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Abstract— The detection of anomalous executions is valuable
for reducing potential hazards in assistive manipulation. Multi-
modal sensory signals can be helpful for detecting a wide range
of anomalies. However, the fusion of high-dimensional and
heterogeneous modalities is a challenging problem. We intro-
duce a long short-term memory based variational autoencoder
(LSTM-VAE) that fuses signals and reconstructs their expected
distribution. We also introduce an LSTM-VAE-based detector
using a reconstruction-based anomaly score and a state-based
threshold. For evaluations with 1,555 robot-assisted feeding
executions including 12 representative types of anomalies, our
detector had a higher area under the receiver operating
characteristic curve (AUC) of 0.8710 than 5 other baseline
detectors from the literature. We also show the multimodal
fusion through the LSTM-VAE is effective by comparing our
detector with 17 raw sensory signals versus 4 hand-engineered
features.

I. INTRODUCTION

People with disabilities often need physical assistance from
caregivers. Robots can provide assistance for activities of
daily living such as robot-assisted feeding [1] and shaving
[2]. However, its structural complexity, task variability, and
sensor uncertainty may result in failure. A lack of detection
systems for the failures may also lower the usage of robots
due to potential failure cost. The detection of an anomalous
task execution (i.e., anomaly) can help to prevent or reduce
potential hazards in the assistance by recognizing highly
unusual situations and stop in these situations.

In this paper, an anomaly detector is a method to identify
when the current execution differs from past successful
experiences (i.e., non-anomalous executions). Researchers
often use an one-class classifier trained on non-anomalous
execution. An ideal detector should detect a variety of anoma-
lies, alert the robot quickly, ignore irrelevant task variation,
and handle the stream of sensory signals. Multimodal sensory
signals can be helpful to detect various anomalies using
its high dimensional information. Researchers often reduce
the dimension or select features before applying a classifier.
Our previous work used also selected 4 hand-engineered
features from 3 modalities for a likelihood-based classifier,
HMM-GP, using hidden Markov models (HMM) [3], [4].
However, the compressed or selected representations may be
missing information relevant to anomaly detection. Creating
useful hand-specified features can also involve significant
engineering effort and domain expertise.
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Fig. 1: Robot-assisted feeding system. A PR2 robot detects
anomalous feeding executions collecting 17 sensory signals
from 5 types of sensors.

An alternative solution is reconstruction-based detection,
such as an autoencoder (AE) based approach that compresses
and reconstructs high dimensional inputs based on non-
anomalous executions. When an AE is trained only with
non-anomalous data, a high reconstruction error can indicate
an anomaly. The idea behind this detection is that an AE
cannot reconstruct unforeseen patterns of anomalous data
well compared to foreseen non-anomalous data. In addition
to the reconstruction error, a variational autoencoder (VAE)
can compute the reconstruction log-likelihood of the inputs
modeling the underlying probability distribution of data. Both
AE and VAE can be combined with time-series modeling
approaches such as recurrent neural network (RNN) including
long short-term memory (LSTM) network.

In this paper, we introduce a long short-term memory-based
variational autoencoder (LSTM-VAE) for multimodal anomaly
detection. For encoding, an LSTM-VAE projects multimodal
observations and their temporal dependencies at each time
step into a latent space using serially connected LSTM
and VAE layers. For decoding, it estimates the expected
distribution of the multimodal inputs from the latent space
representation. We train it under a denoising autoencoding
criterion [5] to prevent learning an identity function and
improve representation capability. Our LSTM-VAE-based
detector detects an anomaly when the log-likelihood of current
observation given the expected distribution is lower than
a threshold. We also introduce a state-based threshold to
increase detection sensitivity and lower the false alarms
similar to [3].

We evaluated the LSTM-VAE with robot-assisted feeding
data that we collected from 24 able-bodied participants
with 1,555 feeding executions. The proposed detector is
beneficial in that we could directly use high-dimensional
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multimodal sensory signals without significant effort for
feature engineering. It was able to catch an anomaly online. In
particular, it was able to set tight or loose decision boundaries
depending on the variations of multimodal signals using the
state-based threshold. Our method had higher area under
receiver operating characteristic (ROC) curves than other
baseline methods from the literature. In our evaluation, the
area under the curve (AUC) was 0.044 higher than that
of our previous algorithm, HMM-GP given the same data.
Our new method also had a 0.064 higher AUC when we
used 17-dimensional sensory signals from visual, haptic,
kinematic, and auditory modalities instead of 4-dimensional
hand-engineered features.

II. RELATED WORK

Anomaly detection is known as novelty, outlier, or event
detections in other domains [6]. In robotics, it has been used to
detect the failure of manipulation tasks: bin picking [7], bottle
opening [8], etc. Many classic machine learning approaches
have also been used: support vector machine (SVM) [9],
[10], self-organizing map (SOM) [11], k-nearest neighbors
(kNN) [12], etc. To detect anomalies from time-series signals,
researchers have also used hidden Markov models [3] or
Kalman filters [13].

Researchers have often reduced the dimension of high-
dimensional inputs using principal component analysis (PCA)
before applying probabilistic or distance-based detection [9],
[14]. However, the compressed representations of outliers
(i.e., anomalous data) may be inliers in latent space. Instead,
we use a reconstruction-based method that recovers inputs
from its compressed representation so that it can measure
reconstruction error with the anomaly score. An AE is a
representative reconstruction approach that is a connected
network with an encoder and a decoder [15]. It has also been
applied for reconstructing time-series data using a sliding time-
window [16]. However, the window method does not represent
dependencies between nearby windows and a window may
not include an anomaly.

To model time-series data with its temporal dependencies,
we use an LSTM network [17], which is a type of recurrent
neural network (RNN). An LSTM network can make use
of long-term dependencies and avoid the vanishing gradient
problem [17]. Researchers have used LSTM networks for
prediction in this anomaly detection domains such as the
following: radio anomaly detection [18] and EEG signal
anomaly detection [19]. Malhorta et al. introduced an LSTM-
based anomaly detector (LSTM-AD) that measures the
distribution of prediction errors [20]. However, the method
may not predict time-series under unpredictable external
changes such as manual control and load on a machine
[21]. Alternatively, researchers have introduced RNN- and
LSTM-based autoencoders for reconstruction-based anomaly
detection [22], [23]. In particular, Malhorta et al. introduced
an LSTM-based encoder-and-decoder (EncDec-AD) that
estimates a reconstruction error [21]. We also use this
reconstruction scheme for detection and as a baseline method
in this paper.

Another relevant approach is a variational autoencoder
(VAE) [24]. Unlike the AE, a VAE models the underlying
probability distribution of observations using variational
inference (VI). Bayer and Osendorfer used VI to learn the
underlying distribution of sequences and introduced stochastic
recurrent networks [25]. Soelch et al. used their work to detect
robot anomalies using unimodal signals [26]. Our work also
uses variational inference, but we do not predict and instead
only reconstruct data using an LSTM-based autoencoder for
multimodal anomaly detection.

III. LSTM-BASED VARIATIONAL AUTOENCODING

We review an autoencoder and a variational autoencoder.
We then describe our proposed LSTM-based variational
autoencoder. We represent a vector of multidimensional inputs
by x ∈ RD and the corresponding latent space vector by
z ∈ RK , where D and K are the number of input signals
and the dimension of the latent space, respectively.

A. Preliminary: Autoencoder(AE)

An AE is an artificial neural network that consists of
sequentially connected encoder and decoder networks. It sets
the target of the decoder to be equal to the input of the encoder.
The encoder network learns a compressed representation
(i.e., bottleneck feature or latent variable) of the input. The
decoder network reconstructs the target from the compressed
representation. The difference between the input and the
reconstructed input is the reconstruction error. During training,
the autoencoder minimizes the reconstruction error as an
objective function. An AE is often used for data generation as
a generative model. An AE’s decoder can generate an output
given an artificially assigned compressed representation.

B. Preliminary: Variational Autoencoder(VAE)

A VAE is a variant of an AE rooted in Bayesian inference
[24]. A VAE is able to model the underlying distribution
of observations p(z) and generate new data by introducing
a set of latent random variables z. We can represent the
process as p(x) =

∫
p(x|z)p(z)dz. However, the integral is

intractable due to the continuous domain of z. Instead, we can
represent the marginal log-likelihood of an individual point
as log p(x) = DKL(qφ(z|x)||pθ(z)) + Lvae(φ, θ;x) using
notation from [24], where DKL is KullbackLeibler divergence
from a prior pθ(z) to the variational approximation qφ(z|x)
of p(z|x) and Lvae is the variational lower bound of the data
x by Jensen’s inequality. Note that φ and θ are the parameters
of the encoder and the decoder, respectively.

A VAE optimizes the parameters, φ and θ, by maximizing
the lower bound of the log likelihood, Lvae,

Lvae = −DKL(qφ(z|x)||pθ(z)) + Eqφ(z|x)[log pθ(x|z)].
(1)

The first term regularizes the latent variable z by minimizing
the KL divergence between the approximated posterior
and the prior of the latent variable. The second term is
the reconstruction of x by maximizing the log-likelihood
log pθ(x|z) with sampling from qφ(z|x).
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Fig. 2: Illustration of a multimodal anomaly detector with an unrolled LSTM-VAE model. We train the LSTM-VAE using
multimodal signals and corresponding progress-based priors. We then train a threshold estimator using the outputs of the
LSTM-VAE. For testing, we input sensory signals only. The detector then returns an anomaly when current anomaly score is
over an estimated threshold η. Note that Linear* and LSTM layers have tanh and softplus activations, respectively. The red
arrows are used for training only.

The choice of distribution types are important since a VAE
models the approximated posterior distribution qφ(z|x) from
a prior pθ(z) and likelihood pθ(x|z). A typical choice for
the posterior is a Gaussian distribution, N (µz,Σz), where
a standard normal distribution N (0, 1) is used for the prior.
For the likelihood, a Bernoulli distribution or multivariate
Gaussian distribution is often used for binary or continuous
data, respectively.

C. An LSTM-based Variational Autoencoder (LSTM-VAE)

We introduce a long short-term memory-based variational
autoencoder (LSTM-VAE). To use the temporal dependency
of time-series data in a VAE, we combine a VAE with
LSTMs by replacing the feed-forward network in a VAE
to LSTMs similar to conventional temporal AEs such as an
RNN Encoder-Decoder [22] or an EncDec-AD [21]. Fig. 2
shows an unrolled structure with LSTM-based encoder-and-
decoder modules. Given a multimodal input xt at time t, the
encoder approximates the posterior p(zt|xt) by feeding an
LSTM’s output into two linear modules to estimate the mean
µzt and co-variance Σzt of the latent variable. Then, the
randomly sampled z from the posterior p(zt|xt) feeds into
the decoder’s LSTM. The final outputs are the reconstruction
mean µxt and co-variance Σxt .

We apply a denoising autoencoding criterion [5] to the
LSTM-VAE by introducing corrupted input with Gaussian
noise, x̃ = x + ε, where ε ∼ N (0, σnoise). We then replace
the lower bound in Eq. (1) with a denoising variational lower
bound Ldvae [27],

Ldvae = −DKL(q̃φ(zt|xt)||pθ(zt))
+ Eq̃φ(zt|xt)[log pθ(xt|zt)], (2)

where q̃φ(zt|xt) is an approximated posterior distribution
given a corruption distribution around xt. Given Gaus-
sian distribution for p(x̃|x) and qφ(z|x), q̃φ(zt|xt) can be

Fig. 3: Illustration of the progress-based prior. The center of
the prior linearly changes from p1 as initial progress to pT
as final progress.

represented as a mixture of Gaussians. For computational
convenience, we use a single Gaussian, q̃φ(z|x) ≈ qφ(z|x̃).

We introduce a progress-based prior p(zt). Unlike conven-
tional static priors using a normal distribution N (0, 1), we
vary the center of a normal distribution as N (µp,Σp), where
µp and Σp are the center and co-variance of the underlying
distribution of multimodal inputs, respectively (see Fig. 3).
This kind of varying prior can be helpful to introduce the
temporal dependency of time-series data into its underlying
distribution since a VAE tries to minimize the difference
between the approximated posterior and the prior. Unlike the
RNN prior of Solch et al. [26] and the transition prior of
Karl et al. [28], we gradually change µp from p1 to pT as
the progress of a task execution. To simplify the prior, we
use an isotropic normal distribution so the co-variance matrix
is Σp = I . We can rewrite the regularization term of Ldvae

as

DKL(q̃φ(zt|xt)||pθ(zt))
≈ DKL(N (µzt ,Σzt)||N (µp, 1)).

=
1

2

(
tr(Σzt) + (µp − µzt)

T (µp − µzt)−D − log |Σzt |
)
.

(3)

To represent the distribution of high-dimensional contin-



uous data, we use a multivariate Gaussian with a diagonal
co-variance matrix. We can derive the reconstruction term in
Ldvae as

Eq̃φ(zt|xt)[log pθ(xt|zt)]

= −1

2
(log(|Σxt |) + (xt − µxt)

TΣ−1xt (xt − µxt)

+D log(2π)) (4)

We use an LSTM with tanh for each encoder and decoder.
We implemented the LSTM-VAE using stateful LSTM models
in the Keras deep learning library [29]. We trained the LSTM-
VAE using an Adam optimizer with 3-dimensional latent
variables and a 0.001 learning rate. Note that we are not
using a sliding window in this work, but a window could be
applied.

IV. ANOMALY DETECTION

We now introduce an online anomaly detection framework
for multimodal sensory signals with state-based thresholding.

A. Anomaly Score
Our method detects an anomalous execution when the

current anomaly score of an observation xt is higher than a
score threshold η,{

anomaly, if fs(xt, φ, θ) > η

¬anomaly, otherwise,
(5)

where fs(xt, φ, θ) is an anomaly score estimator. We define
the score as the negative log-likelihood of an observation with
respect to the reconstructed distribution of the observation
through an encoding-decoding model,

fs(xt, φ, θ) = − log p(xt;µxt ,Σxt), (6)

where µxt and Σxt are the mean and co-variance of the
reconstructed distribution, N (µxt ,Σxt), from an LSTM-VAE
with parameters φ and θ. A high score indicates an input has
not been reconstructed well by the the LSTM-VAE. In other
words, the input has deviated greatly from the non-anomalous
training data.

B. State-based Thresholding
We introduce a varying threshold that changes over the

estimated state of a task execution motivated by the dynamic
threshold [3]. Depending on the state of task executions,
reconstruction quality may vary. In other words, anomaly
scores in non-anomalous task executions can be high in
certain states, so varying the anomaly score can reduce
false alarms and improve sensitivity. In this paper, the state
is the latent space representation of observations. Given a
sequence of observations, the encoder of LSTM-VAE is able
to compute a state at each time step. By mapping states Z
and corresponding anomaly scores S from non-anomalous
dataset, our method is able to train an expected anomaly
score estimator f̂s : z→ s. We use support vector regression
(SVR) to map from a multidimensional input z ∈ Z to a
scaler s using a radial basis function (RBF) kernel. To control
sensitivity, we add a constant c into the expected score and
represent the state-based threshold as η = f̂s(z) + c.

C. Training and Testing Framework

Algorithm 1 shows the training framework of our LSTM-
VAE-based anomaly detector. Given a set of non-anomalous
training and validation data, (Xtrain,Xval), the framework
aims to output the optimized parameters (φ, θ) of an LSTM-
VAE and an expected anomaly score estimator f̂s. Note
that we represent N sequences of multimodal observations
as X = {x(1),x(2), ...,x(N)}. Ntrain and Nval denote the
numbers of training and validation data, respectively. We also
represent the encoder and decoder functions as fφ : xt → zt
and gθ : zt → (µxt ,Σxt), respectively. Then, we denote
the function of serially connected encoder and decoder (i.e.,
autoencoder) by fφ,θ with noise injection.

The framework preprocesses Xtrain and Xval by resam-
pling those to have length T and normalizing their individual
modalities in the range of [0, 1] with respect to Xtrain. The
framework then starts to train the LSTM-VAE with respect
to Xtrain maximizing Ldvae and stops the training when
Ldvae does not increase for 4 epochs. Then it extracts a set
of latent space representations and corresponding anomaly
scores from Xval as the training set for f̂s. Finally, this
framework returns the trained SVR object as well as the
LSTM-VAE’s parameters. Note that we reset the state of the
LSTM in the beginning of a sequence of data only.

In testing, the detector aims to detect an anomaly in real
time. Algorithm 2 shows the pseudo code for the online
detection process. In each loop, the detector takes multimodal
input x. The detector scales individual dimension with respect
to the scaled Xtrain. It then estimates the latent variable and
the parameters of the reconstructed distribution. When the
anomaly score of the current input is higher than the threshold
η, our system detects that the detector determines the current
task execution is anomalous and returns the decision. We
control the sensitivity of the detector by adding a constant c
to f̂s.

Algorithm 1: Training algorithm for an LSTM-VAE-
based anomaly detector
input :Xtrain ∈ RNtrain×T×D, Xval ∈ RNval×T×D

output : φ, θ, fη
1 Xtrain,Xval = Preprocessing(Xtrain,Xval) ;
2 φ, θ ← train LSTM-VAE with (Xtrain,Xval);
3 Z = ∅,S = ∅ ;
4 for i← 1 to Nval do
5 Reset the state of LSTM-VAE;
6 for j ← 1 to T do
7 z← fφ(Xval(i, j));
8 µx, σx ← fφ,θ(Xval(i, j));
9 s← fs(xval(i, j), µx, σx);

10 Add z and s into Z and S, respectively.
11 end
12 end
13 f̂s ← train an SVR with (Z,S).



Algorithm 2: Testing algorithm for an LSTM-VAE-based
anomaly detector.
input : x ∈ RD
output : Anomaly or ¬Anomaly

1 while True do
2 x← get current multimodal data;
3 x← Preprocessing(x);
4 z← fφ(x);
5 µx,Σx ← fφ,θ(x);
6 if fs(x;µx,Σx) > f̂s(z) + c then
7 return Anomaly ;
8 end
9 end

V. EXPERIMENTAL SETUP

A. Instrumental Setup

Our system uses a PR2 from Willow Garage, a general-
purpose mobile manipulator with two 7-DOF arms with
powered grippers and an omni-directional mobile base. For
safety and prevention of possible hazards, we used a low-
level PID controller with low gains and a 50 Hz mid-level
model predictive controller from [30] without haptic feedback.
We used the following sensors: an RGB-D camera with a
microphone (Intel SR300) on the right wrist, a force/torque
sensor (ATI Nano25) on the utensil handle, joint encoders,
and current sensors. These sensors measure mouth position
and sound, force on the utensil, spoon position, and joint
torque, respectively.

B. Data Collection

We used data from 1,555 feeding executions collected
from 24 able-bodied participants where we newly collected
1,203 non-anomalous feeding executions for this work. 16
participants were male and 8 were female, and the age range
was 19-35. We conducted the studies with approval from the
Georgia Tech Institutional Review Board (IRB).

We divided our data into two subsets: a training/testing
dataset collected from our previous work [4], and a pre-
training dataset. The training/testing dataset consists of data
from 352 executions (160 anomalous and 192 non-anomalous)
collected from 8 able-bodied participants who used the
feeding system with yogurt and a silicone spoon.

The pre-training dataset uses data from 1,203 non-
anomalous executions from 16 newly recruited participants
who used various foods and utensils. Pre-training with this
dataset allowed us to initialize the weights of the LSTM-VAE
to find a better fit in fine tuning. Among the dataset, 559
non-anomalous executions were from 9 participants who used
3 types of food and corresponding utensils: cottage cheese
and silicone spoon, watermelon chunks and metal fork, and
fruit mix and plastic spoon. An experimenter also conducted
428 non-anomalous feeding executions as a self-study with 6
foods (yogurt, rice, fruit mix, watermelon chunks, cereal, and
cottage cheese) and 5 utensils (small/large plastic spoons, a

Silicone spoon

Small plastic spoon

Large plastic spoon

Metal fork

Plastic fork

Yogurt

Fruit mix

Rice

Watermelon

Cottage cheese

Fig. 4: Left: Examples of food used in our experiments. Right:
The 3D-printed utensil handle and 5 utensils used. Red boxes
show yogurt and silicone spoon used for our training/testing
dataset.

silicone spoon, and plastic/metal forks). We also collected
additional data from 216 non-anomalous executions from 6
participants who used yogurt and a silicone spoon.

C. Experimental Procedure

This feeding system allows the user to command three
autonomous subtasks: scooping/stabbing, clean spoon, and
feeding. The user sends these commands using a web-based
graphical user interface. A typical feeding sequence consists
of scooping or stabbing followed by feeding. In order to
approximate one form of limited mobility that people with
disabilities might have, we instructed the participants to not
move their upper bodies and to eat food off of the utensil
using their lips.

Each participant performed anomalous and non-anomalous
feeding executions while the participant, experimenters, or
the system produced anomalies. We randomly determined
the order of these executions. We defined 12 types of rep-
resentative anomalies through fault tree analysis [31]: touch
by user, aggressive eating, utensil collision by user, sound
from user, face occlusion, utensil miss by user, unreachable
location, environmental collision, environmental noise, utensil
miss by system fault, utensil collision by system fault, and
system freeze (see Fig. 5). For anomalies caused by the
user, we instructed the participants on their actions through
demonstration videos and verbal explanation. The participant
had control over the details of the anomaly, such as the exact
timing and magnitude of their actions.

D. Data collection and Pre-processing

For each feeding execution, we collected 17 sensory signals
from 5 sensors: sound energy (1), force (3) applied on the
end effector, joint torque (7), spoon position (3), and mouth
position (3), where the number in parentheses represents
the dimension of signals. We zeroed the initial value and
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Fig. 5: 12 representative anomalies caused by either the user,
the environment, or the system in our experiments.

resampled each signal to have 20 Hz for the robot’s actual
anomaly check frequency. We then scale signals in the
non-anomalous dataset to have a value between 0 and 1.
Corresponding to this scale, we also scaled signals from the
anomalous dataset. Finally, we have a sequence of tuples
per execution (i.e., sequence length × 17). For visualization
and comparison purposes, we also extracted 4-dimensional
hand-engineered features used in our previous work [32]:
sound energy, 1st joint torque, accumulated force, and spoon-
mouth distance. Here, we used sound energy1 instead of raw
44 100 kHz 16 bit PCM encoding since the under sampling
could miss auditory anomalies.

E. Baseline Methods

To evaluate the performance of the proposed method, we
implemented 5-baseline methods,
• RANDOM: A random binary classifier in which we

control its sensitivity by weighting a class.
• OSVM: A one-class SVM-based detector trained with

only non-anomalous executions. We move a sliding
window (of size 3 in time like EncDec-AD [21]) one
step at a time. We control its sensitivity by adjusting
the number of support vectors.

• HMM-GP: A likelihood-based classifier using an HMM
introduced in [32]. We vary the likelihood threshold with
respect to the distribution of hidden states.

• AE: A reconstruction-based anomaly detector using a
conventional autoencoder with a 3 time step sliding
window based on [33].

• EncDec-AD: A reconstruction-based anomaly detector
using an LSTM-based autoencoder [21]. We use window
size L = 3 as in the paper, but unlike the paper we
use a diagonal co-variance matrix when we model the
distribution of reconstruction-error vectors.

From now on, we will also use the term LSTM-VAE to refer
to our LSTM-VAE-based detector.

1Root mean square (RMS) of 1,024 frames.
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Fig. 6: Visualization of the reconstruction performance and
anomaly scores over time using an LSTM-VAE. The upper four
sub graphs show observations and reconstructed observations’
distribution. The lower sub graphs show current and expected
anomaly scores. The dashed curve shows a state-based
threshold where the LSTM-VAE determines an anomaly when
current anomaly score is over the threshold. Brown lines
represent the time of anomaly detection.
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VI. EVALUATION

We first investigated the reconstruction function of the
LSTM-VAE. The upper 4 sub graphs in Fig. 6 show the
reconstructed distribution of 4 hand-engineered features from
non-anomalous and anomalous feeding executions in the
robot-assisted feeding task. For Fig. 6a, the observed features
(blue curves) and the mean of reconstructed distribution
(red curves) show a similar pattern of change over time.
On the other hand, in an anomalous execution (see Fig.
6b), the LSTM-VAE resulted in a large deviation between
observed and reconstructed accumulated force since the
pattern of accumulated force by the collision is not easily
observable from non-anomalous executions. Consequently,
we can observe the anomaly score (blue curve) gradually
increases after the onset of the deviation from the lower sub
graph of Fig. 6b. Note that the anomalous execution came
from a face-spoon collision caused intentionally by the user.

The anomaly score metric is effective in distinguishing
anomalies. Fig. 7 shows the distributions of the anomaly
scores over time of a participant’s 24 anomalous and 20 non-
anomalous feeding executions during leave-one-person-out
cross validation. The blue and red shaded regions show the
mean and standard deviation of non-anomalous and anoma-
lous executions’ anomaly scores, respectively. The score of
non-anomalous executions shows a specific pattern of change
with a smaller average and variance than that of anomalous
executions, making anomalies easily distinguishable from
non-anomalous situations.

The lower sub graphs of Fig. 6 also show the state-based
threshold is capable of achieving a tighter anomaly decision
boundary (red dash lines) than a fixed threshold over time. The
expected anomaly scores (red curves) and the actual scores
(blue curves) show a similar pattern of change. However,
the expected score is lower than the actual score given an
anomaly. Brown boxes show the time of anomaly detection
where the first detection time matches with the initial increase
of accumulated force.

We compared our LSTM-VAE with 5 other baseline
methods through a leave-one-person-out cross-validation
method. Given the training/testing dataset, we used data
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Fig. 8: Receiver operating characteristic (ROC) curves to
compare the performance of LSTM-VAEs with and without a
state-based threshold.

from 7 participants for training and tested with the data
from the remaining 1 participant. Table I shows our detector
outperformed the other 5 baseline methods with higher area
under the ROC curve (AUC) when using 4 hand-engineered
features. The AUC is 0.044 higher than the next best method,
HMM-GP.

We also investigated the performance when using 17
sensory signals with the additional pre-training dataset.
Our method resulted in the highest performance of AUC
that is 0.064 higher than the next best method, EncDec-
AD. It is also higher than the result from hand-engineered
features. This indicates an LSTM-VAE is capable of modeling
the heterogeneous high-dimensional multimodal signals and
detecting anomalies among those signals without significant
feature extraction effort. In this evaluation, we pre-trained
each method using the pre-training dataset in addition to
the dataset from the 7 participants. We then fine-tuned each
method with the data from 7 participants. Note that we train
an OSVM with the pre-traning dataset only and we did
not succeed in training HMM-GP due to underflow errors
resulting from the high-dimensional input.

Fig. 8 shows ROC curves from an LSTM-VAE with two
thresholding techniques. The red curve shows the result of the
proposed state-based thresholding. The yellow curve shows
the result of conventional fixed thresholding. The state-based
thresholding resulted in higher true positive rates given the
same false positive rates. In this evaluation, we used 17
sensory signals with the pre-training dataset.

VII. CONCLUSION

We introduced an LSTM-VAE-based anomaly detector
for multimodal anomaly detection. An LSTM-VAE models
the underlying distribution of multi-dimensional signals and
reconstructed the signals with expected distribution informa-
tion. The detector estimated the negative log-likelihood of
multimodal input with respect to the distribution as anomaly
score. By introducing a denoising autoencoding criterion and
state-based thresholding, the detector successfully detected



TABLE I: Comparison of the LSTM-VAE and 5 baseline methods with two types of inputs. Numbers represent the area
under the ROC curve (AUC).

Input Random OSVM HMM-GP AE EncDec-AD LSTM-VAE
4 hand-engineered features 0.5121 0.7427 0.8121 0.8123 0.7995 0.8564

17 raw sensory signals 0.5052 0.7376 N/A 0.8012 0.8075 0.8710

anomalies in robot-assisted feeding resulting in higher AUC
than other 5 baseline methods in literature. Without significant
effort of feature engineering, the detector with 17 raw inputs
outperformed a detector trained with 4 hand-engineered
features. Finally, we also showed the LSTM-VAE with the
state-based decision boundary is beneficial for more sensitive
anomaly detection with lower false alarms.
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