domain of Learning from Demon-

stration (LFD) remain unsolved. For instance, learning complex
tasks usually requires more demonstrations than a user would
be willing to provide. One reason for the large number of re-
quired demonstrations is that learning a skill requires finding a
mapping of a potentially large input space (e.g., camera input),
to a potentially large output space (e.g., desired joint positions).
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Fig. 1. The system learns a handwriting skill from kinesthetic demonstrations
by learning a set of attractors and their continuous activations over time. The
attractors can be defined in different coordinate frames, enabling the system
to generalize the learned skill to unseen whiteboard positions. The plot shows
the learned attractor activations for the handwriting task (thin lines). Blue lines
correspond to attractors represented in the world frame, red in the IAS frame and
yellow the HRI frame. The thick lines show the sum of the attractors defined in
the individual coordinate frames.

Depending on the task and robot, such a mapping can become
highly non-linear and almost arbitrarily complex. If only a few
demonstrations of a task are performed, then only a small frac-
tion of the input space is covered with data. Learning an input
to output mapping from this sparse data often results in skills
that are able to perform a task if the environmental conditions
are about the same as in the demonstrations. Yet, it is often not
clear how the system will generalize to unseen situations.

Our method aims at learning skills for tasks that require han-
dling multiple objects. We assume a task is demonstrated a few
times with varying object positions and orientations, as depicted
in Fig. 1. From these demonstrations, the system is supposed to
learn a skill which generalizes to unseen positions and orienta-
tions of the involved objects.

The main contribution of the paper is a novel movement
primitive (MP) representation, which we call Mixture of Attrac-
tors (MOA). MOA represents movements in multiple coordinate
frames. When learning a skill, a weighting of the coordinate
frames is learned that explains the demonstrations well. For
instance, in a task phase where the robot is supposed to manip-
ulate an object, the weights of the coordinate frame attached to
this object will be large, allowing the robot to manipulate the
object at arbitrary positions. Moreover, a continuous represen-
tation of the weights is learned, allowing the robot to smoothly
blend between successive movements. The proposed learning

2377-3766 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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algorithm for MOA is formalized as convex optimization prob-
lem. Therefore, it does not rely on a good initialization of the
parameters.

A. Related Work

MPs are a tool for increasing the data efficiency of skill learn-
ing algorithms. They are basic reusable building blocks that
are able to generate complex movements. By using MPs, the
movement generation can be parametrized which leads to a
complexity reduction of the learning problem. Many differ-
ent MP representations have been proposed. Among the most
prominent ones are Dynamic Movement Primitives (DMPs, [1]),
Gaussian Mixture Models (GMMs, [2]), Stable Estimator of Dy-
namical Systems (SEDS, [3]), Interaction Primitives [4] or Prob-
abilistic Movement Primitives (PROMPs, [5]). In the following
section, we discuss some of the approaches utilizing MPs for
learning skills from demonstrations. With our approach, we aim
for contributing to three important aspects in the learning from
demonstration domain: Learning from a few demonstrations,
Coordinate frame selection and Co-articulated movements.

a) Learning From Few Demonstrations: One of the main chal-
lenges when learning skills from demonstrations is to extract as
much information as possible from the demonstrations. A hu-
man teacher usually is not willing to provide tens or hundreds of
demonstrations. Ideally, only a handful demonstrations should
be sufficient to learn a skill. Lee et al. [6] use Principal Com-
ponent Analysis for reducing the dimensionality of the input
data before segmenting the demonstrations into a set of MPs.
Extracting a set of MPs from the demonstrations is a frequently
used technique for decomposing the overall learning problem
into smaller parts which might be easier to learn (e.g., [7]–[10]).
Kappler et al. [11] learn to activate MPs based on sensory input
which may be potentially of a high dimension. Yet, they assume
the MPs are learned at a previous stage. Kim et al. [12] learn a
skill from few demonstrations which may even be inaccurate.
The movements generated by many of the aforementioned MP

representations are usually modulated temporally (e.g., DMPs or
PROMPs). In that case, the input dimension is inherently reduced
to one, which simplifies the learning process. In this paper, we
also modulate the movements temporally. The reason why our
approach is able to learn complex tasks from a few demon-
strations is the way coordinate frames are integrated into the
learning process.

b) Coordinate Frame Selection: When controlling a robot in
task-space, the generalization capabilities of a system can be
greatly improved if the MPs operate in task-spaces which are
defined relative to objects. If each object is associated with a
coordinate frame and a task-space which controls the robot in
this coordinate frame, the system is inherently able to general-
ize the movements to setups which have not been seen in the
demonstrations. As the teacher usually does not want to spec-
ify which MP performs a movement relative to which object,
this parameter has also to be learned from the demonstrations.
Niekum et al. [13] present an approach that extracts a set of
MPs and selects an appropriate task-space for each MP. The
task-spaces are selected using a heuristic. Heuristics are also
used by [14]–[16] to select a task-space for each MP. The Task-

Parametrized Gaussian Mixture Model (TP-GMM, [17]) general-
izes the GMM to support multiple coordinate frames and is for
instance used in [18]. It does not select the coordinate frame
explicitly, but instead learns a probability distribution over the
coordinate frame weights. A newer version of this approach
is the Task-Parametrized Hidden Semi-Markov Model, where
also the temporal correlation of the individual mixture models
is learned [19], [20]. Our approach also does not select the co-
ordinate frames explicitly. Instead, it learns to activate a set of
attractors represented in different coordinate frames over time
in a way which is most consistent with the demonstrations. Es-
timating the activations is formulated as convex optimization
problem which does not rely on a good initialization of the
parameters, which for instance is the case for the TP-GMM.

c) Co-Articulated Motions: Humans often tend to co-
articulate between successive movements [21], which renders
the problem of detecting start and end of individual movements
more difficult. Two MP representations which explicitly support
co-articulated movements are GMMs and SEDS. Calinon et al. [2],
encode a movement as joint probability distribution over the po-
sitions and velocities by using GMMs. A movement is generated
by conditioning the velocity on the current position. SEDS also
makes use of GMMs, but additionally guarantees convergence
to a desired target at the cost of a larger computational effort.
GMMs allow for modeling an entire demonstration with a single
probability distribution. As the density function of a Gaussian
is smooth, the movements generated by a GMM are smooth as
well and therefore, the model can be utilized for modeling co-
articulated movements. PROMPs can also blend between two
successive MPs. Yet, it is not clear how to learn a blending factor
from demonstrations. Our approach learns to activate a set of
attractors so that the generated movement follows the demon-
strated behavior. If the human teacher transitioned smoothly be-
tween two successive movements, the resulting MP activations
will change slowly, leading to the same behavior.

In summary, our framework learns to continuously activate a
set of attractors over time by solving a convex optimization prob-
lem. The attractors can be represented in different coordinate
frames. Additionally, co-articulated movements are supported
explicitly. Altogether, the framework is able to learn complex
skills from a few demonstrations and is able to generalize a
skill to novel setups. The remainder of the paper is organized as
follows. In Section II, the MOA MP representation is introduced
formally. Next, Section III shows how the representation can be
used for robot control. The approach is then evaluated in Sec-
tion IV before concluding and giving a short outlook on future
work in Section V.

II. MIXTURE OF ATTRACTORS

The basic idea behind MOA is to represent a movement as
composition of very simple Dynamical Systems (DS). We refer
to an attractor as a spring-mass-damper system of the form

ẍ(t) = α(β(g − x(t)) − ẋ(t)), (1)

where α and β are controller parameters. The parameters can
be set to guarantee the stability of the DS. In that case, the DS

converges to its attractor goal g for t → ∞. In this paper, x cor-
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responds to the Cartesian position of the robot’s end-effector.
Instead of having a single attractor, we assume that complex
movements are generated by a linear combination of K attrac-
tors

ẍ(t) =
K∑

k=1

ak (t)α(β(gk − x(t)) − ẋ(t)). (2)

Hence, MOA defines a movement by a set of K attractor goals gk

and their activations ak (t). Note that the activations explicitly
depend on the time which allows for shaping the trajectory and
generate complex movements. We assume the activations of
each time-step sum up to one and therefore, the equation can
also be written as

ẍ(t) = α(β(Ga(t) − x(t)) − ẋ(t)), (3)

where the attractor goals are summarized in the matrix G =
[g1 , . . . , gK ] and the activations of one time step are summa-
rized in the vector a(t). In the following sections, we show
how the attractor goals and activations can be learned from
demonstrations and discuss some of the properties of the MP

representation.

A. Trajectory Tracking

We introduce the learning method by assuming we want to fol-
low a desired trajectory. Later, we focus on learning skills from
demonstrations which go beyond pure replaying of a demon-
stration and extend the approach to support multiple coordinate
frames. The first step is to time-discretize (3) using step-size h

xt =
2 + αh

1 + αh + αβh2 xt−1 − 1
1 + αh + αβh2 xt−2

+
αβh2

1 + αh + αβh2 Gat

= c1xt−1 + c2xt−2 + c3Gat , (4)

where c1 , c2 and c3 are constants to keep the equation compact.
We want to learn the parameters G and at , so that we track
a demonstrated trajectory τ = {y0 ,y1 , . . . ,yN −1} as closely
as possible. Here, N is the length of the demonstration. In this
section, we assume to know the goals G and want to estimate
the movement primitive activations at . In order to track the tra-
jectory, we minimize the mean squared error (MSE) over time
between the demonstrated trajectory and the trajectory gener-
ated by MOA

J =
N −1∑

t=0

(xt − yt)
T (xt − yt) . (5)

The aim of this section is to minimize the cost function with
respect to the activations at . Note that our system is fully deter-
mined by the attractor goals, their activations over time and the
start points x0 and x1 . Therefore, as a first step xt is expressed
in terms of these variables

xt = λtx1 + μtx0 +
N −1∑

i=0

γt,iGai . (6)

The scalar constants λt , μt and γt,i can be specified recursively

λt = c1λt−1 + c2λt−2 , λ0 = 0, λ1 = 1,

μt = c1μt−1 + c2μt−2 , μ0 = 1, μ1 = 0,

γt,i = c1γt−1,i + c2γt−2,i + c3δt,k , γ0,i = 0, γ1,i = 0,

where δ is the Kronecker delta with δi,j = 1 for i = j and δi,j =
0 otherwise. Given a trajectory τ , we can compute the constants,
set x0 = y0 , x1 = y1 substitute ŷt = yt − λtx1 − μtx0 and
plug this term into the cost function

J =
N −1∑

t=0

(
N −1∑

i=0

γt,iGai − ŷt

)T (
N −1∑

i=0

γt,iGai − ŷt

)
. (7)

If we concatenate all movement primitive activations in a
single vector a =

[
aT

0 , . . . ,aT
N −1

]T
and concatenate Ĝt =

[γt,0G, . . . , γt,N −1G], then (7) can be rearranged to

J =
N −1∑

t=0

(
Ĝta − ŷt

)T (
Ĝta − ŷt

)
,

= aT

(
N −1∑

t=0

Ĝ
T

t Ĝt

)

︸ ︷︷ ︸
0.5H

a − 2

(
N −1∑

t=0

ŷT
t Ĝt

)

︸ ︷︷ ︸
−fT

a +
N −1∑

t=0

ŷT
t ŷt

︸ ︷︷ ︸
const

,

=
1
2
aT Ha + fT a + const, (8)

which can be minimized via Quadratic Programming (QP). In
addition to the cost function, constraints have to be added to
ensure the individual activations are in the range [0, 1] and the
activations for each time step t sum up to one. Therefore, the
overall minimization problem is

min
a

1
2
aT Ha + fT a, such that

{
‖at‖1 = 1,

0 ≤ a ≤ 1.
(9)

The optimization problem (9) can now be solved using an out
of the box standard QP solver. Please note that the matrix H is
a sum of the form

∑
Ĝ

T

t Ĝt . Therefore, the matrix is positive
semi-definite and a standard QP solver is guaranteed to find a
global minimum.

B. Parametrizing the Activations

So far, the optimizer could freely choose the activations for
each point in time. This freedom may lead to jumps in the
activations, potentially resulting in jerky movements. In order
to generate more natural, smooth movements, the activations can
be parametrized. In that case, the optimizer is only allowed to
change the activations at fixed points in time (e.g., every 50ms).
We call these points support points. In between support points,
the activations are interpolated. If we summarize all activations
of the support points in a matrix S ∈ RK×NS , where NS is the
number of support points and k the number of attractors, the
activations at time-step i are interpolated according to

ai = Swi . (10)
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Here, wi is a weight vector for time-step i. It determines how
the activations will be interpolated. In order to generate smooth
movements, we use Radial Basis Functions (RBFs)

wi,s =
e−γ 2 (ti −ts )2

∑NS

u=0 e−γ 2 (ti −tu )2
, (11)

where wi,s is the sth value of vector wi , ti is the time at time step
i and ts is the (temporal) center of the RBF. The bandwidth γ of
the RBF is a hyperparameter that determines how smoothly the
weights change over time. If we plug (10) into (9) and rewrite
the matrix S as a vector s by concatenating the columns of the
matrix, the Quadratic Program can be reformulated as

J =
1
2
sT Ĥs − f̂

T
s, (12)

where the size of the matrix Ĥ is KNS × KNS . Note that
the matrix H from the original formulation in (9) has a size of
KN × KN , where N is the number of time steps. As NS < N ,
parametrizing the activations does not only lead to smoother
movements but also reduces the computational costs and mem-
ory requirements of the optimization.

C. Support for Multiple Coordinate Frames

In the previous sections, we concatenated Ĝt =
[γt,0G, . . . , γt,N −1G]. Here, the goal matrix G is constant over
time. In order to support multiple coordinate frames, we can re-
lax this assumption. An attractor can be defined in a coordinate
frame which is not the world frame. In that case, it’s attractor
goal can be transformed into the world frame for each time-step.
Hence, the goal matrix at time-step t becomes Gt , where the
columns of the matrix correspond to the attractor goals trans-
formed into the global world frame. Changing the fixed goal
matrix to a matrix which varies over time does not change the
fact that the quadratic matrix Ĥ is positive semi-definite. There-
fore, the QP can still be solved in a globally optimal manner. We
would like to point out that the QP has to be solved only once.
In a real-world task, if a coordinate frame is associated with an
object, the attractor goals defined in this frame automatically
move together with this object. Therefore, a movement which
is defined relative to these attractors is automatically adapted
to changing object positions and orientations without solving
the QP again.

III. USING MIXTURE OF ATTRACTORS FOR ROBOT CONTROL

So far, we introduced the MOA framework and showed how
the activations can be learned to track a demonstrated trajectory.
Next, we show how MOA can be used for learning a skill from
demonstrations of a task. To do so, we discuss two aspects that
were not covered in the paper so far. First, we show how the
number of attractors and their goals can be learned from the
demonstrations. Second, we discuss which coordinate frame to
choose for each attractor. At the end of the section, we present
the final skill learning algorithm.

First of all, it is notable that a skill is learned using multiple
demonstrations of a task. So far, the attractor activations were
learned by minimizing the MSE between a trajectory generated
by MOA and a single demonstration. For learning a skill, the MSE

Fig. 2. Toy example to illustrate the MOA optimization. On the left, two
demonstrations (blue and red) are shown in two different coordinate frames.
The demonstrations start at the same position in the first frame, approach a
target in this frame and then approach a target in the second frame. The attractor
goals are marked with an x. On the top right, the ratio of the precision (reciprocal
of the variance) in the two coordinate frames is shown over time. The frame
activations resulting from the MOA optimization (bottom right) are akin to the
precision.

of M demonstrations add up to

J =
M −1∑

m=0

N −1∑

t=0

(
x

(m )
t − y

(m )
t

)T (
x

(m )
t − y

(m )
t

)
. (13)

As the MSE of the different demonstrations simply add up, the
form of the QP does not change when minimizing J . Therefore,
for M demonstrations, we can compute M independent QPs and
then compute the sum of all Ĥ’s and f̂ ’s to form a single QP

which has the same form as (12).

A. Choosing the Number of Attractors and Their Goals

No matter how many attractors are chosen, the points Ga
generated by MOA will always lie within the convex hull of their
attractor goals, as the activations sum up to one. For two linearly
independent attractors, the system would generate points on a
line. For three linearly independent attractors points within a
triangle. A generic solution to estimate the number of attractors
in a D dimensional space is to choose it so that any trajectory
within this space can be generated by the system. Therefore, we
propose to use 2D attractors, where D is the dimension of the
space the MPs operate on1. We propose to choose the attractor
goals by computing the minimum and maximum values for each
dimension of the demonstrations. The attractor goals then build
the corner points of the bounding box of the demonstrations. If
multiple coordinate frames are used, 2D attractors are chosen
for each coordinate frame independently. The attractor goals are
illustrated in Fig. 2 for a simple 2D toy example.

B. Determining the Most Relevant Coordinate Frame

When learning a skill, we associate the world and each object
in the scene with one coordinate frame. The attractor activations
should be learned in a way that yields the best generalization
performance. For instance, if a task requires approaching an ob-
ject, the activations of the attractors which control the robot in
the coordinate frame of this object should be large during this

1In general, a set D + 1 attractors can be found which covers the demon-
strations. We use a 2D bounding box as it is more intuitive and we represent
movements only in 2D and 3D space in this paper.
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phase of the task. A common approach for choosing coordi-
nate frames is to compare the variance of the data over multiple
demonstrations in the individual coordinate frames (e.g., [14],
[15]). For a certain task phase, the movement will be repre-
sented in the frame that has the lowest variance. Our approach
leads to similar results without using a heuristic to decide which
coordinate frame to choose for which phase of a task. Instead,
the optimization converges to a solution where the activations
of the attractors represented in a coordinate frame will be large
if the variance is low.

Our main assumption is that the demonstrations are aligned
in time and the movement will be modulated temporally. For
aligning the demonstrations, we use Dynamic Time Warping
(DTW). As the demonstrations are represented in different coor-
dinate frames, it is not straightforward to align them temporally.
As cost function to measure the distance between two points xi

and x̂i from different demonstrations we measure the Euclidean
distance in each frame k and use the overall minimum as cost
term

DTW(i, j) = min
k

∥∥∥x
(k)
i − x̂

(k)
j

∥∥∥
2

, (14)

where x
(k)
i is the ith data point of a demonstration represented

in the kth coordinate frame. After aligning the demonstrations in
time, the attractor goals are computed for each frame separately
according to the previous section and subsequently transformed
into the world frame for all non-world frames. The 2D attractor
goals of frame k at time step t will be noted as G

(k)
t . The

attractor goals of the frames are stacked together, resulting in a
single goal matrix

Gt =
[
G

(1)
t , . . . ,G

(K )
t

]
(15)

for each time step. Now, the attractor activations can be com-
puted according to (12). The process of estimating the activa-
tions is illustrated in Fig. 2 by using a simple toy example. The
optimizer can freely choose the attractor activations over time,
but has to explain all demonstrations with the same sequence of
activations. As it is not possible to do so in a single coordinate
frame, the optimizer converges to a solution where the frame
activations (sum of attractor activations represented in the same
frame) vary over time.

C. Choosing the Hyperparameters

When using the suggested bounding box method for choos-
ing the positions and numbers of the attractors goals, the only
hyperparameters a user has to choose are the number of support
points and the bandwidth γ of the corresponding RBF. In all
experiments presented in this paper, the bandwidth of each RBF

was set so that the function evaluates to a value α = 0.1 at the
center’s of the neighboring RBFs. The numbers of support points
were chosen by increasing the number until we were satisfied
with the results. In future work, we plan to develop a method
for optimizing the hyperparameters in a principled manner.

D. Final Algorithm

The steps MOA performed for learning a skill from demonstra-
tions are summarized in Algorithm 1. First, the demonstrations

Algorithm 1 MoA Learning Algorithm.

Require: Trajectories X(1) , . . . ,X(M ) , Coordinate
Frames k = 1, . . . , K
1: Align trajectories using DTW (14)
2: Compute support point centers ts and bandwidth γ

according to (11)
3: Compute support point weights W
4: for each Frame k do
5: Compute attractor goals G(k) (Section III-A)
6: Ĥ = 0, f̂ = 0
7: for each Trajectory m do
8: for each Frame k do
9: Convert goals to world frame G

(k)
t

10: Concatenate goal matrices to single matrix for
each time-step Gt (15)

11: [Ĥ, f̂ ] += generateQP(X(m ) ,W ,Gt) (12)
12: Solve QP(Ĥ, f̂ ) to find support point activations S
13: return Goals G, Support point activations S, centers ts

and bandwidth γ

are aligned in time using DTW. Next, the centers and bandwidth
of the support points are computed. The attractor goals are com-
puted for each frame separately. Then, the goals of the frames
are transformed into the world frame for each time-step. Finally,
the QP is generated and solved. The learned skill is composed
of the resulting support point activation matrix S, the attractor
goals G and the parameters of the support points.

IV. EVALUATION OF THE APPROACH

For evaluating MOA, we performed two experiments. The aim
of the first experiment was to compare some of its properties
to DMPs and GMMs. These MP representations have similar prop-
erties to MOA, which allows for a fair comparison. The com-
parison is carried out on letters from the Omniglot handwriting
data set. In a second experiment, we evaluated the generaliza-
tion capabilities of the system on a real robot handwriting task.
The task is demonstrated kinesthetically and later reproduced
on a real seven degrees of freedom (DOF) Barrett WAM robot.
Additionally, we compare the generalization capabilities with
two state-of-the-art approaches.

A. Handwriting Evaluation

The Omniglot data set was introduced by Lake et al. [22] as
a 2D data set for one-shot learning. It contains over 1500 dif-
ferent handwritten characters from 50 different alphabets. Each
character was drawn online using Amazon’s Mechanical Turk
by 20 different people. The images come with stroke data as
sequences of 2D coordinates associated with time information
t. We use the data set to compare MOA with DMPs and GMMs.
All MP representations are trained on characters from the Latin
alphabet. Before training, we removed all characters that were
not drawn continuously (e.g., more than one stroke was used as
the participant lifted the pen). The remaining characters were
preprocessed as follows. First, we shifted each character so
that the mean of the image is at [0, 0]. For each character, we
computed the average standard deviation from the mean and
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Fig. 3. Results on the Omniglot handwriting data set. The upper plots show the demonstrations and reproduced trajectories in 2D space for two letters of the
data set. For MOA, additionally the attractor goals are shown. All methods except for MOA-S are time driven. For the spatially driven MOA-S, the gray lines show
the attractor landscape. Here, the movements converge to the gray dots. The lower plots show the corresponding mean squared error over time (average and ± one
standard deviation).

subsequently scaled each image to have the same standard de-
viation. As a last preprocessing step, we aligned the trajectories
in time using DTW. The preprocessing of the data was the same
for all methods.

For a fair comparison, the movements generated by all meth-
ods were modulated temporally. For the GMM approach, a joint
probability p(t,v) was learned. The movements were then gen-
erated by conditioning the current velocity on the time p(v|t).
For MOA and DMPs, the basis functions were activated tem-
porally. We did our best to tune the hyperparameters of all
methods. For the GMM approach, we increased the number of
Gaussians to 15 until the Mean Squared Error (MSE) between
the generated and demonstrated movements did not increase
anymore. For MOA and DMPs we used the method suggested in
Section III-C, which resulted in 20 support points. In contrast
to MOA, the movements generated by DMPs are conditioned on a
desired start and end point. To add this property to our MP rep-
resentation, we associated a coordinate frame with the start and
end points of each demonstration, respectively. As these points
vary over the demonstrations, the attractor goals (transformed
into the world frame) are automatically shifted together with the
origins of the coordinate frames. As the MPs represent move-
ments in 2D space, four attractors were used for each coordinate
frame. The locations of the attractor goals were set according to
the bounding box method suggested in Section III-A. In addi-
tion to the aforementioned MP representations, we also trained a
second variant of MOA, where the weights of the basis functions
were not conditioned on time, but on the current spatial position
xt . We will refer to this variant as MOA-S. Here, we also used 20
support points. The centers of the basis functions were found by
clustering the demonstrations with KMEANS and choosing the
centers of the clusters as centers of the basis functions.

The results for two exemplary characters from the Latin al-
phabet are shown in Fig. 3. The MSE between the drawn charac-
ters and the ones generated by the different time driven MP

representations are in the same range with MOA slightly

outperforming the other representations. DMPs perform worst
for the letter ‘a’. The reason is that the letter is not drawn very
consistently. As DMPs depend linearly on the difference be-
tween start and end point, they do not seem to be robust against
movements that have similar start and end points, but different
shapes. The spatial variant MOA-S has the largest average error
of all MP representations. While the generated movements re-
flect the general shape of the letters, they either converge to a
spurious attractor (‘a’) or enter a cycle (‘s’). Please note, how-
ever, that the focus of this paper are time driven movements.
Therefore, the intention of MOA-S was to evaluate if it is in prin-
ciple possible to learn spatially driven movements with our MP

representation. We consider it future work to investigate in
more detail MOA’s applicability for spatially driven movements,
for instance by analyzing important properties such as asymp-
totic stability (e.g., [23]). The conclusion from the Omniglotx
experiment is that the sequences of MP activations resulting from
the MOA optimization process lead to movements which closely
follow the demonstrations.

B. Robot Handwriting Evaluation

In a second experiment, we demonstrated a handwriting task
on a Barrett WAM robot via kinesthetic teaching. As end-effector,
a pen was attached to the robot, as shown in Fig. 1. The task was
to first write “IAS” on one whiteboard and subsequently write
“HRI” on a second whiteboard. The intention of the experiment
was to evaluate the generalization capabilities of our method.
Therefore, the whiteboards were placed at different locations
on the table for each demonstration (see Fig. 4). The learned
skill was then reproduced on a setup which was not seen in the
demonstrations. For each demonstration, the 3D position of the
tip of the pen was recorded in world coordinates and relative
to each whiteboard. In order to generalize the skill to unseen
whiteboard positions, the system has to learn to control the tip of
the pen in the correct coordinate frame in each phase of the task.
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Fig. 4. Pictures of the six setups used for demonstrating the handwriting task (left). On the right, the setup for the reproduction is shown. For the demonstrations,
we used a red pen and for the reproduction a green pen. The differences between the demonstrations and reproduction can be explained with the utilized controller
and are not a result of the learning process. (a) Demonstration setups. (b) Reproduction results.

For instance, when writing “IAS”, the pen has to be controlled
in the coordinate frame of the corresponding whiteboard.

Overall, we performed six demonstrations of the task. The
data was recorded with a frequency of 40Hz. Before training,
the demonstrations were aligned in time using DTW. The move-
ment generated by our system was modulated temporally by
the activation of 75 equally distributed support points. First, we
trained our system using all six demonstrations. Subsequently,
we put the whiteboards to positions that were different from
the demonstrations and executed the skill on the real robot. The
results are shown in Fig. 4. The robot was able to generalize to
the unseen setup and mastered the task for the new whiteboard
positions. The system learned to control the pen in the correct
coordinate frame for each phase of the task and therefore was
able to generalize the skill to the new situation. During execu-
tion, we control the orientation of the end-effector in null-space
with compliance, as we focus on learning Cartesian positions in
this paper.

Next, we trained two state-of-the-art-methods on all demon-
strations and evaluated their generalization capabilities in sim-
ulation. The first method is the TP-GMM [17] introduced earlier.
The method uses Gaussian distributions to model the data spa-
tially in the different coordinate frames. For a fair comparison
with our approach, we augmented the state-space with time.
When reproducing a skill, we conditioned the desired position
on the current time, so that the movement was also modulated
temporally. We used 75 Gaussians for training, as more Gaus-
sians did not lead to an improvement of the results anymore. The
second method is an approach by Ureche et al. [15]. Here, the
authors explicitly choose the coordinate frames over time based
on the variance of the demonstrations. For a fixed time window
and each frame, they compare the variance in this time window
to the variance of the entire demonstration. The frame with the
lowest value of the corresponding cost function is chosen as
winner. For each resulting segment, we use DMPS to represent
the movements in the corresponding frames. In the following,
this approach will be referred to as VAR-DMP. Fig. 5 shows the
resulting coordinate frame selections of all three approaches.
The resulting frame activations of all three approaches look
quite similar and all approaches generalize the learned skill to
the test setup. VAR-DMP successfully writes the two words, but
does not learn the transition phase when changing the coor-
dinate frame. As a consequence, the generated movement is
less smooth and sometimes points in the wrong direction for a
short period of time (e.g., in the beginning or after writing the S

of IAS). TP-GMM performs slightly worse compared to MOA. One
reason why MOA follows the shape of the movement more ac-
curately is that it takes the attractor activation recursively into
account, whereas TP-GMM treats successive data points as they
were independent.

In order to evaluate if our system can learn the handwriting
skill from fewer demonstrations, we additionally trained it in-
dividually on all 63 possible subsets of demonstrations (e.g.,
demonstration 1, 2, and 4) and evaluated the generalization ca-
pabilities of the learned skill in simulation. Fig. 5 shows the
frame activations and generated trajectory for one exemplary
subset. While some of the learned skills were able to reproduce
the task for the test setup, others were not. All skills were able
to reproduce the task on the setups they were trained on. For the
handwriting task, a good metric for quantifying the generaliza-
tion capabilities is to measure the sparsity of the individual coor-
dinate frame activations. Ideally, the pen should be controlled in
the world frame in the beginning of the task, as the robot always
started from the same initial joint configuration. When writing
the two words IAS and HRI, the pen has to be controlled in the
corresponding coordinate frames of the whiteboards. Therefore,
we measure the average sparsity of the activations as a metric
for the generalization capabilities

Jsparsity =
1
N

N −1∑

t=0

K∑

k=1

∥∥∥a
(k)
t

∥∥∥
2

1
, (16)

where a
(k)
t are the activations of the attractors which are rep-

resented in coordinate frame k. In our case, K = 3. A fully
sparse solution would result in Jsparsity = 1, while a equally dis-
tributed solution would result in Jsparsity = 1/K. Fig. 6 shows
the average sparsity for all training instances. The solutions
become sparser if the skill is trained on more demonstrations.
Depending on how dissimilar the whiteboard positions are in
each demonstration, two demonstrations can be sufficient for
learning a solution which is as sparse as the solution for all
six demonstrations. We consider it future work to investigate
why certain combinations lead to more sparse solutions than
others and why the variance of the sparsity is larger compared
to the TP-GMM.

V. CONCLUSION AND FUTURE WORK

We presented the Mixture of Attractors (MOA) movement
primitive representation. Due to its integration of multiple
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Fig. 5. Comparison of MOA with two other approaches. The upper plots show the frame activations over time. The colors correspond to the individual coordinate
frames (◦ world frame, ◦ first whiteboard, ◦ second whiteboard). The lower plots show the predicted 3D paths for the test setup. The colored rectangles correspond
to the two whiteboards. For the plots on the left, we trained MOA with a combination of demonstrations which did not lead to a proper discrimination of the
coordinate frames. The other representations were able to generalize the skill to the test setup. Compared to VAR-DMP, MOA and TP-GMM also learn to blend
smoothly between successive movements.

Fig. 6. Comparison of the sparsity of the frame activations for MOA and TP-
GMMs. The solid lines show the mean of the sparsity, while the marks show the
results for the individual combinations of the demonstrations. With an increasing
number of demonstrations, the discrimination of the coordinate frames becomes
better. We observed that a sparsity of at least 0.9 (dashed line) is required to
generalize to the test setup.

coordinate frames, MOA can be utilized for learning complex
object-directed skills which generalize well to unseen object po-
sitions and orientations. In addition, the system blends smoothly
between successive movements. Learning a skill is formalized
as convex optimization problem. Therefore, in contrast to most
other approaches, the quality of the skill does not depend on
an initial estimate of parameter values. The evaluation showed
that MOA outperforms two state-of-the-art approaches in terms
of accuracy and/or generalization capabilities. In future work,
we want to investigate MOA’s capabilities of learning spatially-
driven movements, as well as learning from non-optimal or
partial demonstrations. In addition, we want to compare MOA to
other MP representations such as TP-HSMM or PROMPs.
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