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Abstract—We consider a vehicle consisting of a robotic walking
assistant pushed by a user. The robot can guide the person along
a path and suggest a velocity by various means. The vehicle moves
in a crowded environment and can detect the different pedestrian
in the surroundings. We propose a reactive planner that modifies
the path in order to avoid the pedestrian in the surroundings. The
algorithm relies on a very accurate model to predict the motion
of each pedestrian, i.e. the Headed Social Force Model (HSFM).
The possible trajectories for both the vehicle and the pedestrians
are modelled as clothoid curves, which are efficient to manage
from the numeric point of view and are very comfortable to
follow for the user. Probabilistic techniques are used to account
for the variability of the motion of each pedestrian. The path is
efficient to generate, is collision free (up to a certain probability)
and is comfortable to follow. Simulations and comparisons with
a state of the art planner using real data as well as experiments
are reported to prove the effectiveness of the method.

Index Terms—Assistive Robots, Reactive Planning, Motion
Planning

I. INTRODUCTION

Service robots are increasingly used to help older adults in
navigation tasks, to prolong their independent living and to
keep them physically active. The techniques proposed in the
paper target a large class of robotic devices that can be used for
this purpose, even though we will make explicit reference to a
specific intelligent robotic walker, the FriWalk developed in the
context of the European project ACANTO [1] (see Figure 1).
The FriWalk is a standard commercial walking aid endowed
with sensing abilities to understand the surroundings, with
communication abilities to connect to cloud services and with
planning abilities to produce safe paths in the environment [2].
The specific problem considered here is the so called reactive
planning, which is used when a senior user of the robotic
walker encounters an unforeseen obstacle while following a
planned trajectory (hereinafter global path, GP). In such cases
as this, the reactive planner comes into play and generates a
new local path (LP) that avoids the obstacle. In the following,
the ensemble user+walker will be referred to as vehicle. The
purpose of the reactive planner is to minimise the local
deviations ensuring that the LP joins the GP shortly after the
obstacle. Generally speaking, the planned path has to respect
boundaries and dynamic constraints, which restrict the possible
trajectories that can be taken. The occasional presence of
obstacles, such as other human beings standing by or walking
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Fig. 1. A comparison between the proposed approach and the application of
Risk-RRT for the dynamic re-planning.

in the neighbourhood of the vehicle, generates additional geo-
metric and dynamic constraints. A few important assumptions
underlie the design of the reactive planner. First, we assume the
prior knowledge of an optimal GP (e.g., computed by a high
level planner [2]) that avoids static obstacles [3]. Therefore, the
reactive planner always has an available solution: stay on the
GP, slow down or stop when dynamic obstacles come across
and wait until they pass by. Second, the vehicle is equipped
with a sensing system able to reveal obstacles and anomalous
conditions in the surroundings (primarily, people walking in
the proximity of the path as in [4]), for example an RGB-D
camera as in the case of the FriWalk [5] (see Figure 1). Third,
the trajectory re-planning has to be computed in real-time and
using a lean hardware to reduce the cost.
Related work. Recently, different techniques have been de-
veloped to plan effective, collision free trajectories in the
presence of dynamic and non-deterministic obstacles. In [6],
uncertainties both on the robot state and on the dynamic
obstacles are considered. The problem is formalised as a
chance constrained optimisation, and an efficient, approxi-
mated solution is proposed. However, this approximation is
valid for “small” robots and Gaussian distributions of the un-
certainties. In [7], instead, the stochastic optimisation problem
is solved by introducing the Partially Closed Loop Receding
Horizon Control algorithm, while the uncertainty is kept in
check using future data acquisitions. In [8], a velocity obstacle
representation is used, hence the set of velocities causing
a collision with an obstacle before a given time horizon is
determined. Other solutions are based on the construction of a
probabilistic occupancy map, and on the search of a safe path
using improvements of classical path planning algorithms, as
in the case of Probabilistic Roadmaps [9], or Risk-RRT [10].
The latter solution is based on the modelling of possible
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trajectories using a mixture of Gaussian Processes, and on
the search of the solution using an adaptation of the RRT path
planning algorithm [11] taking into account the probability
of collision to determine the cost of the different plans. The
techniques mentioned so far do not take into consideration
the specific motion patterns of human beings in a crowded
environment and, in general, require a high computation time.
Another problem with these techniques is that they do not
constrain the curvature of the generated path to be continuous
(for instance, as shown below, Risk-RRT generates trajectories
with piece-wise constant curvature). As a result the generated
path could be jerky and uncomfortable.

More directly related to our approach are solutions based on
the determination of families of trajectories usually followed
by humans in a certain environment. Such trajectories can
be modelled as Gaussian Processes [9], interactive Gaussian
processes [12] or Hidden Markov Models [13]. The proba-
bilistic information on the future evolution of the states of
the dynamic obstacles is then used in different ways to find
probabilistically safe trajectories. In this line of work, a large
number of prior observations in a specific environment is used
to fit the model parameters. Our efforts are toward solutions
that are more generally applicable.

More accurate models describing the human motion are
considered in a different thread of research papers [14], [15].
The idea is in these cases to use Montecarlo simulations to
predict the future positions of the obstacles. This solution
comes at the cost of a non-negligible computation time, which
could potentially compromise the possibility of a real-time
execution.

Our main goal in this work is to develop a computationally
efficient reactive planner, which is particularly focused on
avoiding collision with humans in crowded environments and
which produces a comfortable path for the user. A correct
understanding of how people move in a crowded environment
is key to our work. The widely known Social Force Model
(SFM) [16] assumes that a person is supposed to be able
to move freely in any direction at any time, acting like a
mass particle subjected to external forces. On the contrary,
empirical evidence shows that, most of the time, pedestrians
tend to move forward, i.e. their velocity vector is most
often aligned with their heading, due to the biomechanics
of humans. This phenomenon has been observed by several
studies [17], [18], [19], which come to the conclusion that
a nonholonomic model, e.g. unicycle-like or car-like models,
may be more appropriate to describe human motion in many
cases. The adoption of such models gives a nice interpreta-
tion of the mechanism underlying the formation of human
trajectories, namely the minimisation of the derivative of the
path curvature, the jerk [18]. In [20] the Headed Social Force
Model (HSFM) is proposed to enhance the traditional SFM
by explicitly accounting for the pedestrians’ heading and thus
retrieving the smoothness of the trajectories.
Paper Contribution. The Reactive Planner proposed in this
paper uses the HSFM to predict the possible future motion
of the obstacles (humans, in our context). Since the possible
consequences of accidents are limited in our operational sce-
narios, we adopt a probabilistic formulation. Therefore, our

reactive planner seeks the LP that avoids all the obstacles
with an assigned probability minimising the deviation from
the GP. Contrary to previous work [14], [15], our reactive
planner is not based on run-time simulations. The key idea
to adopt the HSFM as the baseline for the planner is to
collect a large amount of data generated by humans (which
can come from simulations or observations on the field). If
we restrict to a relatively small time horizon, each gener-
ated trajectory can be closely approximated with clothoid
curves [21], [22]. Clothoids have been found to be a good
approximation of the motion of human trajectories [23] and
can be efficiently manipulated in numeric algorithms. Each
one of these curves is associated with a probability, associated
with each possible choice of the pedestrian on her/his velocity
and destination. The planner considers alternative paths (which
are themselves clothoids) and for each of them computes the
possible intersections with the pedestrian that may cause a
collision. The use of these probabilities allows us to define a
probabilistic performance index associated with the probability
of a collision event. This way, it is possible to select a
trajectory with small collision probabilities that minimises the
waiting time and the distance from the GP.

The HSFM–based solution presented in this paper guar-
antees that the transition between the two paths is smooth
up to the second derivative (the curvature), which makes it
easy to track. Finally, the solution is efficient and can be
implemented in real-time on lean hardware. In order to validate
the approach, we show how the re-planning can be executed
in a few milliseconds (on a standard machine).

The paper is organised as follows. In Section II, we present a
detailed description of the adopted model of moving pedestri-
ans. In Section III we illustrate how we formalise and solve the
problem of re-planning in environments populated by humans,
while Section IV assesses the validity of the finding through
experimental validation. Finally, Section V provides some
concluding remarks and proposes future research directions.

II. PEDESTRIAN MODELLING

The HSFM [20] is a recently introduced model to describe
the motion of pedestrians in a social environment. In this
model, the i-th individual is assimilated to a particle with
mass mi, whose position expressed in the world reference
frame 〈W 〉 is denoted by ri = [xi, yi]

>. In order to model
the pedestrians’ heading, it is convenient to attach a body
frame 〈B〉 to each individual, i.e. a reference frame centred at
the pedestrian’s position and whose x-axis is aligned with the
pedestrian’s forward direction of motion. Let qi = [θi, ωi]

>

be the vector containing the i-th pedestrian’s heading and
angular velocity are θi (angle between the x-axis of the body
frame and that of the global reference frame) and ωi = θ̇i,
respectively. Denote by vBi = [vfi , v

o
i ]> the velocity vector

expressed in the body frame. The components vfi and voi of
vector vBi correspond to the projection of the velocity vector
vi along the forward direction and the orthogonal direction,
respectively. Then, similarly to [24], the human locomotion
model becomes

ṙi = Ro(θi)v
B
i , v̇Bi =

1

mi
uBi , and q̇i = Aqi +biu

θ
i , (1)
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where Ro(θi) is the 2D rotation matrix of angle θi,

A =

[
0 1
0 0

]
, bi =

[
0
1
Ii

]
, (2)

and Ii denotes the moment of inertia of pedestrian i. In the
model (1), the inputs are uBi = [ufi , u

o
i ]
>, whose entries

are the forces acting along the forward direction and the
orthogonal direction, respectively, as well as the torque uθi
about the vertical axis. In this model, if we set voi (0) = 0 and
uoi (t) = 0, for all t, the dynamic unicycle model is recovered,
hence the model features a nonholonomic behaviour [20].

As in the SFM [16], the HSFM model inputs ufi , uoi and
uθi are computed on the basis of external forces. Two terms
are considered: the first is f0i and accounts for the pedestrian’s
desire to move with a given velocity vector vdi , i.e.

f0i = mi
vdi − vi
τi

(3)

where τi > 0 is a parameter determining the rate of change of
the velocity vector. The second term fei is the sum of the forces
generated by the environment, e.g. fixed obstacles, walls,
furnitures, etc., and other pedestrians in the environments.
Then, ufi is given by the projection of f0i +fei along the pedes-
trian forward direction, uoi has a dumped dynamic depending
only on the external forces fei scaled by the gain parameter
ko > 0 and projected on the orthogonal to the pedestrian
heading (hence, in open spaces the nonholonomic behaviour
is recovered), while uθi has again a second order dynamic
depending on the constants kλ > 0 and α > 1 shaping its
rate of convergence towards the desired heading [20].

A. Approximation of the HSFM trajectories with clothoid
curves

The richness of the HSFM does not allow us to directly
use it in our reactive planner for the computational cost of
solving a set of differential equations on line. Moreover, the
uncertainty about the model parameters of the actual person
encountered and the fact that we can only detect a moving
obstacle within a range of about 3 meters (sensing limit),
justify a model simplification. In such a short space, we have
observed that the trajectories produced by the HSFM can be
approximated by the concatenation of only two clothoid arcs.
As note above, this is in perfect accordance with the findings
of Laumond et al. [23], [3]. It is worth noting that this is true
if the moving pedestrian is not walking in a heavily populated
environment, which will be an assumption in the rest of the
paper. Our first step is to show how a clothoid spline can be
found to approximate a given path generated by the HSFM.

Our idea is to approximate each trajectory generated by a
configuration of a HSFM through two approximating clothoid
arcs: the first one is a clothoid curve, whereas the second is
a straight line (a special case of a clothoid). The construction
requires to find the parameters of two clothoids, staring in P0

and ending in P2, that meet in the middle at point P1 with
curvature continuity, such that the second segment is a straight
line (see Figure 2 for reference). A general clothoid curve is

E0 E1

E2

E3

E4

P0

P2

P1

Fig. 2. Ten different two-segments clothoid splines that join with curvature
continuity a starting point P0 and reach a final (target) point P2. The points
labelled with P1 are the connection points between first and second segment,
respectively proper clothoid and straight line. The splines are modelled with
ten different values of the percentage p ranging from 0% to 100% with step
10%. In green it is shown a bounding polygon E0E1 . . . E4 that contains all
the possible splines with a constant offset.

defined as [21]

x(s) = x0 + sX0(κ′s2, κs, β),

y(s) = y0 + sY0(κ′s2, κs, β), (4)

Xn(a, b, c) =

∫ 1

0

ηn cos
(a

2
η2 + bη + c

)
dη,

Yn(a, b, c) =

∫ 1

0

ηn sin
(a

2
η2 + bη + c

)
dη, (5)

where s is the curvilinear abscissa, x0, y0 are the coordinates
of the starting point, β is the initial angle, κ is the initial
curvature and κ′ is the curvature change rate. Xn and Yn
in (5) are the Fresnel Generalised Integrals (FGI). The clothoid
curve has the notable properties that the tangent is a quadratic
polynomial and the curvature is a linear (affine) function of
the arc length. Our method seeks the path that joins the two
positions P0 and P2, respectively the current position of the
sensed pedestrian and the hypothesised final position. At P0

we measure the xy-position, that is, P0 = (x0, y0), and an
initial angle β0. The second segment must be a straight line
that meets the given final point P2 = (x2, y2), hence the
curvatures κ′ and κ must be zero. To model the different
shapes of the resulting spline as in Figure 2, we use a tuning
parameter p ∈ (0, 1) and define the length L2 of the straight
line as a percentage of the Euclidean distance between P0

and P2. In other words we set L2 = p · dist(P0, P2). The
tuning coefficient p is assigned on the basis of the physical
characteristics of the modelled pedestrian (more on this in
the rest of this section). At the joining point P1, which
is unknown, we require G2 geometric continuity up to the
second derivative, which means that at the junction points
the curvature is continuous. As a consequence, an additional
constraint between the segments connecting Pi to Pi+1 is
defined and it requires that

Hi,0 := xi + LiX0

(
κ′iL

2
i , κiLi, βi

)
− xi+1, (6)

Hi,1 := yi + LiY0
(
κ′iL

2
i , κiLi, βi

)
− yi+1, (7)

Hi,2 :=
1

2
κ′iL

2
i + κiLi + βi − βi+1, (8)

Hi,3 := κ′iLi + κi − κi+1, (9)

must be equal to zero [3]. The subscript i for i = 0, 1, 2 refers
to a condition relative to the point Pi, while the lengths of the
two arcs are modelled with L1 and L2 respectively. Notice that



4

Li runs from i = 1 because the segments are one less than
the points. Equations (6) and (7) ensure point-wise continuity,
whereas (8) and (9) stand for the angle and curvature, X0

and Y0 are the functions defined in (5). This nonlinear system
of equations is the G2 Hermite Interpolation Problem with
clothoids and is hard to solve in few milliseconds. However
our particular form allows us to find a solution by means
of the solution of the G1 Hermite Interpolation Problem
with clothoids [21]. In fact we can simplify some equations
imposing the angles and curvatures in P1 and P2 to be equal
(line segment). More precisely, this method solves all the
previous equations but H1,3 and yields the unknowns L1,
κ′ and κ0 as a function of β1. The missing equation can be
viewed as a function of the unknown parameter β1 resulting
from the G1 solution: we can write it as

h(β1) = κ′(β1)L1(β1) + κ0(β1) = 0. (10)

In other words, with the G1 solution, we can simplify the
nonlinear system to a function of one variable β1, as in (10),
and hence using for example the Newton method with few
iterations to solve it. In summary, the solution strategy to syn-
thesise a path between P0 and P2 with two clothoids calls first
the G1 algorithm of [21], then finds, via the Newton method,
the value of β1 that solves (10). Experimental evidence shows
that the problem at hand requires few iterations of the Newton
method to converge in most of the cases.

B. Fitting the clothoid spline to the HSFM parameters

With the technique discussed above, we can approximate a
short-horizon trajectory of the HSMF model with a simple
two-segments spline of clothoids. The different shapes of
this spline are created varying the percentage parameter p
previously mentioned, which models the behaviour of the
pedestrian. The choice of p depends from the parameters of
the HSFM, which in turn model the pedestrian behaviour. In
order to find this relation, we have simulated many trajectories
between different pair of points P0 and P2 by changing all
the HSFM parameters [20]. The result of this analysis is
that the HSFM parameters that affect most the shape of the
trajectory (and hence the choice of p) are: the reaction time
of the pedestrian τ , which is slower for young people and
higher for more aged people; the parameter ko that models
the orthogonal force, i.e. the step-aside trajectory; the values
of the pedestrian heading dynamic behaviour kλ and α, which
determines if the curvature profile of the generated trajectory
is loose or sharp. The metric adopted to compare the HSFM
trajectory with the clothoid splines was the Root Mean Square
Error (RMSE) based on the Euclidean distance. The adoption
of this metric allowed us to construct the experimental map
that associates to the N different vectors (τ, ko, kλ, α, β2) the
optimal percentage p yielding the minimum RMSE. This map
is a simple fitting function ϕ, which is a map ϕ : R5 7→ [0, 1]
such that p = ϕ(τ, ko, kλ, α, β2). The functional form of ϕ
is chosen as a multivariate polynomial of degree d, which
has thus nx =

(
n+d
d

)
coefficients, collected in x, for its

monomials.

The fitting is performed by using least squares techniques
based on QR decomposition, which means solving the least
squares problem

min
x
||Ax− b||2, x ∈ Rnx , A ∈ RN×nx , b ∈ RN .

The matrix A is obtained evaluating for each row the mono-
mials of the fitting polynomial on the particular configuration
(τ, κo, κλ, α, β2), the corresponding right hand side b is the
optimal value of p related to the clothoids approximating
that particular trajectory. The higher the degree d, (i.e., the
dimension of A), the harder the optimisation problem.

The QR decomposition of A produces a factorisation of the
form A = QR ∈ RN×nx , Q ∈ RN×nx , R ∈ Rnx×nx . The
problem is then easily solved because

||Ax− b||2 = ||QRx− b||2 = ||Rx−QT b||2

where we use the fact that Q is an orthogonal matrix, e.g.
QQT = I , and the Schwartz inequality of the last step
becomes an equality under this hypothesis. Hence the problem
is recast to the solution of the smaller linear system Rx−QT b
which is also well conditioned. Producing this solution is fast
because R is an upper triangular matrix. Since the problem is
not ill conditioned, we can use a low degree d. By choosing
d = 0, we found for a large number of trajectories an
approximate map ϕ equal to a constant popt = 88%. In plain
words, this means that we can approximate a large number
of pedestrian behaviour by a sequence of two clothoids with
a fixed parameter p. We validated this result by executing
random simulations for N = 160.000 sets of parameters, and
for 10 possible final destinations P2 chosen at a distance of
3 metres from P0 on an arc of circle for an angle between
0 and π/2, and extended by symmetry arguments for the
whole range (−π/2, π/2). In all these cases the deviation of
the HSFM trajectory with exact parameters from the curves
with constant p was below 0.5 [m], which is the approximate
hindrance of the pedestrian. This value of p corresponds to
a good representative of average human behaviours, and the
possible deviations of actual human types can be accounted
for by increasing the volume of the obstacle when detecting a
collision. We deem this approximation acceptable in the face
of the drastic simplification in the computation time.

III. FORMALISATION OF THE RE-PLANNING

The result of the previous section can be summarised in the
following terms: the short term motion of a pedestrian can
be represented by a sequence of two clothoids characterised
by a parameter p. Assuming that the final destination of the
pedestrian is known, it is possible to single out a specific curve
along which she/he is likely to move in a near future. In the
discussion below we will make this assumption, while at the
end of the section we will discuss how it can be removed.

Even when the path is known, in order to plan a trajectory,
we also need to know how the pedestrian will move along the
curve in time. Our assumption is that the pedestrian H moves
with a constant velocity v(h)0γ according to the linear ODE

ḣ(t) = v
(h)
0γ , h(0) = h0, ⇒ h(t) = h0 +v

(h)
0γ t, (11)
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Fig. 3. Projection scheme of the geometric intersection points into the
curvilinear abscissas of the walker and of the pedestrian. Those abscissas
are then mapped to the corresponding time instants.

where h(t) is the curvilinear abscissa of the obstacle over the
generated clothoid path, i.e. the generic variable s in (4). The
constant velocity v

(h)
0γ is chosen randomly inside the interval

[v
(h)
0min, v

(h)
0max] with known density pγ(v

(h)
0γ ) (which derives

from past observations). Notice that the constant velocity
assumption, quite popular in the field [25], [26], [27], is
effective since the interaction between the vehicle and the
pedestrian acts in a short amount of time. The constant
velocity cumulative distribution function is P(v

(h)
0γ < v) =∫ v

v
(h)
0min

pγ(v
(h)
0γ )dv

(h)
0γ . Because of the pedestrian hindrance,

the space around its centre of mass is described with a
conservative offset ±δh around the abscissa h(t), hence the
obstacle occupies the interval [h(t) − δh, h(t) + δh] at time
t. We model the walker vehicle W in the same manner of
the obstacle, with hindrance specified by δw

1. Its curvilinear
abscissa is identified with the variable w (see Figure 3). Each
of the two agents W and H , moves on a sequence of smoothly
joined clothoids. The curve followed by the pedestrian is the
spline made up of two segments (see Section II), while for
the vehicle it is the candidate path. To handle the two paths
and speed-up the computation of the possible intersection,
we decompose each of the path into a sequence of triangles
organised with the tree structure discussed in [3]. To model
the physical encumbrance given by δw (respectively δh for the
pedestrian), the spline has two parallel curves at the left and at
the right (see Figure 3). We call a clothoid tunnel the clothoid
spline and its two offset curves.

As a final remark, we will assume below, without loss of
generality, that the velocity of the vehicle W is constant along
the planned path and that it is a decision variable.

A. The velocity diagram

We now discuss a tool (the velocity diagram), which can be
used to detect collisions and to select the optimal velocity of
the vehicle W .

In a standard intersection event, the routine for finding the
collision considering the encumbrance will return a sequence
of 4 points {A,B,C,D} that are the vertexes of a generalised

1As observed above, a conservative estimate of the hindrance can include
the possible uncertainty introduced by a constant choice of the parameter p.

0

w

0
t

E0

thmin1 −δh

wmin1 − δw
E1

thmin1 +δh

E2

thmax1 +δh

wmin2 − δw

E3

thmax2 +δh

wmax2 − δw

E4
wmax2 + δw

E5

thmax2 −δh

E6

thmin2 −δh

wmax1 + δw

E7
wmin1 + δw co

lli
sio
n
zo
ne

Fig. 4. The velocity diagram for a single intersection of trajectories: the red
area represents the collision zone in terms of space and time. Green lines are
walker’s velocities that follow the pedestrian, red lines are walker’s velocities
that will cause a collision, and blue lines are velocity that allow the walker
to overtake the obstacle.

quadrilateral, as depicted in Figure 3. It is possible to find
situation in which the collision is not described by 4 point.
For instance, when trajectories are almost tangent, a smaller
number of points points will be found. However, these are
simply degenerate cases in which some of the points of the
generalised quadrilateral coincide. With the four geometric in-
tersection points, we have to compute the curvilinear abscissas
of the entry and exit points of the collision zone. They are
called wmin 1 and wmax 2 for the walker and hmin 1, hmax 2

for the pedestrian (see Figure 3). To find those points, we
applied again an effective Newton method that ends in few
iterations.

Because of the agents hindrance, it is not enough to sim-
ply consider those coordinates. Therefore we call wmin =
wmin 1 − δw, wmax = wmax 2 + δw and for the pedestrian
hmin = hmin 1−δh, hmax = hmax 2 +δh. From the curvilinear
abscissas computing the travelling time is also an easy step,
since by hypothesis both velocities are constant. Those time
instants are called accordingly to the name of the abscissas
respectively twmin, twmax, and the same for the obstacle but
with subscript h. It is convenient to name the time intervals as
∆Th := [thmin, thmax] and ∆Tw := [twmin, twmax]. A colli-
sion happens if and only if the intersection ∆Th ∩∆Tw 6= ∅,
i.e. the vehicle and the pedestrian are in the same region at
the same time. Those quantities lead naturally to a space-
time representation, dubbed velocity diagram, in which the
horizontal axis represents the time and the vertical axis the
curvilinear abscissa w(t) of the walker for a specified path.
The velocities, being constant, are thus straight lines from
the origin. More interestingly, the collision zone in space and
time can be approximated with an octagon, as in Figure 4.
The function ts = Ξ(v

(h)
0γ , v

(w)
0 ) returns the minimum time

required to wait to avoid the collision with fixed v
(w)
0 . This

is clearly zero if ∆Th ∩∆Tw = ∅. After the amount of time
ts, the vehicle can move with velocity v

(w)
0 and be sure to
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avoid the pedestrian. It has to be noted that the function Ξ(·)
is solved by computing intersections between segments on the
velocity diagram, hence computationally very light. Moreover,
the constant velocity assumption on v(w)

0 has been selected for
simplicity and for the particular application at hand, since the
user cannot be accelerated. Nevertheless, in a more general
framework, time varying velocity profiles satisfying velocity
constraints can be selected.

The previous graphical solution computes the stop time ts
for a given v

(w)
0 and v

(h)
0γ , where the latter is only known

statistically. Therefore, we define the following cost index

Jt =

∫ v
(h)
0max

v
(h)
0min

Ξ(v
(h)
0γ , v

(w)
0 ) pγ(v

(h)
0γ )dv

(h)
0γ , (12)

which somehow represents the average minimum time the
vehicle has to wait to avoid the collision and it is a function
of the chosen velocity v

(w)
0 . Notice that a change in v

(h)
0γ ,

corresponds to a translation and a scale of the polygon in
Figure 4. The velocity v

(w)
0 of the vehicle is then selected

from a discrete set of values contained in [v
(w)
0 min, v

(w)
0 max]

such that (12) is minimised. Since in most of the cases the
value of Ξ(·) will be zero, there will be multiple minima, say
Vw. Hence, the selected v(w)

0 will be the closest to a desired
comfortable velocity v(w)

d , i.e.

Jv = arg min
v∈Vw

∣∣∣∣v − v(w)
d

∣∣∣∣. (13)

The depicted algorithm determines the optimal v(w)
0 in the

sense of (12) and (13) along the selected path and assuming the
pedestrian moves from its actual position P0 to a well defined
desired position P2. If it is possible to modulate the velocity,
we can accelerate the vehicle in order to overtake the obstacle
(blue line in Figure 4), if we do not have enough escaping
velocity it is possible to slow down or stop and let the obstacle
pass (green lines in Figure 4). All the described computations
are performed graphically in the velocity diagram and a
solution always exists: in the worst case, the vehicle stops.
However, if for the problem at hand the stop time ts is too
high, the probability of having a collision (related to Jt) is too
high or if the performance are too poor (a too high cost for
Jv), a local re-planning is needed, which is the purpose of the
next section.

B. Releasing the assumptions

In the previous section, we made the important assumption
that the final point P2 of the pedestrian is known. We can
release this assumption introducing an additional random vari-
able for P2. Different papers in the literature give suggestions
on the possible probability distributions for P2 accounting for
the social conventions [25], [28]. The analytical computation
based on the velocity diagram discussed above can be repeated
as a function of P2, producing a re-formulation of the per-
formance index in (12) in which the position of P2 appears
as an additional random variable p2 to integrate on, and the
distribution pγ(v

(h)
0γ ) is replaced by the joint distribution of

p2 and v
(h)
0γ . As far as p2 is assumed independent from v

(h)
0γ

dynamic
obstacle

Q0

Q2

fixed obstacle

Q1

Fig. 5. A sketch of the local re-planning method, in red the global trajectory
that is no more feasible because of the obstacle (purple circle). In green the
optimal escaping manoeuvre, in black feasible candidates for different choices
of Q1 located deterministically aside from the obstacle trajectory.

the computation of the integral is straightforward. In the same
way, it is possible to deal with a possible variability of the
velocity of W . Indeed, while we can “suggest” a possible
velocity to the user in different ways (e.g., through haptic
devices or a GUI), it is not guaranteed that s/he will closely
follow the suggestion, hence random variations around our
selected velocity are a possibility.

C. Local Re-planning

In the same way as proposed by different authors [29]
and in our previous work [30], our strategy for trajectory re-
planning is based on a decomposition of the problem into
dynamic planning, in which the velocity profile on the path are
computed as explained in the previous section, and geometric
planning, which is the purpose of this section. When a re-
planning is requested, the algorithm selects a point Q0 on GP
with position (x0, y0), angle β0 and curvature κ0 and a point
Q2 again on GP, with position (x2, y2), angle β2 and curvature
κ2; the re-planned trajectory will depart from Q0 and will
rejoin it at Q2. The algorithm seeks a new point Q1 in the
proximity of the obstacle to pivot on to find the best trajectory
(see Figure 5). The connecting curve is a spline of clothoid
curves [21] that exhibits C2 continuity with respect to the GP,
and that is very fast to compute. The different choices of point
Q1 can be explored via a deterministic search (as herein done)
or by using stochastic methods. In most of the reasonable
application scenarios, the method reliably produces a solution.
In the extreme cases in which it should not work, its efficiency
leaves time to slow down the vehicle and back off to different
emergency solutions, e.g. stop on the spot. In principle, the
algorithm presented below operates with any pair of entry and
exit points Q0, Q2 on the GP. An obvious requirement is that
Q0 and Q2 be located before and after the obstacle. The low
computational cost of the algorithm allows us to test different
possible choices or, again, back off to an emergency strategy
if the spline identified by the algorithm fails to satisfy the
geometric or the dynamic constraints. However, the application
of reasonable heuristics on the selection of Q0 and Q2 limits
the occurrence of this anomaly. It is useful to observe that if
the obstacle is very close to the vehicle, the back off solutions
are likely to be adopted. An intuitive and straightforward way
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Fig. 6. A comparison between the proposed approach and the application of
Risk-RRT for the dynamic re-planning.

to produce the points Q0 and Q2 is to identify them as the
current position and at a distance which is reasonably far from
the obstacle, respectively. Once a path is found, the optimal
vehicle velocity v(w)

0 minimising Jt and Jv in (12) and (13),
respectively, is computed.

To compute the reactive re-planning we require two func-
tions that solve the G1 and G2 Hermite Interpolation Problem
for clothoid curves (HIP). The G1 problem has been solved
efficiently in [21], whereas the solution to the G2 problem,
in our case, asks for the solution of (6)-(9) for 3 arcs,
i = 0, 1, 2, 3. The numeric solution algorithm adopted handles
the system of equations quite efficiently, as reported next.

IV. EXPERIMENT WITH THE WALKER

Our reactive-planning has been validated in two ways: a set
of software simulations, where the dynamic obstacles were
generated using the two clothoid model discussed in Section
II according to the statistical data of recorded real pedestrians
by ETH [31]; with a direct implementation on our robotic
walker FriWalk. In this section we describe briefly the results
obtained.

A. Software simulations

We have tested two situations where a pair of pedestrians
cross the walker’s trajectory, in one case they walk both in the
same direction, in the other they come from opposite sides, see
Figure 6 (left). In green it is depicted the trajectory generated
by our reactive planner with the method herein discussed and
in blue the solution provided by the Risk-RRT algorithm [10].
In the first test case (Figure 6, top left), our method produces
a smooth deviation from the GP and reconnects to it after
the obstacle avoidance. The approach based on Risk-RRT
produces an unnatural loop and then reconnects to the GP.
In the second case, both methods give similar natural solution
(Figure 6, bottom left). However, when the curvature profile of
the trajectories is considered, the one obtained by Risk-RRT
(blue line in Figure 6, right) exhibits a piecewise constant
behaviour with frequent jumps to three possible values: this is
an undesirable property for the tracking system and also for

m
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1

1.5

Moving Agent
Walker
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Fig. 7. Experimental re-planning example with the FriWalk.

the comfort of the user. In fact curvature discontinuities or at
least sharp variations induce high spikes in the jerk profile. On
the other hand, our method exploits the property that clothoids
have linear curvature w.r.t. the arc length, resulting thus in a
regular piecewise linear curve (green line in Figure 6, right).

B. Walker implementation

We have conducted some real experiments in the lobby
hall of the University of Trento by implementing on the
FriWalk the presented Reactive Planner. The results are in
accordance with the computer simulations described so far.
The computational times on the on board hardware (an Intel I7
5557 Nuc with 8GB of DDR3 RAM, used for the planner here
presented and the landmark detection, the guidance algorithm
and the GUI of the FriWalk [4], and a 1GHz ARM Cortex-
A8 Beaglebone Black with 512MB of DDR3 RAM, used
for data processing of sensors and actuators, and for the
localisation algorithms running on the FriWalk [32]) show that
it is possible to employ the proposed Reactive Planner for real
time applications. In fact we registered a mean execution time
of 3 [ms] for a standard escaping manoeuvre with 5 candidates
Q1 points (as depicted in Figure 5), the minimum time was
about 1 [ms] and the maximum 11 [ms]. The acquisition of
the moving obstacles was performed using an Asus Xtion Pro
RGB-D sensor, with sampling time of 100 [ms], while the re-
planning module was executed with a period of 300 [ms].
Figure 7 depicts the results of one experiment: a human,
walking in the same direction, enters the field of view of the
FriWalk that determines the unfeasibility of the original path
(dashed green line). Thus a new safe trajectory (solid green
line) is generated by the reactive re-planner.

V. CONCLUSIONS

In this paper, we have considered a vehicle consisting of
a robotic walker pushed by a human. The robot is endowed
with sensing devices to detect the presence of obstacles in
the surrounding, with guidance mechanisms to steer the user
along a path and to suggest a velocity. The specific problem
considered here is how to modify a planned path in order to
avoid pedestrians when the vehicle moves in a crowded space.
The key idea of the paper is to adopt the HSFM to predict
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the path followed by the pedestrians. We have shown how to
translate such paths into pieces of clothoid curves, which are
comfortable to follow and efficient to treat numerically. The
use of these curves is at the heart of our planning solution.
The uncertainty on the velocity followed by the pedestrians,
on the points that s/he wants to reach and on the possible
deviations of the user from the suggested speed are modelled
as stochastic variables. Therefore, it is possible to define a
probabilistic performance index and seek the velocity profile
that minimises it for each candidate path. Different candidate
paths are considered and the one that minimises both the
performance index and the deviation from the global plan is
selected.

Several issues remain open for future investigations. The
most important is to consider the mutual interaction between
several pedestrians and the vehicle and the pedestrians. In-
deed, if social interactions are considered, the final position
and the velocity random variables are obviously dependent
and different computation approaches have to be developed.
Nonetheless, for simple scenarios in which the vehicle in-
teracts with one or two pedestrians every time, the use of
independent variables apparently delivers a good performance
at a low computational cost.
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