
1

DroNet: Learning to Fly by Driving
Antonio Loquercio∗, Ana Isabel Maqueda †, Carlos R. del-Blanco †, and Davide Scaramuzza∗

Abstract—Civilian drones are soon expected to be used in a
wide variety of tasks, such as aerial surveillance, delivery, or
monitoring of existing architectures. Nevertheless, their deploy-
ment in urban environments has so far been limited. Indeed, in
unstructured and highly dynamic scenarios drones face numerous
challenges to navigate autonomously in a feasible and safe way.
To cope with the above challenges, this paper proposes DroNet,
a convolutional neural network that can safely drive a drone
through the streets of a city. Designed as a fast 8-layers residual
network, DroNet produces, for each single input image, two
outputs: a steering angle, to keep the drone navigating while
avoiding obstacles, and a collision probability, to let the UAV
recognize dangerous situations and promptly react to them.
But how to collect enough data in an unstructured outdoor
environment, such as a city? Clearly, having an expert pilot
providing training trajectories is not an option given the large
amount of data required and, above all, the risk that it involves
for others vehicles or pedestrians moving in the streets. Therefore,
we propose to train a UAV from data collected by cars and
bicycles, which, already integrated into urban environments,
would expose other cars and pedestrians to no danger. Although
trained on city streets, from the viewpoint of urban vehicles,
the navigation policy learned by DroNet is highly generalizable.
Indeed, it allows a UAV to successfully fly at relative high
altitudes, and even in indoor environments, such as parking lots
and corridors.

SUPPLEMENTARY MATERIAL

For supplementary video see: https://youtu.be/

qlSb8rpSYzM Code and dataset will be soon released!

I. INTRODUCTION

Safe and reliable outdoor navigation of autonomous sys-

tems, e.g. unmanned aerial vehicles (UAVs), is a challenging

open problem in robotics. Being able to successfully navigate

while avoiding obstacles is indeed crucial to unlock many

robotics applications, e.g. surveillance, construction monitor-

ing, delivery, and emergency response [1], [2], [3]. A robotic

system facing the above tasks should simultaneously solve

many challenges in perception, control, and localization. These

become particularly harder when working in urban areas, as

the one illustrated in Fig. 1, where the autonomous agent is not

only expected to navigate while avoiding collisions, but also

to safely interact with other agents present in the environment,

such as pedestrians or cars.

The traditional approach to tackle this problem is a two step

interleaved process consisting of (i) automatic localization in

a given map (using GPS, visual and/or range sensors), and

(ii) computation of control commands to allow the agent to

avoid obstacles while achieving its goal [1], [4]. Even though

∗The authors are with the Robotics and Perception Group, Dep. of Infor-
matics University of Zurich and Dep. of Neuroinformatics of the University
of Zurich and ETH Zurich, Switzerland—http://rpg.ifi.uzh.ch.

†Universidad Politècnica de Madrid, Grupo de Tratamiento de Imágenes

Fig. 1: DroNet is a convolutional neural network, whose

purpose is to reliably drive an autonomous drone through

the streets of a city. Trained with data collected by cars and

bicycles, our system learns from them to follow basic traffic

rules, e.g, do not go out of the road, and to safely avoid other

pedestrians or obstacles. Surprisingly, the policy learned by

DroNet is highly generalizable, and even allows to fly a drone

on indoor corridors and parking lots.

advanced SLAM algorithms enable localization under a wide

range of conditions [5], visual aliasing, dynamic scenes, and

strong appearance changes can drive the perception system

to unrecoverable errors. Moreover, keeping the perception

and control blocks separated not only hinders any possibility

of positive feedback between them, but also introduces the

challenging problem of inferring control commands from 3D

maps.

Recently, new approaches based on deep learning have of-

fered a way to tightly couple perception and control, achieving

impressive results in a large set of tasks [6], [7], [8]. Among

them, methods based on reinforcement learning (RL) suffer

from significantly high sample complexity, hindering their

application to UAVs operating in safety-critical environments.

In contrast, supervised-learning methods offer a more viable

way to learn effective flying policies [6], [9], [10], but they

still leave the issue of collecting enough expert trajectories to

imitate. Additionally, as pointed out by [10], collision trajec-

tories, usually avoided by expert human pilots, are actually

necessary to let the robotic platform learn how to behave in

dangerous situations.

Contributions

Clearly, a UAV successfully navigating through the streets,

should be able to follow the roadway, as well as promptly react

https://youtu.be/qlSb8rpSYzM
https://youtu.be/qlSb8rpSYzM
http://rpg.ifi.uzh.ch.


2

to dangerous situations exactly as any other grounded vehicle

would do. Therefore, we herein propose to use data collected

from ground vehicles, already integrated in environments as

the above-mentioned. Overall, this work makes the following

contributions:

• We propose a residual convolutional architecture that, pre-

dicting a steering angle and a collision probability, can fly

a quadrotor safely and smoothly in urban environments.

To train it, we employ an outdoor dataset recorded from

cars and bicycles.

• We collect a custom dataset of outdoor collision se-

quences, to let a UAV predict potentially dangerous

situations.

• Trading off performance for processing time, we show

that our design represents a good fit for navigation-related

tasks. Indeed, it enables real-time processing of the video

stream recorded by a UAV’s camera.

• Through an extensive evaluation, we show that, even

if trained from an outdoor city dataset, out approach

generalizes to a large number of scenarios, including

indoor corridors, and parking lots.

II. RELATED WORK

A wide variety of techniques for drone navigation and

obstacle avoidance can be found in the literature. At high level,

these methods differ depending on the kind of sensory input

and processing employed to control the flying platform.

An UAV operating outdoor is usually provided with GPS,

range, and visual sensors to estimate the system state, infer

the presence of obstacles, and perform path planning [1],

[4]. Nevertheless, such works are still prone to fail in urban

environments, where the presence of high rise buildings, and

dynamic obstacles can result in significant undetected errors

in the system state estimate. The prevalent approach in such

scenarios is that of SLAM, where the robot simultaneously

builds a map of the environment and self-localizes in it [5].

On the other hand, while an explicit 3D reconstruction of

the environment can be good for global localization and

navigation, it is not entirely clear how to infer from it control

commands for a safe and reliable flight.

Recently, an increasing research effort has been spent into

directly learning control policies from raw sensory data using

Deep Neural Networks. These methodologies can be divided

into two main categories: (i) methods based on reinforcement

learning (RL) [7], [11], [12] and (ii) methods based on

supervised learning [6], [13], [9], [10].

While RL-based algorithms have been successful in learning

generalizing policies [7], [11], [8], they usually require a

large amount of robot experience, limiting their applicability

in real safety-critical systems. Supervised learning, instead,

offers a more viable way to train control policies, but clearly

depends upon the provided expert signal to imitate. This

supervision may come from a human expert [6], hard-coded

trajectories [10], or model predictive control [13]. However,

when working in the streets of a city, it can be both tedious and

dangerous to collect a large set of expert trajectories, or eval-

uate partially trained policies [6]. Additionally, the domain-

shift between expert and agent might hinder generalization

capabilities of supervised learning methods. Indeed, previous

work in [9] trained a UAV from video collected by a mountain

hiker, but did not show the learned policy to generalize to

scenarios unseen at training time.

Another promising approach has been to use simulations

to get training data for reinforcement or imitation learning

tasks, while testing the learned policy in the real world [14],

[15], [12]. Clearly, this approach suffers from the domain shift

between simulation and reality, and it might require some real

world data to actually generalize [12]. To our knowledge,

current simulators still fail to model the large amount of

variability present in an urban scenario, and therefore they

are not fully acceptable for our task.

To overcome the above-mentioned limitations, we propose

to train a neural network policy by imitating expert behaviour,

only generated from wheeled manned vehicles. Our data col-

lection proposal does not require any state estimate or even an

expert drone pilot, while it exposes pedestrians, other vehicles,

and the drone itself to no danger. Furthermore, we show our

methodology to have very good generalization capabilities,

even in scenarios very different from the training ones.

III. METHODOLOGY

Our learning approach aims at reactively predicting a steer-

ing angle and a probability of collision from the drone on-

board forward-looking camera. These are later converted into

control flying commands, that enable a UAV to safely navigate

while avoiding obstacles.

Since we aim to reduce the bare image processing time,

we advocate a single convolutional neural network (CNN)

with a relative small size. The resulting network, which we

call DroNet, is shown in Figure 2 (a). The architecture is

partially shared by the two tasks to reduce the network’s

complexity and processing time, but is then separated into

two branches at the very end. Indeed, steering prediction is a

regression problem, while collision prediction is addressed as

a binary classification problem. Due to their different nature

and output range, we propose to separate the network’s last

fully-connected layer.

During the training procedure, we use only imagery

recorded by manned vehicles. Steering angles are learned from

images captured from a car, while probability of collision,

from a bicycle.

A. Learning Approach

The part of the network that is shared by the two tasks

consists of a ResNet-8 architecture followed by a dropout

of 0.5 and a ReLU non-linearity. The residual blocks of the

ResNet, proposed by He et al. [16] to increase model general-

ization, are shown in Figure 2 (b). Dotted lines represent skip

connections, defined as 1×1 convolutional shortcuts to let the

input and output of the residual blocks be added. We opted

for this regularizing technique to control the model’s over-

fitting, and thus to increase its generalization capacity to new

unseen scenarios. After the last ReLU layer, tasks stop sharing

parameters, and the architecture splits into two different fully-

connected layers. The first one outputs the steering angle, and



3

Fig. 2: (a) DroNet is a forked Convolutional Neural Network that predicts, from a single 200× 200 frame in gray-scale, a

steering angle and a collision probability. The shared part of the architecture consists of a ResNet-8 with 3 residual blocks (b),

followed by dropout and ReLU non-linearity. After them, the network branches into two separated fully-connected layers, one

to carry out steering prediction, and the other one to infer collision probability. In the notation above, we indicate for each

convolution first the kernel’s size, then the number of filters, and eventually the stride, if different from 1.

the second one a collision probability. Strictly speaking the

latter is not a Bayesian probability, but an index quantifying

the network uncertainty in prediction. Slightly abusing the

notation, we still refer to it as “probability”.

We use mean-squared error (MSE) and binary cross-entropy

(BCE) to train the steering and collision predictions, re-

spectively. Whereas the network architecture proves to be

appropriate to minimize complexity and processing time, a

naive joint optimization poses serious convergence problems

due to the very different gradients’ magnitude that each loss

produces. Indeed, the output ranges and cost functions for

MSE and binary cross-entropy are not the same. In particular,

gradients computed for the steering component are initially

higher, hence they can hinder the optimization of the collision

prediction. We solve this issue by doing a sequential joint

optimization. We first start solving the regression task by

exclusively training on it for a few epochs, and then we

start learning the binary classifier. To do that, we define a

different weight for each loss, as detailed in Eq. (1). While

the loss weight for steering prediction is always 1, the one

corresponding to the binary classifier increases with the num-

ber of epochs. For our experiments, we set decay = 1
10

, and

epoch0 = 10.

Ltot = LMSE +max(0,1− exp−decay(epoch−epoch0))LBCE (1)

The Adam optimizer [17] is used with a starting learning

rate of 0.001, and an exponential per-step decay equal to 10−5.

We also employ hard negative mining, in order to focus the

optimization on those samples that are most difficult to learn.

In particular, we select the k samples with the highest loss in

each epoch, and compute the total loss according to Eq. (1).

We define k so that it decreases over time.

B. Datasets

To learn steering angles from images, we use one of the

publicly available datasets from Udacity’s project [18]. This

dataset contains over 70,000 images of car driving distributed

over 6 experiments, 5 for training and 1 for testing. Every

experiment stores time-stamped images from 3 cameras (left,

central, right), IMU, GPS data, gear, brake, throttle, steering

angles and speed. For our experiment, we only use images

from the forward-looking camera (Figure 3 (a)) and their

associated steering angles.

To our knowledge, there are no public datasets that associate

images with collision probability according to the distance to

the obstacles. Therefore, we collect our own collision data by

mounting a GoPro camera on the handlebars of a bicycle. We

drive along different areas of a city, trying to diversify the

types of obstacles (vehicles, pedestrians, vegetation, under-

construction sites) and the appearance of the environment

(Figure 3 (b)). This way, the drone is able to generalize under

different scenarios. We start recording when we are far away

from an obstacle and stop when we are very close to it.

In total, we collect around 32,000 images distributed over

137 sequences for a diverse set of obstacles. We manually

annotate the sequences, so that frames far away from collision

are labeled as 0 (no collision), and frames very close to the

obstacle are labeled as 1 (collision), as can be seen in Fig. 3(b).

Collision frames are the type of data that cannot be easily

obtained by a drone, but are necessary to build a safe and

robust system.

C. Drone Control

The outputs of DroNet are used to command the UAV to

move on a plane with forward velocity vk and steering angle

θk. More specifically, we use the probability of collision pt

provided by the network to modulate the forward velocity:

the vehicle is commanded to go at maximal speed Vmax when

the probability of collision is null, and to stop whenever it is

close to 1. We use a low-pass filtered version of the modulated

forward velocity vk to provide the controller with smooth,



4

Fig. 3: (a) Udacity images used to learn steering angles. (b) Collected images to learn probability of collision. The green box

contains no-collision frames, and the red one, collision frames.

continuous inputs (0 ≤ α ≤ 1):

vk = (1−α)vk−1 +α(1− pt)Vmax, (2)

Similarly, we map the predicted scaled steering sk into a

rotation around the body z-axis (yaw angle, θ ), corresponding

to the axis orthogonal to the propellers’ plane. Concretely, we

convert sk from a [−1,1] range into a desired yaw angle θk in

the range [−π
2
,

π
2
] and low-pass filter it:

θk = (1−β )θk−1 +β
π

2
sk (3)

In all our experiments, we set α = 0.7 and β = 0.5, while

Vmax was changed according to the testing environment. The

above constants have been selected empirically trading off

smoothness for reactiveness of the drone’s flight.

IV. EXPERIMENTAL RESULTS

In this section, we show quantitative and qualitative results

of our proposed methodology. First, we evaluate the accuracy

of DroNet with a set of performance metrics; then, we discuss

its control capabilities, comparing it again a set of navigation

baselines.

A. Hardware Specification

We performed our experiments on a Parrot Bebop 2.0 drone.

Designed as an outdoor hobby platform, it has a basic and

rather inaccurate, visual odometry system that allows the user

to provide only high-level commands, such as body-frame

velocities, to control the platform. Velocity commands are

produced by our network running on an Intel Core i7 2.6 GHz

CPU that receives images at 30 Hz from the drone through

Wi-Fi.

B. Regression and Classification Results

We first evaluate the regression performance of our model

employing the testing sequence from the Udacity dataset [18].

To quantify the performance on steering prediction, we use

two metrics: root-mean-squared error (RMSE) and explained

variance ratio (EVA)1. To asses the performance on collision

1Explained Variance is a metric used to quantify the quality of a regressor,

and is defined as EVA =
Var[ytrue−ypred ]

Var[ytrue ]

(a) (b)

Fig. 4: Model performance: (a) Probability Density Function

(PDF) of actual vs. predicted steerings of the Udacity dataset

testing sequence. (b) Confusion matrix on the collision clas-

sification evaluated on testing images of the collected dataset.

prediction, we use average classification accuracy and the F-1

score2.

Table I compares DroNet against a set of other architectures

from the literature [16], [9]. Additionally, we use as weak

baselines a constant estimator, that always predicts 0 as steer-

ing angle and “no collision”, and a random one. From these

results we can observe that our design, even though 80 times

smaller than the best architecture, maintains a considerable

prediction performance, while achieving real-time operation

(20 frames per second). For this reason, our design succeeds at

finding a good trade-off between performance and processing

time, as shown in Table I and Fig. 4. Indeed, to enable a

drone to promptly react to unexpected events or dangerous

situations, it is necessary to reduce the network’s latency as

much as possible.

C. Quantitative Results on DroNet’s Control Capabilities

We tested our DroNet system by autonomously navigating

in a number of different urban trails, including straight paths

and sharp curves. Moreover, to test the generalization capa-

bilities of the learned policy, we also performed experiments

in indoor environments. An illustration of the testing environ-

ments can be found in Fig. 5 and Fig. 6. We compare our

approach against two baselines:

2F-1 score is a metric used to quantify the quality of a classifier. It is

defined as F-1= 2
precision×recall
precision+recall



5

Model EVA RMSE Avg. accuracy F-1 score Num. Layers Num. parameters Processing time [fps]

Random baseline -1.0 ± 0.022 0.3 ± 0.001 50.0±0.1% 0.3±0.01 - - -
Constant baseline 0 0.2129 75.6% 0.00 - - -

Giusti et al. [9] 0.672 0.125 91.2% 0.823 6 5.8×104 23

ResNet-50 [16] 0.795 0.097 96.6% 0.92 50 2.6×107 7

DroNet (Ours) 0.737 0.109 95.4% 0.901 8 3.2×105 20

TABLE I: Quantitative results on regression and classification task: EVA and RMSE are computed on the steering regression task,
while Avg. accuracy and F-1 score are evaluated on the collision prediction task. Our model compares favorably against the considered
baselines. Despite being relatively lightweight in terms of number of parameters, DroNet maintains a very good performance on both tasks.
We additionally report the on-line processing time in frames per second (fps), achieved when receiving images at 30 Hz from the UAV.

(a) Outdoor 1 (b) Outdoor 2 (c) Outdoor 3

(d) Indoor Parking Lot (e) Indoor Corridor (f) Closer view of Outdoor 2

Fig. 5: Testing environments: (a) Outdoor 1 is a 90◦ curve with a dead end. This scenario is also tested with the drone flying

at high altitude (5 m), as shown in Fig. 6. (b) Outdoor 2 is a sharp 160◦ curve followed by a 30 m straight path. A closer view

of this environment can be seen in (f). (c) Outdoor 3 is a series of 2 curves, each of approximately 60◦, with straight paths in

between. Moreover, we also tested DroNet on scenarios visually different from the training ones, such as (d) an indoor parking

lot, and (e) an indoor corridor.

(a) Straight line policy: trivial baseline consisting in follow-

ing a straight path in open-loop. This baseline is expected to

be very weak, given that we always tested in environments

with curves.

(b) Minimize probability of collision policy: strong base-

line consisting in going toward the direction minimizing the

collision probability. For this approach, we implemented the

algorithm proposed in [10], shown by the authors to have very

good control capabilities in indoor environments. We employ

the same architecture as in DroNet, along with our collected

dataset, to estimate the collision probability.

We use as metric the average distance travelling before

stopping or colliding. Results from Table II indicate that

DroNet is able to drive a UAV the longest on almost all the

selected testing scenarios. The main strengths of the policy

learned by DroNet are twofold: (i) the platform smoothly

follows the road lane, while avoiding static obstacles; (ii) the

drone is never driven into a collision, even in presence of

dynamic obstacles, e.g., pedestrians, or bicycles, occasionally

occluding its path. Another interesting feature of our method is

that, in open spaces and at intersections, DroNet usually drives

the vehicle to a random direction. In contrast, the baseline

policy of minimizing the probability of collision was very

often confused by intersections and open spaces, and resulted

in a shaky uncontrolled behaviour. This explains the usually

large gaps in performance between our selected methodology

and the considered baselines.

Interestingly, the policy learned by DroNet generalizes well

to scenarios visually different from the training ones, as shown

in Table II. First, we noticed only a very little drop in

performance when the vehicle was flying at relatively high

altitude (5 m). Even though the drone’s viewpoint was in

this case different from a grounded vehicle’s one (usually

at 1.5 m), the curve could be successfully completed as

long as the path was in the field of view of the camera.

More surprisingly was the generalization of our method to



6

Urban Environment Generalization Environments

Policy Outdoor 1 Outdoor 2 Outdoor 3 High Altitude Outdoor 1 Corridor Garage

Straight 23 m 20 m 28 m 23 m 5 m 18 m
Ghandi et al. [10] 38 m 42 m 75 m 18 m 31 m 23 m
DroNet (Ours) 52 m 68 m 245 m 45 m 27 m 50 m

TABLE II: Average travelled distance before stopping: We show here navigation results using three different policies on a several
environments. Recall that [10] uses only collision probabilities, while DroNet uses also predicted steering angles, too. High Altitude Outdoor
1 consists of the same path as Outdoor 1, but flying at 5 m altitude, as shown in Fig. 6

Fig. 6: High altitude Outdoor 1: To test the ability of

DroNet to generalize at high altitude, we made the drone

fly at 5 m altitude in the testing environment Outdoor 1.

Table II indicates that our policy is able to cope with the large

difference between the viewpoint of a camera mounted on a

car (1.5 m) and the one of the UAV.

indoor environments, such as a corridor and a parking lot.

In these scenarios, the drone was still able to avoid static

obstacles, follow paths, and stop in case of dynamic obstacles

occluding its way. Nonetheless, we experienced some domain-

shift problems. In indoor environments, we experienced some

drifts at intersections, that were sometimes too narrow to be

smoothly performed by our algorithm; By contrast, as we

expected, the baseline policy of [10], specifically designed to

work in narrow indoor spaces, outperformed our method. Still,

we believe that it is very surprising that a UAV trained on

streets can actually perform well even in indoor corridors.

D. Qualitative Results and Discussion

In Fig. 8 and, more extensively, in the supplementary video,

it is possible to observe the behaviour of DroNet in some of

the considered testing environments. Differently from previous

work [9], our approach always produced safe and smooth

flight. In particular, the drone always promptly reacted to

dangerous situations, e.g. sudden occlusions by bikers or

pedestrians in front of it.

To better understand our flying policy, we employed the

technique outlined in [19]. Fig. 7 shows which part of an

image are the more important for DroNet to generate a

steering decision. Intuitively, the network concentrates mainly

on the “lines-like” patterns present in a frame, that roughly

indicate the steering direction. This explains explains why

DroNet generalizes so well to many different indoors and

outdoors scenes. Indeed, all of them contain distinctive, “line-

like” features, e.g., road lanes or wall edges, which show the

direction where the UAV is supposed to go, independently of

the scene background.

Additionally, the importance of our proposed methodology

is supported by the difficulties encountered while carrying out

outdoor experiments. In particular, we had to interrupt many

times our tests due to the large number of people that an

autonomous flying drone inevitability attracts. Likewise, we

had to frequently stop our experiments due to the presence of

many other drivers, who were not very happy to “share” the

street with our drone. Therefore, if we want a drone to learn

to fly in a city, it is crucial to take advantage of cars, bicycles,

or other manned vehicles that, already integrated in the urban

streets, allow to collect enough valid training data.

V. CONCLUSION

In this paper, we proposed DroNet, a convolutional neural

network that can safely drive a drone in the streets of a city.

Since collecting data with an UAV in such an uncontrolled

environment is a very tedious and dangerous task, our model

learns how to navigate from cars and bicycles, who already

know the traffic rules. Designed to trade off performance for

processing time, DroNet predicts simultaneously the collision

probability and the desired steering angle, enabling a UAV to

promptly react to unforeseen events and obstacles. Through

extensive evaluations, not only we showed, on one side, that

a drone can learn to fly by imitating manned vehicles. On the

other, we proved that it can very well generalize to a wide

variety of scenarios. Our proposed methodology does not aim

at replacing supervised learning algorithms for training UAVs,

such as DAGGER [6], but can actually be complementary to

them. Indeed, it could be used as very good initialization

for either reinforcement or imitation learning methods to

achieve some particular navigation-related tasks, e.g., search

and rescue. For this reason, we will release all our training

code and datasets to share our findings with the robotics

community.

REFERENCES

[1] S. Scherer, J. Rehder, S. Achar, H. Cover, A. Chambers, S. Nuske, and
S. Singh, “River mapping from a flying robot: state estimation, river
detection, and obstacle mapping,” Autonomous Robots, vol. 33, no. 1-2,
pp. 189–214, 2012.

[2] N. Michael, S. Shen, K. Mohta, Y. Mulgaonkar, V. Kumar, K. Nagatani,
Y. Okada, S. Kiribayashi, K. Otake, K. Yoshida et al., “Collaborative
mapping of an earthquake-damaged building via ground and aerial
robots,” Journal of Field Robotics, vol. 29, no. 5, pp. 832–841, 2012.



7

(a) (b) (c) (d)

Fig. 7: Activation maps: Spatial support regions for steering regression in city streets, on (a) a left curve and (b) a straight

path. Moreover we show activations on (c) an indoor parking lot, and (d) an indoor corridor. We can observe that the networks

concentrates its attention on “lines-like” patterns, that approximately indicate the steering direction.

Fig. 8: DroNet predictions: The above figures show predicted steering and probability of collision evaluated over several

experiments. Despite the diverse scenarios and obstacles types, DroNet predictions always follow common sense and enable

safe and reliable navigation.

[3] M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and
D. Scaramuzza, “Autonomous, vision-based flight and live dense 3D
mapping with a quadrotor MAV,” J. Field Robot., vol. 33, no. 4, pp.
431–450, 2016.

[4] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, “Multi-sensor fusion
for robust autonomous flight in indoor and outdoor environments with
a rotorcraft MAV,” in Robotics and Automation (ICRA), 2014 IEEE

International Conference on. IEEE, 2014, pp. 4974–4981.

[5] S. Lynen, T. Sattler, M. Bosse, J. A. Hesch, M. Pollefeys, and
R. Siegwart, “Get out of my lab: Large-scale, real-time visual-inertial
localization.”

[6] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey,
J. A. Bagnell, and M. Hebert, “Learning monocular reactive UAV control
in cluttered natural environments,” in IEEE Int. Conf. Robot. Autom.

(ICRA), 2013, pp. 1765–1772.

[7] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[8] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proceedings of the 32nd International

Conference on Machine Learning (ICML-15), 2015, pp. 1889–1897.

[9] A. Giusti, J. Guzzi, D. C. Cirean, F. L. He, J. P. Rodrguez, F. Fontana,
M. Faessler, C. Forster, J. Schmidhuber, G. D. Caro, D. Scaramuzza, and
L. M. Gambardella, “A machine learning approach to visual perception
of forest trails for mobile robots,” IEEE Robotics and Automation

Letters, vol. 1, no. 2, pp. 661–667, July 2016.

[10] D. Gandhi, L. Pinto, and A. Gupta, “Learning to fly by crashing,” arXiv,

vol. abs/1704.05588, 2017.
[11] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and

P. Abbeel, “Rl2: Fast reinforcement learning via slow reinforcement
learning,” arXiv preprint arXiv:1611.02779, 2016.

[12] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using deep
reinforcement learning,” arXiv preprint arXiv:1609.05143, 2016.

[13] G. Kahn, T. Zhang, S. Levine, and P. Abbeel, “Plato: Policy learning us-
ing adaptive trajectory optimization,” arXiv preprint arXiv:1603.00622,
2016.

[14] F. Sadeghi and S. Levine, “(cad)2rl: Real single-image flight without a
single real image,” 2017.

[15] M. Mancini, G. Costante, P. Valigi, T. A. Ciarfuglia, J. Delmerico,
and D. Scaramuzza, “Towards domain independence for learning-based
monocular depth estimation,” IEEE Robot. Autom. Lett., 2017.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” arXiv, vol. abs/1603.05027, 2016.

[17] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 2015.

[18] Udacity, “An Open Source Self-Driving Car,” https://www.udacity.com/
self-driving-car, 2016.

[19] R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and
D. Batra, “Grad-cam: Why did you say that? visual explanations
from deep networks via gradient-based localization,” arXiv preprint

arXiv:1610.02391, 2016.

https://www.udacity.com/self-driving-car
https://www.udacity.com/self-driving-car

	Introduction
	Related work
	Methodology
	Learning Approach
	Datasets
	Drone Control

	Experimental Results
	Hardware Specification
	Regression and Classification Results
	Quantitative Results on DroNet's Control Capabilities
	Qualitative Results and Discussion

	Conclusion
	References

