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Challenges in Monocular Visual Odometry:
Photometric Calibration, Motion Bias and

Rolling Shutter Effect
Nan Yang1,2,∗, Rui Wang1,2,∗, Xiang Gao1 and Daniel Cremers1,2

Abstract—Monocular visual odometry (VO) and simultane-
ous localization and mapping (SLAM) have seen tremendous
improvements in accuracy, robustness and efficiency, and have
gained increasing popularity over recent years. Nevertheless, not
so many discussions have been carried out to reveal the influences
of three very influential yet easily overlooked aspects: photomet-
ric calibration, motion bias and rolling shutter effect. In this
work, we evaluate these three aspects quantitatively on the state
of the art of direct, feature-based and semi-direct methods, pro-
viding the community with useful practical knowledge both for
better applying existing methods and developing new algorithms
of VO and SLAM. Conclusions (some of which are counter-
intuitive) are drawn with both technical and empirical analyses
to all of our experiments. Possible improvements on existing
methods are directed or proposed, such as a sub-pixel accuracy
refinement of ORB-SLAM which boosts its performance.

Index Terms—Localization, SLAM, Performance Evaluation
and Benchmarking

I. INTRODUCTION

MODERN visual SLAM systems usually have two basic
components: VO and global map optimization. While

the VO component incrementally estimates camera poses and
builds up a local map, small errors are accumulated and over
time the estimated camera poses start to drift away from their
actual positions. If a previously visited location is detected,
the drift can be eliminated by global map optimization using
techniques like loop closure with pose graph optimization or
bundle adjustment. VO, commonly considered as the system
front-end, fundamentally determines the overall performance
of a SLAM system. During the past few years, the VO com-
munity has seen significant progress in improving algorithm
accuracy, robustness and efficiency [1]–[9]. Efforts have been
made for different VO formulations, i.e, direct vs. feature-
based methods, dense/semi-dense alternating optimization vs.
sparse joint optimization. However, apart from these high-level
diversities, it is still not clear how the performance can be
influenced by the following low-level aspects:

(a) Photometric calibration. Pixels corresponding to the
same 3D point may have different intensities across images
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due to camera optical vignetting, auto gain and exposure
controls.

(b) Motion bias. Running a VO method on the same
sequence forward and backward sometimes can result in
significantly different performances.

(c) Rolling shutter effect. Exposing pixels within one
image at different timestamps can produce distortions that may
introduce non-trivial errors into VO systems.

These three aspects can greatly affect the VO performance,
yet their influences have not been systematically discussed and
evaluated. In this work, we perform systematic and quantitative
evaluations on the three most popular formulations of VO,
namely direct, feature-based and semi-direct methods. Since
evaluating all existing methods is not realistic, we select the
state of the art of each family, i.e., DSO [8], ORB-SLAM [5]
(with its loop closure and global bundle adjustment functional-
ities turned off) and SVO [9] (we use the updated version SVO
2.0). Our goal is to deliver practical insights for better applying
existing methods and further designing new algorithms by
giving insightful technical and empirical analyses to all of our
experimental results. Our main contributions are summarized
as follows:

(1) While it has been shown in [8], [10] that photometric
calibration can significantly improve the performance of direct
methods, it is still unclear how or why it can influence
other formulations. We complete this discussion by performing
thorough evaluations on all the three selected methods, draw
counter-intuitive conclusions and analyze the possible reasons.

(2) Although motion bias was unveiled in [10], the problem
was not studied there at all. In this work we exhaustively dis-
cuss the problem, analyze the reasons and perform experiments
that support our conclusions.

(3) In [8] the rolling shutter effect was tackled partly and
indirectly by simply mimicking the effect using random pixel
shifting. In this work we carry out evaluations on dataset that
provides both global and simulated rolling shutter sequences.
Besides, we further evaluate the selected methods on modern
industrial level cameras, which normally have rolling shutters
but extremely fast readout speed.

(4) In all the related experiments in [8], [10], only direct
and feature-based methods were considered. In this work we
add the popular representative of semi-direct methods [7], [9]
to all our evaluations.

(5) We propose possible improvements of existing methods,
e.g., a sub-pixel accuracy refined version of ORB-SLAM
delivering boosted performance.
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(b) Response without gamma
correction.

(c) Original image. (d) Calibrated image.

Fig. 1: Example of photometric calibration. Camera response func-
tions with gamma correction on (a) and off (b), images before (c)
and after (d) photometric calibration.

II. RELATED WORK

In this section we briefly introduce the principles of the
three VO formulations together with their respective selected
representatives. Afterwards we list the datasets used for our
experiments.

A. Direct Methods

Direct methods use either all pixels (dense) [6], pixels
with sufficiently large intensity gradient (semi-dense) [4], or
sparsely selected pixels (sparse) [8] and minimize a photomet-
ric error obtained by direct image alignment on the used pixels,
based on the brightness constancy assumption. Camera poses
and pixel depths are estimated by minimizing the photometric
error using non-linear optimization algorithms. Since much
image information can be used, direct methods are robust in
low-texture scenes and can deliver relatively dense 3D recon-
structions. Consequently, due to the direct image alignment
formulation, direct methods are very sensitive to unmodeled
artifacts such as rolling shutter effect, camera auto exposure
and gain control. More crucially, the brightness constancy
assumption does not always hold in practice, which drastically
reduces the performance of direct methods in environments
with rapid lighting change.

Direct Sparse Odometry (DSO). DSO performs a novel
sparse point sampling across image areas with sufficient inten-
sity gradient. Reducing the amount of data enables real-time
windowed bundle adjustment (BA). Obsolete and redundant
information is marginalized with the Schur complement [11],
and the First Estimate Jacobians technique is involved in the
non-linear optimization process [11], [12] to avoid mathemat-
ical inconsistency. As a direct method, DSO is fundamentally
based on the brightness constancy assumption, thus the authors
proposed a photometric camera calibration pipeline to recover
the irradiance images [8], [10], which drastically increases the
tracking accuracy [8]. An example of photometric calibration
is shown in Fig. 1.

B. Feature-based Methods

Feature-based methods extract a sparse set of key-features
and match them across multiple frames. Camera poses and fea-
ture depths are estimated by minimizing the reprojection errors
between feature pairs. As modern feature descriptors are to
some extent invariant to illumination and view-point changes,
feature-based methods are more robust than direct methods
to brightness inconsistencies and large view-point changes.
However, feature extraction and matching bring additional
computational overhead, which limits the number of features
that can be maintained in the system. The reconstructed 3D
maps therefore are much sparser and cannot be used directly
for applications like obstacle avoidance and path planning.
Moreover, in low-texture environments where not enough
features can be extracted, tracking can easily get lost.

ORB-SLAM. ORB-SLAM has become one of the most
popular feature-based methods and has been widely adopted
for a variety of applications. It uses ORB features [13] for all
the tasks including tracking, mapping, re-localization and loop
closing. To track a new frame, motion-only BA is performed
on its feature matches to estimate the initial pose, which is later
refined by using all the feature matches in the local map and
performing the pose optimization again. A covisibility graph
is used to improve system efficiency by limiting the BA to a
local covisible area. Unlike in DSO, in ORB-SLAM old points
and keyframes are culled out directly from the active window
without marginalization. To evaluate its VO performance, we
disable its loop closure and global BA functionalities, and only
focus on its tracking and local mapping components in this
paper.

C. Semi-Direct Methods

Semi-Direct Visual Odometry (SVO). Semi-direct meth-
ods have been considered to be a hybrid of the two previously
mentioned formulations. SVO [7] extracts Fast corners and
perform direct image alignment on those areas for initial pose
estimation. The feature extraction is later extended to also
include edgelets [9] or line segments [14] to improve the
robustness. The depths of the selected pixels are estimated
from multiple observations using a recursive Bayesian depth
filter. To reduce the drift caused by incremental estimations,
poses and depths are refined by BA: Image patches from
the reference frame and the current frame are aligned using
an inverse compositional Lucas-Kanade algorithm, then the
reprojection error is computed and minimized in BA using
iSAM2 [15]. Due to its exceptional high efficiency (around
400fps on a laptop) and low cost, SVO can be transplanted to
devices with limited computational resources, thus has gained
a high popularity in a wide range of robotics applications.

D. Datasets

The following datasets are used for our experiments which
cover a variety of real-world settings, e.g, indoor/outdoor,
texture/textureless, global/rolling shutters.

The TUM Mono VO Dataset [10] contains 50 sequences
captured by a global shutter camera with two different lenses.
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Fig. 2: Left: Performance difference of ORB-SLAM on the TUM Mono Dataset. The average of ePC
align−enPC

align is shown for each sequence,
where ePC

align and enPC
align stand for the alignment error with and without photometric calibration, respectively. The 6 sequences on which

tracking completely fails after photometric calibration are marked in red. Middle: An enlarged view of the first plot. Sequences with
performance differences larger than 50 are marked in red. Solid blue dots are used to mark the 4 sequences shown in Fig. 4. Right:
Color-encoded errors of all runs. Data of ORB-SLAM without photometric calibration is obtained from [10].

Camera response function, dense attenuation factors and ex-
posure time of each image are provided for photometric
calibration.

The EuRoC MAC Dataset [16] contains 11 sequences
recorded by global shutter cameras mounted on a drone. Some
of the sequences are quite challenging as they have extremely
unstable motion and strong brightness change.

The ICL-NUIM Dataset [17] has been extended by Kerl et
al. [18] to provide both simulated rolling shutter and global
shutter sequences of the same indoor environment. We use it
for our experiments related the rolling shutter effect.

The Cityscapes Dataset [19] provides a long street view
sequence captured by industrial rolling shutter cameras, which
is used to evaluate how the selected methods work against
realistic rolling shutter effect.

III. EVALUATION

A. Photometric Calibration
In the first experiment, we evaluate the influence of photo-

metric calibration on the selected methods, focusing more on
analyzing its impacts on formulations other than direct method.
We use the 50 original sequences from the TUM Mono
VO Dataset and their corresponding ones after photometric
calibration, i.e, with the nonlinear camera response function
G and pixel-wise vignetting factors V calibrated. Each method
runs 10 times on each of these 100 sequences to account
for non-deterministic behavior caused by e.g. multi-threading.
The accumulative histogram (i.e, the number of runs that
have errors less than the value given on the x axis) of the
alignment error ealign1 (meter), rotation drift er (degree) and
scale drift es are calculated [10] and shown in Fig. 3. It is
worth noting that integrating the exposure times t into the
formulation of ORB-SLAM and SVO (not open-sourced) is
not straightforward, therefore we do not use them for all three
methods. For reference, we also show the results of DSO with
all calibration information used, i.e, G, V and t.

In this experiment, with G and V calibrated the performance
of DSO increases significantly, which is not surprising as direct
methods are built upon the brightness consistency assump-
tion. Interestingly, photometric calibration reduces the overall

1ealign is the translational RMSE between the tracked trajectory when
aligned to the start and the end segments of the ground truth trajectory. For
details please refer to Eq.(14) of [10].
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Fig. 3: Performance comparison of DSO, ORB-SLAM and SVO
on sequences with/without photometric calibration (camera response
function G, vignetting factors V ). The alignment error ealign, rotation
drift er (in degree) and scale drift es are shown in the corresponding
subplots. ”lt” stands for loosed thresholds for ORB feature extraction.
For reference, we also show results of DSO using camera exposure
times t.

performance of SVO, and for ORB-SLAM the performance
decline is even larger. As both SVO and ORB-SLAM extract
FAST corners, we suspect the feature extraction and feature
matching of these methods are influenced by the photometric
calibration.

To better understand the results in Fig. 3, we further show
the performance of ORB-SLAM on each sequence in Fig. 2,
where the differences of the alignment errors with/without
photometric calibration ePC

align − enPC
align are shown in the left

and middle, alignment errors of all runs are shown in the
right. ORB-SLAM fails on 6 sequences and generally performs
worse on the other sequences. However, the performance
decline is not consistent over sequences. By rechecking the
inverse camera response function G−1 in Fig. 1a, we find
the nonlinear function can be roughly divided into three
linear parts with pixel values I belonging to [0, 90), [90, 190)
and [190, 255]. Due to the different slopes, applying G−1

compresses intensities in [0, 90) and stretches the ones in
[190, 255]. In other words, it reduces contrast of dark areas
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Fig. 4: Performance differences of ORB feature matching between consecutive frames before and after photometric calibration. Top: before
calibration. Down: after calibration. Histogram of the left image is shown under each image pair. As can be seen here, after photometric
calibration the numbers of matches decrease a lot on dark images, while increase significantly on bright images.
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Fig. 5: Failure cases of the 6 sequences mentioned in the left of Fig. 2 where ORB-SLAM lost its tracking. Top: before photometric
calibration. Down: after photometric calibration. Features shown in the images are the ones projected from the active local map to the
current frame and successfully matched there. After photometric calibration, dark images become even darker and not enough features can
be matched on them.

while increases it for bright areas. As features like FAST and
ORB generally work better on images with higher contrast
(more evenly distributed intensity histogram), we further sus-
pect that the performance declines of SVO and ORB-SLAM
are mainly caused by dark frames.

To verify this another experiment is carried out: we extract
ORB feature and match them on image pairs before and after
being photometrically calibrated. Example results are shown
in Fig. 4, where two of them are with dark images and the
other two with bright ones. The numbers of feature matches
and image histograms are shown under each image pair. As
can be seen there, after photometric calibration the numbers
of ORB feature matches decrease on the dark image pairs and
increase on the bright ones. Although sometimes the drop of
the numbers may not seem crucial (e.g, the second column of
Fig. 4), the effect can be accumulated over multiples frames.
In Fig. 5 we show how the number of matches can drastically
decrease when the system projects all features within the local
map to the newest frame to search for correspondences. As
a result, only few features from the newest frame will be
considered as inliers and added into the system, which is the
main reason for the tracking failures in Fig. 2.

We also try to loose the threshold for FAST extraction on
the calibrated images. As shown in Fig. 3, although it slightly

improves the performance, it is still not comparable to the
performance on the original images. The reason is that feature
extraction with lower threshold delivers more noisy and unsta-
ble features. Moreover, as the images are internally represented
by 8-bit unsigned integers, compressing the dynamic range
of dark areas aggravates the discretization effect. The feature
descriptors thus become less distinguishable, which corrupts
the feature matching.

Recall that SVO extracts FAST corners and edgelets, the
photometric calibration used in our experiments can reduce the
number of successful extractions on dark image areas. On the
other hand, instead of matching features, SVO matches image
patches around those corner or edgelets, which is similar
to direct image alignment and thus is less sensitive to the
reduced intensity contrast. Moreover, SVO performs direct im-
age alignment for initial pose estimation, to which photometric
calibration is supposed to be beneficial. We believe these are
the reasons for the reduced performance declines compared
ORB-SLAM.

B. Motion Bias

The term motion bias here refers to the difference of VO
performance caused by running the same sequence forward
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Fig. 6: Results on TUM Mono VO Dataset running forward and
backward. Each method runs 10 times forward and 10 times backward
on each sequence. The alignment errors ealign are color coded and
shown as small blocks. For the first two plots we use the results
obtained in [8]. Note that for the results of SVO we use a different
scale on the errors.

and backward. Note that this is different from those studied
in [20]–[22]. As shown in the top two plots in Fig. 6,
experiments in [8], [10] demonstrate that DSO does not suffer
from such bias, but ORB-SLAM performs better when running
backward. While this issue was raised there, no analysis,
conclusion or possible remedies were given. To get a more
thorough understanding of motion bias, we first perform the
same experiment for SVO and show the result in Fig. 6.
Surprisingly, SVO does not perform very well on this dataset
and it gets very large alignment errors for all backward runs
(note that we already use the settings recommended by one
author of SVO 2.0). Generally speaking, the TUM Mono VO
is a quite challenging dataset for monocular VO as it contains a
lot of poorly textured areas. We suspect this is the main reason
for the obtained results. However, as SVO 2.0 is not open-
sourced, we cannot analyze further. We exclude SVO from
the remaining experiments on the TUM Mono VO Dataset in
this section.

Both for direct and feature-based methods, triangulation is
a necessary step for estimating depths of newly observed 3D
points. Despite the cases with pure rotational camera motions,
better depth estimation usually can be achieved with larger
disparity between an image pair. When the camera is moving

forward in a relatively open area, new points will emerge from
the image center and have relatively small motions among
consecutive frames. This pattern of optical flow introduces
poorly initialized depths into the system. On the contrary,
when moving backward, points close to the camera come into
the field of view with large parallaxes, thus their depths are
better initialized. We claim this is the main reason for the im-
proved performance of ORB-SLAM when running backward.

To verify this, we check the sequences on which ORB-
SLAM performs significantly better running backward and
show them in the first 5 subfigures in Fig. 7. It can be seen that
all of them fulfill our description above. We also check the two
counter examples, sequence 31 and 44, on which ORB-SLAM
performs better running forward. At the end part of sequence
31 there is a large amount of high frequency textures (leaves)
as shown in the last image in Fig. 7, which makes ORB-SLAM
not able to initialize or fail directly after the initialization when
running backward. In sequence 44, interestingly, the camera
is moving most of the time backward, which in fact verifies
our conclusion.

We also run ORB-SLAM on the EuRoC MAV Dataset,
where the sequences are captured in relatively closed indoor
environment and the camera motion is rather diverse without
any clear pattern. We assume ORB-SLAM should deliver
similar results running forward and backward. The result is
shown in Fig. 8 and it verifies our assumption.

The analysis above does not explain why DSO performs
consistently running forward and backward. We claim the per-
formance gain of DSO mainly comes from its implementation
and feature-based or semi-direct methods can be improved
taking into consideration the following issues:

a) Depth representation. Instead of using depth directly
like ORB-SLAM, DSO uses an inverse depth parametrization
that affects the validity range of linearization and can better
cope with distant features [23]. We thus claim that the distant
points, which are poorly initialized from the image center, have
less impact on DSO.

b) Point sampling strategy. DSO samples points evenly
across the entire image, which can be beneficial to avoid
selecting many points from locations that only give poor
initializations (e.g, image center).

c) Point management. In ORB-SLAM, features extracted
from a new frame will be added into the system, if they can
match those features that are already in the window but haven’t
been matched before. If all these features gather together at
the image center, they will be added with inaccurate depth
estimations. In contrary, DSO only samples candidate points
from the new frame but does not add them to the system
immediately. The depth estimations of these points keep being
refined (outliers are removed) before they are activated and
added. Moreover, points are only selected to be activated if
they can keep the uniform spatial distribution of all activated
points. All these strategies prevent problematic points from
being added into the system.

d) Discretization artifacts. In direct methods, the depth
of a newly observed point is initialized by searching for its
correspondence in the reference frame along the epipolar line
using sub-pixel accuracy. In feature-based methods, however, a
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Fig. 7: Sample sequences from the TUM Mono VO Dataset, on which
ORB-SLAM has the largest motion bias [10]. The first 5 images show
scenarios where motion bias can happen. The end part of sequence
31 is shown in the last image. Such high frequency textures (leaves)
are challenging for initialization when running backward.
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Fig. 8: Performance of ORB-SLAM on EuRoC MAV Dataset running
forward and backward.

new feature is extracted and matched to a previously observed
feature with both of them at discretized image locations.
Thus feature-based methods suffer one time more from pixel
discretization artifact. The effect becomes more severe when
matching those distant features emerging from the image
center running forward. To verify our analysis, we first perform
the experiment in Fig. 9 where we run DSO and ORB-SLAM
forward and backward on sequences sampled to different
resolutions. The performance of DSO drops a little on low
resolution sequences, but overall it is robust to such artifact.
In contrast, the performance gaps of ORB-SLAM between
running forward and backward increase significantly with
reduced resolutions (thus severer discretization artifact).

In our second experiment, we adopt a sparse optical flow
algorithm to refine the feature matching step of ORB-SLAM
to achieve sub-pixel precision. We use the iterative Lucas-
Kanade method implemented in OpenCV and run the refined
ORB-SLAM on the first 5 sequences shown in Fig. 7. The
result is shown in Table I. ORB-SLAM performs similarly
running backward as before but much better (more than 50%
on average) running forward, which supports our analysis. For
reference we also show the results on all the sequences in
Fig 10.

C. Rolling Shutter Effect

In the first experiment of this section, we run DSO, ORB-
SLAM and SVO 10 times on each of the 4 Living Room
sequences of the ICL-NUIM Dataset, as well as on their
simulated rolling shutter correspondences. Although currently
this is the only dataset that provides global shutter and rolling

efwd
align ebwd

align

Seq. Original Refined Original Refined
17 12.29 3.05 1.50 1.33
23 10.33 5.52 3.18 1.94
29 21.84 10.52 2.24 2.58
46 27.18 14.89 5.10 5.27
47 20.57 10.85 4.58 5.80

mean 18.44 8.97 3.32 3.38

TABLE I: Results of original ORB-SLAM and our refined ORB-
SLAM. We run both methods 10 times on each of the selected
sequences from Fig. 7. The data of original ORB-SLAM is obtained
from [10]. Sub-pixel refinement significantly improved the perfor-
mance of forward run, while did not help so much with the backward
run, which verifies our conclusion.

shutter sequences at the same time, it is worth noting the
simulated rolling shutter effect is relatively strong. The results
are shown in Fig. 11a. All three methods are influenced
by rolling shutter effect, yet the performance declines of
DSO and SVO are apparently larger than ORB-SLAM. This
result verifies that feature-based methods are more robust to
the rolling shutter effect than direct methods. To show the
influence of the rolling shutter effect on direct methods, we
show examples of the reconstructed scene by DSO in Fig. 11b
and Fig. 11c. It can be seen that the delivered reconstruction
has very large scale drift on the rolling shutter sequence (the
big structure in the background of Fig. 11c is the drifted
reconstruction of the painting in the foreground).

Although SVO performs feature matching followed by BA
for refining structures and poses, in the initial pose estimation
for each frame it uses direct image alignment, thus does not
use the correspondences estimated by feature matching. This
explains its performance decline is larger than that of ORB-
SLAM. It is also worth mentioning, as can be seen in Fig. 11a,
that the overall performances of DSO and SVO on this dataset
significantly transcend the one of ORB-SLAM under both
global and rolling shutter settings. The main reason is that
the scenes in this dataset are indoor environments with low
textured structures such as walls, floors and doors and thus
are very challenging for corner-based feature extraction. Due
to the fact the SVO is able to use image information on
edges, it gains certain robustness on this dataset. As a result,
the selected direct and semi-direct methods outperform the
feature-based method even on rolling shutter images.

While the results above coincide with our intuition, it
sometimes can be misleading. One may easily draw the
conclusion that on sequences with enough texture and captured
using rolling shutter cameras, feature-based methods should
be preferable than direct or semi-direct methods. This is
not always the case. Recall that the rolling shutter effect in
the extended ICL-NUIM Dataset is artificially simulated. On
modern industrial level cameras, pixel read-out speeds are
usually extremely fast such that the rolling shutter effect is to
some extent neglectable for many applications. In the second
experiment, we aim at comparisons on images with such
realistic rolling shutter effect. As there is no such dataset that
provides both real global shutter and rolling shutter sequences,
we only compare the VO accuracies on realistic rolling shutter
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Fig. 9: Performance differences of ORB-SLAM (top) and DSO (down) on the TUM Mono VO Dataset due to motion bias at different image
resolutions. While DSO delivers similar results under different settings, ORB-SLAM performs consistently better when running backward
and the performance gaps increase with reduced image resolutions.
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Fig. 10: Performance comparison between the original ORB-SLAM
and our refined version on the full TUM Mono VO Dataset. With sub-
pixel accuracy refinement of feature matching, ORB-SLAM performs
better running forward and similarly running backward.

sequences. For this purpose, we use the Frankfurt sequence
of the Cityscapes Dataset and split it into smaller segments
(each with around 6000 frames). To our surprise, ORB-SLAM
always fails on the selected segments: whenever the camera
rotates strongly at street corners or large occlusion occurs
due to moving vehicles, which has also been reported by
other users of ORB-SLAM. We thus suspect the failures
are not related to the rolling shutter effect. In Fig. 12 we
show the estimated camera trajectories of DSO and SVO.
Although SVO suffers more from scale drift, both the direct
and semi-direct methods are able to track on the entire selected
segments. The last thing to point out is, without a proper
dataset, it is still difficult to analyze the exact influence of
the rolling shutter effect on existing VO methods.

IV. CONCLUSIONS

We present a thorough evaluation for state-of-the-art direct,
semi-direct and feature-based methods on photometric cali-
bration, motion bias and the rolling shutter effect, with the
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Fig. 11: Results on the extended ICL-NUIM Dataset with original
global shutter setting and the simulated rolling shutter setting.

aim of providing practical inputs to the community for better
applying existing methods and developing new VO and SLAM
algorithms. Our main conclusions are:

(1) With photometric calibration, the performance of direct
methods gets improved significantly, while for semi-direct and
feature-based methods, it depends on the used feature, the
camera response function and the overall brightness of the
scene. Ideally active camera control [24] should be applied
to deliver the feature extractor and matcher with images of
good quality. For direct methods, when photometric calibration
information is not available, online calibration methods [25]
should be used.
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Fig. 12: Estimated trajectories of the segments of the Frankfurt
sequence from the Cityscapes Dataset. The used frames are shown
below each plot. Estimated poses are aligned to GPS coordinates with
7D similarity transformation. Note that the provided GPS coordinates
are not accurate.

(2) Compared to direct methods, feature-based methods
have a relatively large performance bias when running for-
ward and backward. Possible reasons are discussed: depth
representation, point selection and management, discretization
artifact. When adopting existing feature-based methods for
applications like autonomous driving, more effort should be
taken to address the motion bias.

(3) Direct and semi-direct methods are more sensitive to
the rolling shutter effect. But when the rolling shutter effect
is not strong, or the environment is low textured, the rolling
shutter effect might not be the deciding factor on performance
anymore. When the pixel readout speed is fast enough, even
direct methods can deliver satisfying results. Besides, a spe-
cific dataset is needed for getting a better understanding on
the rolling shutter effect.

(4) The used feature-based methods are more sensitive
to pixel discretization artifact. When possible, images
with higher resolutions are preferable. Moreover, sub-pixel
accuracy refinement on feature extraction and matching can
boost their performance, which is verified by our sub-pixel
refined version of ORB-SLAM.
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