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Abstract—1In order to enable Micro-Aerial Vehicles (MAVs)
to assist in complex, unknown, unstructured environments, they
must be able to navigate with guaranteed safety, even when
faced with a cluttered environment they have no prior knowl-
edge of. While trajectory optimization-based local planners
have been shown to perform well in these cases, prior work
either does not address how to deal with local minima in the
optimization problem, or solves it by using an optimistic global
planner.

We present a conservative trajectory optimization-based local
planner, coupled with a local exploration strategy that selects
intermediate goals. We perform extensive simulations to show
that this system performs better than the standard approach
of using an optimistic global planner, and also outperforms
doing a single exploration step when the local planner is stuck.
The method is validated through experiments in a variety of
highly cluttered environments including a dense forest. These
experiments show the complete system running in real time
fully onboard an MAYV, mapping and replanning at 4 Hz.

I. INTRODUCTION

Micro-Aerial Vehicles (MAVs) have the potential to per-
form many mapping and inspection missions for search
and rescue and other humanitarian operations, where it is
dangerous or impractical for humans to go. Planning is a key
part of any autonomous system, and online local replanning
allows for fast reactions to newly observed or dynamic parts
of the environment. And while local replanning has also been
recently addressed in literature, most work is shown on very
low-density scenes, and makes optimistic assumptions about
the environment (for example, that unknown space can be
treated as free before observing it) [1], [2].

However, in more cluttered, unknown environments, these
assumptions may lead to poor planning results. Executing
these plans can also be dangerous, both for the MAV and
nearby people. For example, assuming unknown space is
free in forest spaces can lead to planning directly upwards
into the tree canopy, which can occur as obstacles directly
above an MAV are often outside the field of view of its
sensors. Alternatively if a highly conservative local planner
is employed, many cluttered environment will result in the
system finding no feasible paths to the goal. In this work, we
present a system that combines a conservative local planner
with a local exploration strategy to navigate a cluttered,
unknown environment such as the forest in Fig. [T}
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Fig. 1: Experimental results from a flight through a dense
forest, with video camera footage on the left, on-board view
from one of the stereo cameras on the upper right, and a
representation of the final mesh map on the bottom right.
The final flown path is shown in yellow, the current pose of
the MAV in the photos is shown as colored axes, and the
planned path at the time of the photo is shown in orange.

Different local optimization methods for avoidance have
been recently covered in literature [3], [4], [S]. However,
most do not explicitly address the problem of getting stuck
in local minima. This poses a special problem in unexplored
or partially unexplored environments, where only locally-
optimal or reactive planners will frequently fail to find a
path. Other approaches use an optimistic global planner
(one that considers unknown space as free) to overcome the
problem of occasionally getting stuck. While this works well
in low-density environments, our work aims to show that this
strategy (using an optmistic RRT* [6] for goal selection)
is not effective for highly-cluttered, partially unexplored
environments.

Instead, we bring in concepts from the exploration litera-
ture to the area of local replanning. We compare optimistic
global planning to performing an exploration step from
the exploration-gain-based “next-best-view” planner (NBVP)
when the trajectory optimization planner fails to find a feasi-
ble solution [7]. We then propose our own local exploration
method, which tightly couples the local planning algorithm
with a strategy that selects an intermediate goal. The method
maximizes both coming closer to the final goal and potential
exploration gain, increasing the chances of finding a feasible
path.



To solve the problem of map representations, our method
also uses an incrementally-built, dynamically-growing Eu-
clidean Signed Distance Field (ESDF) to compute collision
costs and gradients. The ESDF is built from a Truncated
Signed Distance Field (TSDF) [8], and allows us to plan
in initially unknown environments with no prior knowledge
of upper bounds on map size, and does not require pre-
computing the object distances in batch.

We compare different parameters for our underlying local
optimization method, which is an extension of our previous
work [3], when the map is initially unknown, and then
compare the success rates of various intermediate goal-
finding strategies in highly cluttered environments. We then
demonstrate our complete system running in real-time on-
board an Asctec Firefly MAV and navigating without any
prior map knowledge through both an office environment
and a dense forest.

The contributions of this work are as follows:

e Extension of optimization problem for continuous-time
polynomial trajectory optimization.

e A system, including mapping and planning, which
conservatively handles unknown space and is able to
grow the map over time.

e An active local exploration strategy for overcoming lo-
cal minima even in unknown environments by finding
intermediate goal points.

e Simulation benchmarks and real-world experiments in
various cluttered environments.

II. RELATED WORK

While a large number of methods exist for local avoid-
ance, we will address methods in 3 categories. The first is
purely reactive methods, which do not build a map of the
environment but instead plan directly in the current sensor
data. While these methods are very fast and computationally
efficient, they do not work well in cluttered environments
where avoidance maneuvers may be non-trivial, and suffer
heavily from falling into local minima. The second class
is map-based local avoidance methods, which use various
techniques to compute feasible and locally-optimal paths
through local maps built from sensor data or a priori
known global maps. The last class of work we will examine
here does not focus on obstacle avoidance, but instead on
maximizing exploration coverage of unknown environments.
While planning collision-free paths is also a requirement for
any exploration strategy, the focus is on minimizing unknown
space in the final map. We will draw inspiration from some
of these methods to overcome the shortcomings of using
optimization-based local planners alone.

A. Reactive Avoidance

Reactive methods focus on reacting to incoming sensor
data as quickly as possible, and so act directly on obstacles
in the current sensor field of view without building persistent
maps.

For instance, our previous reactive work shows a method
to directly convert incoming disparity maps from stereo into
object segmentations, and then uses wall-following algorithm
to avoid them [9]. Florence et al. directly integrates the
nearest obstacle from a disparity map into a controller that is
an open-loop library of motion primitives [10]. Only inexact,
local state estimation is required for this approach, and they
demonstrate it in both extensive simulation and real-world
experiments. Lopez and How build a kD tree of the current
sensor view pointcloud, and then perform aggressive reactive
avoidance from a library of fixed-velocity but variable angle
motion primitives, generated from a triple-integrator model
of MAV dynamics [11].

While all three methods are shown avoiding obstacles
directly in front of the MAV without prior map knowledge,
they are only demonstrated on much lower obstacle densities
than discussed in this paper, and suffer from not being able
to avoid obstacles that are not directly in the current sensor
field of view.

B. Map-Based Replanning

In contrast, most replanning methods focus on navigating
in a map rather than directly on sensor data.

Richter et al. presented dynamics-aware path planning for
MAVs as solving an unconstrained QP through a visibility
graph generated by an RRT [12], which remains a popular
method for global planning [13], but is debatably too slow
to replan in real-time. Our previous work [3] combines
unconstrained polynomial spline optimization with gradient-
based minimization of collision costs from CHOMP [14],
but is prone to local minima. Usenko et al. utilize a similar
concept, but use a B-spline representation instead, and use
a circular buffer-based Octomap to overcome the issue of
needing a fixed map size [4]. Dong et al. also use the same
general problem structure as CHOMP, but represents trajec-
tories as samples drawn from a Gaussian Process (GP) and
optimize the trajectory using factor graphs and probabilistic
inference [5]. While all these methods are able to avoid
obstacles and replan in real time, none offer convincing ways
to overcome the problem of getting stuck in a local minima
and being unable to find a feasible solution.

Pivtoraiko ef al. use graph search with motion primitives
to replan online [2]. However, they use an optimistic local
planner: unknown space is considered traversible, and while
this helps escape local minima, it is fundamentally unsafe.
Chen et al. plan online by building a sparse graph by inflating
unoccupied corridors within an Octomap, then optimize an
unconstrained QP to get a polynomial path [1]. However,
they only use 2D sensing and treat unknown space as free,
again leading to potentially unsafe paths in very cluttered
environments.

C. Exploration

The goal of exploration literature is not only to stay
safe and avoid collisions, but to maximize the amount of
information about the environment. There are many different
approaches, such as greedily tracking the closest unexplored



frontier [15] or simulating gas-like particles throughout the
environment to find the sparsest area of dispersion to ex-
plore [16].

Rather than tracking frontiers, some methods instead aim
to maximize information gain. Charrow et al. optimize this
gain over a state lattice with motion primitives as connecting
edges, and then improve the plan with trajectory optimiza-
tion [17]. Bircher et al. instead build an RRT tree in the
unexplored space, and execute a straight-line plan to the first
vertex of the most promising branch of the tree, maximizing
the number of unknown voxels falling into the sensor frus-
tum [7]. Papachristos et al. extend Bircher’s method by also
optimizing the intermediate paths to maximize localization
quality [18]. Similarly, Davis et al. optimize paths between
next-best views to maximize coverage by introducing a
coverage term to their iLQG formulation [19].

Our work combines the fast online replanning capabilities
of trajectory optimization-based planning with the idea of
maximizing exploration gain in a future sensor field of
view. This combination allows us to overcome the tendency
of local planners to get stuck with local minima, while
intelligently using our model of the system to find feasible
solutions.

III. PROBLEM DESCRIPTION

We aim to solve the problem of an MAV attempting to
reach a goal in a previously unexplored (and completely un-
known) environment. The core focus being on very obstacle-
dense and cluttered environments, with forest flight as a
particular example. The MAV has at least one 3D imaging
sensor, either RGB-D or stereo, with a finite resolution and
a fixed horizontal and vertical FOV, mounted in a fixed
position. We assume that the MAV is building a map of the
environment from this sensor as it navigates (Section[V).. We
design a conservative local planner, which treats unknown
space as occupied and inaccessible (Section [[V). The core
problem we want to address is how to design a complemen-
tary goal-finding algorithm for when the local planner gets
‘stuck’ in a local minimum (Section [VI). All parts of the
method should be fast enough to run online and in real-time
entirely on-board the MAV.

IV. LoCAL TRAJECTORY OPTIMIZATION

Our local trajectory optimization method is an extension
of our previous work [3]. We represent an MAV trajectory
as a high-degree polynomial spline as in Richter ef al. [12],
and put soft constraints (expressed in the segment time allo-
cation) on the maximum velocity and acceleration along the
trajectory, which Mellinger et al. show makes the trajectory
physically feasible for a simplified dynamics model [20].

The actual optimization minimizes a compound cost, con-
sisting of minimizing a derivative of position such as jerk or
snap as in [12] and [20], combined with the collision gradient
cost from Ratliff er al. [14].

We will consider a polynomial trajectory in K dimensions,
with S segments, and each segment of order N. Each

segment has K dimensions, each of which is described by
an Nth order polynomial:

fr(?) = ag + a1t + ast® + ast® .. .ant? (1
with the polynomial coefficients:
-
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In order to avoid numerical issues with high orders of ¢, we
instead optimize over the end-derivatives of segments within
the spline [12], sorted into fixed derivatives d i (such as end-
constraints) and free derivatives dp (such as intermediate
spline connections):

p=A"'M [dF] . (3)

Where A is a mapping matrix from polynomial coefficients
to end-derivatives, and M is a reordering matrix to separate
d F and d P.

The final form of the optimization problem is:

dp = ar%min wqJq + wede + wgdy (@)
P
Where the derivative cost, J;, aims to minimize a certain
derivative (often jerk or snap) of the position [20], with R
as the augmented cost matrix.

Ji = dpRppdp +diRppdp +

diRprdp +djpRppdp ®)

The collision cost, J., is an approximation of the line
integral of costs along the path, where ¢(x) is the collision
cost from the map, f(¢) is the position along the trajectory
at time ¢, and v(¢) is the velocity at time ¢:
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We use 3 segments and optimize jerk, as was found to be
the best settings in our previous work [3].
We extend our previous work by using a soft cost for the
goal, J,, similarly to [4], and the local goal finding below.

Jg = [ (tena) — gl @)

where

fk (tend) = TendA_lM [gi:] (8)

This allows the optimization to slightly adjust the goal
point to allow better trajectories, or find feasible trajectories
at all. An analysis of the effect of this term on the success
rate is offered in Section

In general, even with the soft cost term, the initial state
of the optimization problem should have the end point be
free or almost free of collisions. In our system, we set a
fixed planning horizon r,, which is the maximum distance
from the current state that the planner is allowed to go to.
However, projecting a global goal g, onto the sphere of this
radius often leads to occluded end points.



In Section [VII, we compare two different strategies for
moving this end-goal to be a feasible end point for the
spline: straight-line goal finding, which backtracks along
the line from the projection of g, to the start point of the
trajectory, X, until the first unoccupied point along this line.
The second method is gradient-based in the map: from the
projection of g, onto the sphere, we evaluate the gradient of
the collision cost map and follow the gradient down until a
free-space location is found. If the approach becomes stuck
in a local minimum of the gradient, we evaluate the straight-
line strategy for one step.

Finally, these trajectories are only planned on R? and
derivatives. To map these trajectories to the full pose of the
MAV on SE?3, pitch and roll are defined by the acceleration
in z and y directions, while yaw ~ remains free. We use
velocity-tracking yaw to increase the chances of the MAV
seeing new or dynamic obstacles before collision:

v(t) = arctan (Zg) 9)

V. MAP REPRESENTATION AND UNKNOWN SPACE

As the optimization method in Section requires not
only distances to the nearest obstacles but also the gradients
of these distances, we require a map representation that can
be efficiently queried for this information. While our original
work [3] used a fixed-size Euclidean Signed Distance Field
(ESDF) built from an octomap representation, we more
recently presented a way to build ESDFs from Truncated
Signed Distance Fields (TSDFs) efficiently. This allows the
system to incrementally build maps of arbitrary size from
sensor data in real time. This system, called voxblo is
used as the map representation for the proposed planner [8].

The map consists of both the original TSDEF, built from
sensor data, which contains projective signed distances to
surfaces within a very small truncation distance to the object
and free space information, and the ESDF which contains
Euclidean distances to obstacles in a much larger radius. The
details of how to build both representations incrementally is
addressed in [8].

To implement the desired property of treating unknown
space as occupied, we modify the ESDF with data from the
current state of the robot. One critical issue with treating
unknown space as occupied is that the starting position of
the robot will never be observed and will always be treated
as occupied. For this reason, we change the ESDF values
of unknown voxels in a small clearing radius r. around the
initial pose of the MAV to free. r. should ideally be only
slightly larger than the collision checking radius of the robot.

We also take a large radius r,, which should be greater
than or equal to the maximum planning radius, and set all
unknown voxels in this radius to occupied. Marking unknown
as occupied is essential to conservative local planners, as
allowing free entry into unknown space leads to behaviors
such as slamming into the ceiling when presented with
obstacles in front.

lgithub.com/ethz-asl/voxblox

VI. INTERMEDIATE GOAL SELECTION

In addition to the mapping and local planning methods
presented above, we need an active exploration strategy to
overcome the shortcomings of local trajectory optimization
methods in very cluttered, partially unknown environments.
A typical solution to this problem is to use an optimistic
global planner, which assumes unknown space is free, to
select a new set of waypoints to track [21].

In the results section (Section [VII), we quantitatively com-
pare five core methods of selecting new waypoint locations.
The first method is naive random waypoint selection. When
the local optimization fails, we select a new 3D waypoint
position at random within a sphere of the starting position
of the trajectory. The planner then attempts to track this
waypoint, until it is either reached or another infeasible
solution is encountered. Then the new waypoint is set to
the original goal point. This strategy (one random, one back
to original goal) continues until either the original goal point
is reached or the maximum number of replans is exceeded.

The second strategy is an optimistic (unknown = free)
RRT#* [6] visibility graph. This aims to best simulate the
global planners used in other approaches, such as [4] and
[13] [21]. Since as Section [V]describes, we set a large radius
of unknown space to occupied in the ESDF, we instead use
the raw TSDF as the obstacle map and treat unknown voxels
as unoccupied. We then generate a sparse visibility graph
toward the final goal, and track the first waypoint in the
graph. If the first waypoint is reached, then we keep iterating
through the graph until the goal point. If at any time, the local
planner is stuck again, we generate a new RRT* plan.

We also consider the opposite strategy: a conservative or
pessimistic RRT*, which assumes unknown space is occu-
pied. Since the underlying local planner is also conservative,
if it is unable to find a solution, it is likely that no solution
to the goal exists through free space. Therefore, we build
the RRT graph and select the node in the tree that has the
closest Euclidean distance to the goal point, and then track
the first vertex in the branch of the tree that the closest node
belongs to.

The next strategy we consider is directly from the ex-
ploration literature, the “next-best view” planner (NBVP)
from Bircher et al. [7]. Their approach consists of building a
rapidly-exploring random tree (RRT) with a small number of
nodes in position and yaw space, and simulating the expected
view fustrum of the camera sensor. The approach then selects
the first node to execute in the branch that leads to the highest
information gain in terms of unknown voxels that would
be observed. We implement this approach for comparison;
however, since there is no goal-tracking component to this
exploration strategy, we use the same scheme as with the ran-
dom waypoint selection: one exploration waypoint, followed
by trying to reach the goal, followed by another exploration
waypoint.

The final strategy is our exploration strategy, combining
aspects of both the exploration strategy above and goal-
tracking and sensor field of view awareness, described in
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detail below.

A. Proposed Method

Our method uses a similar methodology to NBVP, where
the potential exploration gain of future points is evaluated by
projecting the camera frustum into the voxel grid. However,
we adapt the method to (i) better suit the purpose of
increasing the chances of the robot making it to the goal, and
(ii), to function online, in real-time in a high-rate loop. The
core differences are that we do not build an RRT graph, we
subsample within the view frustum, we do not do raycasting
to find occlusions, and we introduce a goal-seeking reward
in addition to the exploration gain.

Our method works as follows: first, we draw the global
goal g with some probability P, € (0,1). Otherwise, we
proceed to generate N random points, X,,, in the unoccupied
space of the TSDF, within a maximum radius r of the start
point of the trajectory x. Note, importantly, that we use the
original TSDF rather than the ESDF to select these points
and evaluate the frustum, as the ESDF sets nearby unknown
space to occupied for planning safety purposes.

We select a yaw ~ for each point by finding the angle of
the vector from the trajectory start x4 to the sampled point
X, to approximate the real velocity-facing yaw. For each of
these points, we evaluate the exploration gain of the camera
frustum at that point by counting the number of unknown
voxels in the TSDFE. The exploration gain function I(x, ")
can be expressed as:

l(x,v) = #{v|v € frustum(x,~y) Nv € unknown(v)} (10)

In order to run in real-time, we approximate the actual
exploration gain by subsampling the frustum by a certain
factor, and checking only every sth voxel. We evaluate the
effect of this approximation in Fig. [2] in simulation, which
shows that sampling only 5% of the samples usually leads
to an estimation error of less than 1%, and in practice runs
3 times faster than evaluating the full frustum.

Additionally, for each point we also evaluate the distance
to the global goal, normalized by the maximum distance
to goal d, (to allow consistent weighting across different
settings and goal distances). This normalized distance is
converted to a reward, giving the total reward function R
for each point x,, as:

dg = lg—xs|+r

d. —
R(xn,7.8) = wel(x,7) +wy—
The point with the highest reward is chosen as the next
intermediate goal.
A diagram showing the complete system (including map-
ping) is shown in Fig.

VII. SIMULATION EXPERIMENTS

This section will evaluate different aspects of our system
in a simulation environment where the ground truth map is
known. We evaluate the effect of parameters on success rate
of local trajectory optimization, compare the intermediate
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Fig. 2: Error in estimation of unknown voxels in the sensor
frustum (as a proxy for exploration gain), by subsampling
fraction (a subsampling fraction of 0.01 = 1% of the samples
are taken). As can be seen, a sampling of 5% of the samples
yields only a maximum 2% error in the unknown voxel
estimation but could lead to up to a 20x speedup in lookup
operations.
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Fig. 3: System diagram of the mapping and planning sub-
systems. The ESDF is used by the trajectory optimizer to
compute collision costs, and the TSDF is used by the inter-
mediate goal finding (local exploration algorithm) to evaluate
exploration gain. If the trajectory optimization succeeds, the
trajectory is sent to the controller; otherwise we attempt to
find an alternative intermediate goal.

goal finding methods presented in Section and the effect
of subsampling the camera view frustum for exploration gain
evaluation.

These simulations are made with the voxblox, which al-
lows generating ground-truth ESDFs for environments made
of primitive shapes (in this case, cylinders to simulate trees in
a forest), and also allows simulating sensor measurements by
raycasting into the map. The maps are 15 x 10 meters, and
have an obstacle region of 10 x 10, to ensure that the start
and end poses are always free. Cylinders of radii between 0.1
and 0.5 m and various heights are placed randomly within
the space. The objects per square meter metric maps to
approximately to percentage of the volume occupied, +5%
(for instance, 0.4 objects/m? is 35-45% occupied volume).

For the purposes of these experiments, we assume our
MAV can track the polynomial trajectories perfectly, which
[20] shows is possible as long as we respect maximum
velocity and acceleration bounds while planning. We add
a new viewpoint into the incrementally-built map and then
replan once a second of simulation time. The incremental
planning methods have a maximum planning horizon of 3
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Fig. 4: Comparison of methods in a small simulation case (15
x 10 meters) with 0.3 objects/m? obstacle density. The black
line shows the final path, the colored lines show intermediate
paths, and dark blue arrows show the intermediate goals
selected by the algorithm. Only our method and NBVP were
successfully able to solve the case; both RRT* methods were
unable to see the final location as free as they do not consider
sensor field-of-view in the planning, and the random goal
selection had too few replans. All methods ran for up to 120
replans.
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Fig. 5: A comparison of the planner success without any
intermediate goal-finding strategy, building the map incre-
mentally. As can be seen, gradient-based goal-finding signif-
icantly increases success chance over line-based goal finding,
and soft goal-cost further increases performance. There are
100 trials per density, with 60 replans (60 seconds at 1 Hz
replanning rate).

meters.

The first results are for starting with an a completely empty
map, and inserting new viewpoints along the path at 1 Hz,
with a sample solutions from no incremental goal-finding
shown in Fig. [(a) and the quantitative results in Fig. [
As can be seen, straight-line goal finding and purely local
optimization are able to solve only a very small percentage of
the test cases. Using gradient-based goal finding significantly
increases the performance, and soft goals further increase
success rate, especially at lower densities. However, the
success rates overall are still unacceptably low.

To overcome these issues, we benchmark the intermediate
goal finding methods, described in Section on the same
simulation cases. Example qualitative results are shown for
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Fig. 6: A comparison of the success rates for different
incremental goal-finding strategies. Note that our method,
NBVP, and conservative RRT* sare able to solve more test
cases than optimistic RRT*, which is commonly used as
a global planner. There are 50 trials per density, and a
maximum of 120 replans per trial.

all methods in Fig. [ The simulations show the differences
between the methods: random goals fails to find the goal
within the allocated time as the intermediate goals are too
undirected, and the two RRT*-based methods fail since they
do not consider the field-of-view of the sensor and are
therefore never able to observe the goal point as clear.

Fig. [] shows the quantitative results: as can be seen, all
goal-finding methods outperform the naive optimization-only
method. The optimistic RRT* performs the worst, as it tends
to select the same infeasible path over and over again as
unknown space is marked as traversable for this method.
NBVP performs somewhat better, as it uses the sensor model
to maximize exploring the small area. Conservative RRT*
performs comparatively well, as it is simply tracking the
closest free point to the goal, but has no knowledge of the
sensor model.

Finally, our method performs on par with random goal
selection in terms of success rate. However, our method is
able to consistently produce much shorter path lengths: Fig. [7]
shows the mean path lengths for simulation cases that both
random goal finding and our method were able to solve. Our
method produces paths up to 35% shorter.

The final experiment is a more realistic test of a long forest
traversal. We generate a 50 meter x 50 meter randomized
map with 0.1 and 0.2 obstacles/m2, and set the MAV to
explore from one corner to the other. The results from 0.2
density are shown in Fig.[8] where our method and optimistic
RRT* were the only two to successfully make it to the goal.
Simulation results over 20 maps at different densities are
shown in Fig. 0] and the timings of different aspects of our
method from this simulation are shown in Table [l

VIII. REAL-WORLD EXPERIMENTS

To evaluate our system in a real-world scenario, we
performed multiple experiments in two different test environ-
ments: a cluttered office space and a dense forest with a vari-
able ground height. The results of all described experiments
are available at https://youtu.be/rAJwD2kr7cO.
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Fig. 7: Path length comparison between random goal selec-
tion and our proposed method. The path lengths are only
evaluated for trials where both planners succeeded, to allow a
fair comparison. Note that our method always finds a solution
in a significantly shorter path length, as it exploits current
knowledge of the environment.
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Fig. 8: A 50 m x 50 m randomized “forest” environment,
with a density of 0.2 objects/m?. The lines compare five
planners: no goal selection (dark blue), random goal finding
(red), optimistic RRT* (yellow), conservative RRT* (purple),
NBVP (green), and our method (teal). All planners start in
the upper-left corner and try to reach the lower-right, but only
our planner and optimistic RRT* are able to successfully find
a solution in 500 replan cycles. The planning is in 3D, so
some plans go over an obstacle.

All of the experiments start with a completely unknown
map, use visual-inertial odometry from the forward-facing
(with a 12° downward pitch) stereo camera, update the map
from stereo and replan at 4 Hz, and run everything entirely
on the 2.4 GHz i7 dual-core CPU on-board the robot. We use
rovio for state estimation [22], a non-linear MPC for position
control [23], and the Asctec on-board attitude controller. The
average flight velocity was 1.0 m/s.

In the office space environment, the MAV is able to
navigate from a starting position in a hallway, around a
corner, and to a point above an office table, shown in
Fig. During the path, it successfully avoids an ajar
cabinet door (which blows open during the flight), along with
many obstacles on either side of the hallway. The MAV was

Forest Experiment Results
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Fig. 9: Quantitative results of success rate from the long
forest simulation, limited to 500 replan cycles. While the
RRT-based methods can offer good performance in this
situation they also sample orders of magnitude more points
than our method, and require much more time to select an
intermediate goal.

Mesh Map +
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Fig. 10: Experimental results from the office navigation
experiment, with final map and intermediate paths shown
on the lower right.

only able to reach near the intended goal, as it is unable
to successfully determine whether the air-space above the
tables is clear or not: the tables are gray and textureless, and
the white projector screen behind them is also textureless,
leading to a lack of stereo matches and therefore unknown
space in the map. While eventually the robot would have
explored enough of the surroundings to clear this space, the
pilot intervened when it was near the intended target. This
demonstrates the conservative and safe nature of our planner.

Our second experimental validation took place in a forest
environment, where we performed four different experi-
ments. In the first trial, we were successfully able to avoid
a single large tree between the start point and goal. Second,
we did two experiments where the MAV was commanded to
go a large distance in its current facing direction, where the
robot successfully avoided tree branches along its way and
navigated largely along a hiking trail for up to 45.0 meters.
In the shorter experiment, the MAV was able to reach its
goal. In the longer one, it was unable to reach the final goal
as the slope of the ground was too high and the tilted-down
camera did not allow it to perceive enough open space to
safely raise its flying height above the ground.

The final forest experiment tested navigation in very
cluttered, obstacle-dense environments. The MAV was com-



Step Time [ms]
Mapping
TSDF Insert 27.0
ESDF Update 14.5
Local Replanning
Trajectory Optimization 19.3
Intermediate Goal Selection 59

TABLE I: Timings for a single iteration each part of the
method, aggregated from the benchmark in Fig. [§] Note
that intermediate goal selection will only run if trajectory
optimization fails, not every planning iteration.

manded to fly in a very densely-forested area between two
trails, containing many small trees, branches, uneven terrain,
and other obstacles. A still image of the video, along with the
corresponding robots-eye view and the final executed path
are shown in Fig.[T] The MAV was able to complete a path of
34.7 meters, successfully avoiding obstacles along the way,
and finishing at the waypoint above the trail on the other
side of the wooded region.

IX. CONCLUSIONS

This paper presented a complete system for local obstacle
avoidance, consisting of an underlying trajectory optimiza-
tion method, which uses an Euclidean Signed Distance Field
(ESDF) built by voxblox to get collision costs and gradients,
coupled with an exploration-inspired intermediate goal find-
ing strategy to escape local minima in the optimization. We
showed that our combined method outperforms the common
strategy of coupling an optimistic global planner with a con-
servative local planner. In the case of high obstacle densities,
our exploration-based method is able to find solutions to
more planning problems. We also outperform the next-best
view exploration method for intermediate goal, as we are
able to incorporate information about the global goal and
reduce the runtime of the exploration gain evaluation.

Our approach focuses on solving the case of very cluttered
environments in previously unknown maps, and maximizing
the chances of finding the goal while building the map. To
demonstrate the performance of our method in real-world
scenarios, we were able to successfully navigate through
an office and through multiple forest environments while
performing all processing in real-time on-board an MAV.
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