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Communication Model-Task Pairing in Artificial Swarm Design
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Abstract—Unraveling the nature of the communication model
that governs which two individuals in a swarm interact with
each other is an important line of inquiry in the collective
behavior sciences. A number of models have been proposed in
the biological swarm literature, with the leading models being the
metric, topological, and visual models. The hypothesis evaluated

in this manuscript is whether the choice of a communication
model impacts the performance of a tasked artificial swarm. The
biological models are used to design coordination algorithms for
a simulated swarm, which are evaluated over a range of six
swarm robotics tasks. Each task has an associated set of perfor-
mance metrics that are used to evaluate how the communication
models fare against each other. The general findings demonstrate
that the communication model significantly affects the swarm’s
performance for individual tasks, and this result implies that the
communication model-task pairing is an important consideration
when designing artificial swarms. Further analysis of each
tasks’ performance metrics reveal instances in which pairwise
considerations of model and one of the various experimental
factors becomes relevant. The reported research demonstrates
that the artificial swarm’s task performance can be increased
through the careful selection of a communications model.

Index Terms—Artificial swarms, biologically inspired commu-
nication models, robotics tasks, swarm design consideration

I. INTRODUCTION

Numerous advantages are shared by animals that live in

groups [1], which includes the “many-eyes effect” against

predators and utilizing group hunting techniques during forag-

ing. These benefits are attributed to the coordination amongst

group members. A high degree of coordination is displayed

by some social animals during cooperative food retrieval [2],

construction of living bridges [3], schooling [4], and flocking

[5]. There is no central planner in these biological systems;

instead, interactions based on locally-available information

leads to such coordination [6].

Efforts to describe the rules that determine whether two

individuals in a group are permitted to interact (i.e., the

network topology that underpins communications) has resulted

in numerous models being proposed in the biological swarm

literature. Three predominant models have been developed to

describe the communication: the metric [7], the topological

[5], and the visual models [4]. The swarm’s agents interact

if they are within a critical distance of one another in the

metric model; hence, this model is directly based on spatial

proximity [7]. Ballerini et al.’s topological model [5] is similar

in concept to the nearest neighbor rule (k−NN) [8], in that, it

requires individuals to interact with a fixed number of nearest
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individuals. The visual model is based on sensory capabilities,

where an individual only interacts with those within its field

of view [4]. Other proposed communication models include

those based on Delaunay triangulations [9], [10], cognitive

heuristics [11], and selective attention [12].

Identifying the communication model that best describes

a biological swarm is important to the science of collective

behavior, as it provides insight into how information diffuses

in a swarm [4]. The development of communication models

is also important from a robotics perspective, and is described

as “one of the main challenges” in swarm robotics [13].

Biologically inspired artificial swarms derive characteristics

from their biological counterparts, and in addition to bypassing

centralized control laws, there are other benefits to designing

engineered systems inspired by social animals, such as scala-

bility and robustness to individual agent failures [14]. A survey

[13] of human-swarm interaction notes that despite inheriting

beneficial characteristics from their counterparts in nature, an

ill-conceived communication model can lead to undesirable

consequences. The authors posit that erratic behavior resulting

from a poorly designed communication model increases the

workload of a human operator interacting with the swarm.

This manuscript’s findings demonstrate that the choice of

a communication model – metric, topological, or visual –

is an important swarm design consideration, since the com-

munication model has a significant impact on an artificial

swarm’s task performance. Six tasks were analyzed: Search

for Multiple Targets, Search for a Goal, Rally, Disperse,

Avoid an Adversary, and Follow, and a breadth of performance

metrics were recorded to judge the artificial swarm’s ability

to conduct a task. No single communication model delivered

the best performance across all the tasks. Further, agent and

environmental parameters had meaningful interactions with the

communication models in terms of task performance. The re-

sults imply that the performance of a deployed artificial swarm

is amplified through a task-based selection of a communication

model. In addition, the choice of a communication model can

be fine-tuned, given environmental and agent parameters, such

as the swarm’s size. No prior research has conducted such an

extensive analysis of the biologically inspired communication

models within the context of artificial robotic swarm tasks.

An understanding of the appropriate communication model

to task specification has the potential to make it easier for a

human operator to monitor and supervise an artificial swarm. A

communication model that improves the swarms’ likelihood to

complete a task will reduce the human’s workload associated

with monitoring the task. Understanding the exact implications

on human interaction is beyond the scope of this manuscript.

Rather, the manuscript’s contribution focuses on factors re-

lated to the model-task pairings and the importance in their

consideration for artificial swarm design.

http://arxiv.org/abs/1801.07327v1
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II. RELATED WORK

The prior research comparing communication models can be

classified based on research motivations: 1) Identify the model

that accurately describes the network topology of a biological

swarm (biology), 2) Understand the differences between the

models from their system-theoretic properties (physics), and 3)

Determine the manipulability of models in terms of human-

swarm interaction (computer science).

The metric model is one of the earliest models developed

to represent range-limited communication between biological

swarm agents [15], [16], [17]. This model is used as a bench-

mark for comparison testing relatively newer communication

models [4], [5], [10]. The model is widely-used in the field

of multi-robot systems, as well, due to its ability to capture

sensor range constraints [18], [19], [20]. However, a field

study of European starlings, Sturnus vulgaris, indicates that

the swarm uses a topological, rather than a range limited

model [5]. Specifically, starlings coordinate with their nearest

six to seven neighbors (topological distance). An artificial

swarm, in response to a simulated predator, decomposes into

fewer groups, and produces more cohesive swarms, when

using the topological model compared to the metric model [5].

Strandburg-Peshkin et al. [4] introduced the visual model, and

show that it best predicts how golden shiners, Notemigonus

crysoleucas, behave in response to stimuli. The model’s low

clustering makes it fundamentally different from the metric

and topological models, from a network-theoretic perspective.

Physics-based investigations of system-level properties of

the topological and metric models found group orders [21],

[22], the probability of reaching a consensus [23], rate of

convergence of the consensus on agents’ headings [24], and the

influence of the topological distance on a simulated swarm’s

ability to reach a consensus in the presence of uncertainty

[25]. Spears et al. [26] did not explicitly compare the three

leading models in their “physicomimetic” simulated swarms,

but compared swarm behaviors designed to be analogous to

molecules in solid, liquid, and gas formations. This work was

motivated by an unevaluated hypothesis that each swarm type

(solid, liquid or gas) is particularly better suited than the other

two in performing certain tasks: a solid swarm is better at

distributed sensing; liquid at obstacle avoidance; and gas at

surveillance-like coverage.

Goodrich et al. [27] compare the topological and metric

models in order to evaluate a human’s ability to control an

artificial swarm by manipulating a leader agent that influences

other swarm agents. Reportedly, a human operator can more

easily manipulate a swarm using the topological model, and

in general, swarms that have low inter-agent influences [28].

Other studies compare network topologies: De la Croix and

Egerstedt [29], for instance, report on the ease with which a

human operator can control a swarm whose communication

network can either be a line, cycle, acyclic, or a complete

graph. A single leader was controlled using a joystick. Multi-

ple, dynamically assigned leaders were analyzed in networks,

where agents were guaranteed to be 1-, 2-, or 3-hops from a

leader [30]. The work can be interpreted as comparing select

topological distances to a swarm leader.

This manuscript’s evaluation is seemingly the first to com-

pare biologically inspired communication models with respect

to their performances over artificial swarm robotics tasks.

III. COORDINATION ALGORITHMS

One of the major aspects in which artificial swarms differ

from typical multi-robot systems is in their coordination

design [13], [31]. The individual agents in multi-robot systems

are generally capable of performing tasks on their own; for

instance, consider the system of robots described by Matarić

[32] and Burgard et al. [33]. Such systems benefit from the

coordination amongst members, but such a characteristic is

not a system-level requirement when agents are planning their

own actions. However, a swarm, by definition, consists of

“relatively incapable” units, and through simple interaction

rules, a global system behavior emerges [34] [35].

Incapable swarm units are conceivably limited in their

ability to execute intricate interaction rules. Therefore, the

designed coordination algorithm defining the movement laws

aims to remain simple. The agents, modeled as 2D self-

propelled particles, are controlled through updates to the veloc-

ity heading [36], [37], [38]. The agents are indexed 1 through

N , where N is the swarm’s size. Each agent i ∈ {1, . . . , N}
experiences a force at each time iteration, t:

Fi(t) = Fenv,i(t) + Fswarm,i(t) + Ftask,i(t), (1)

where, Fenv,i(t), Fswarm,i(t), and Ftask,i(t) are the forces

due to the environmental factors, swarming, and the task at

hand, respectively. Such a framework of accumulating forces

to control a swarm (Equation (1)) is utilized to analyze

the effectiveness of providing haptic feedback to a human

operator [39], [40], [41]. Fenv,i(t) incorporates reactions to

the environment, such as remaining within the bounds of

the simulated world by “bouncing off” walls and avoiding

obstacles. Ftask,i(t) depends on the task (Section IV-B). This

force is not designed to optimally solve the associated robotics

task; rather, it is a simple task-related objective that contributes

to the overall force acting on an agent. The reason for this

design choice is to gain insight into what the overall swarm

can achieve with little intelligence guiding the individual units.

The choice of a communication model prescribes an agent’s

neighbor set. A communication link from i to agent j ∈
{1, . . . , N}, where i 6= j, classifies agent j as agent i’s
neighbor. Ni(t) denotes the neighbor set of agent i, and it

represents the collection of agent i’s neighbors at time t.
The metric model is parameterized by a single measure on

distance, dmet (i.e., the metric range). All agents within a

distance dmet from agent i are its neighbors, as shown in

Figure 1(a). Due to the symmetric nature of the model, j ∈
Ni(t) implies that i ∈ Nj(t).
Ni(t), as assigned by the topological model, is the set

containing the ntop nearest agents from agent i, where ntop is

referred to as the topological distance. The topological distance

of Zebrafish, Danio rerio, is between three and five [42],

whereas the distance for starlings is approximately six to seven

[5]. Figure 1(a) depicts a network with ntop set to four.

An agent’s visual sensing is defined by a range dvis and an

angle ±φ from its heading [37], [38], which is a geometric
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construction that can produce a blindspot (Figure 1(a)). The

visual model prescribes neighbors based on three factors.

Agent j is agent i’s neighbor, if the following conditions hold:

1) Agent j is not in agent i’s blindspot, 2) The two agents are

less than dvis apart (the visual range), and 3) There is a clear

line-of-sight between the agents (which can be occluded by

another agent or object in the environment) [4].

Fswarm,i(t), is thus developed using a two-step pro-

cess. The first step assigns “neighbors” to an agent. Then,

agents swarm with their neighbors based on the widely-used

repulsion–orientation–attraction scheme [10], [16], [17], [36],

[37], [43], [44], [45]. At each time t, agent i experiences:

Fswarm,i(t) = Fr,i(t) + Fo,i(t) + Fa,i(t), (2)

where, Fr,i(t) pushes agent i away from neighbors within a

distance rr, Fo,i(t) aligns it with neighbors that are between

a distance of rr and ro, and Fa,i(t) pulls it toward neighbors

that are between a distance of ro and ra.

IV. EXPERIMENTAL DESIGN

A. Setup

The Processing development environment1 was used to

conduct the experiments. Across all tasks, the communication

model was the experiment’s primary factor with additional fac-

tors being the number of agents (N ), and the radii of repulsion

(rr), orientation (ro), and attraction (ra). The communication

model was set to either metric, topological, or visual. N had

three levels: 50, 100, and 200 agents. rr was set to either 10 or

20 pixels. ro was either 1.5×rr or 2.0×rr. Similarly, ra was

either 1.5×ro or 2.0×ro. The resulting radii configurations are

shown in Figure 1(b). Some tasks utilized additional factors,

which are specified, along with their explored levels, in Section

(IV-B). The experiment combined the primary factor with each

of the additional factors, producing pairwise combinations that

offered a more comprehensive analysis of the effect of the

communication models.

The biological swarm literature guides the parameter value

selection of dmet, ntop, dvis, and φ. The metric range, dmet,

was set to ra, following Couzin et al. [7]. The topological

distance, ntop ∈ {5, 6, 7, 8}, permitted variability, while re-

maining close to what was observed in nature [5]. However,

only ntop = 7 is reported for the topological model, without

loss of generality. No difference in performance was found

between the different levels of ntop across all the tasks, and

this characteristic of the topological model can be attributed

to the existence of a critical topological distance n⋆
top, beyond

which the swarm’s performance does not vary [46]. The visual

range, dvis, was assigned to half the size of the diagonal of

the world, with φ = 2π/3 radians [4], [37]. This attempt to

derive values from what is reported in the biological swarm

literature, adheres to the “descriptive agenda” of multi-agent

learning [47], [48], where the goal is to model an underlying

phenomenon from the social sciences.

Fenv,i(t) is responsible for reflecting agent i off walls [49]

by adding an offset to the current heading near obstacles.

1https://processing.org/

2
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(a) The focus agent (fill) is neighbors with agents 3, 5, and 6 when using the
metric model. The agent’s neighbors using the topological model with ntop

= 4 are agents 3, 4, 5, and 6. The neighbors using the visual model are agents
3, 4, and 6 (agent 2 is occluded by 3, and agent 5 is in the blindspot).

(b) The experiment’s eight possible types of repulsion-orientation-attraction config-
urations [52]. The inner-, middle, and outer-most zones represent the repulsion,
orientation, and attraction zones, respectively, centered at the agent’s position.

Fig. 1. The choice of a communication model – metric (green, dashed circle
with radius dmet), topological (ntop magenta lines), or visual (blue sector
with radius dvis and ±φ from heading) – prescribes neighbors to the agents.
Subsequently, agents interact with their neighbors by following a repulsion-
orientation-attraction scheme.

Certainly, obstacles can be avoided more intelligently (using

collision cones [50] or barrier certificates [51], for instance),

but the reason to not employ such techniques is to allow

the models to drive the coordination without the help of

sophisticated maneuvers.

B. Tasks

1) Search for Multiple Targets: The artificial swarm’s ob-

jective was to discover targets (stars in Figures 2(a)-(c)).

Ftask,i(t) was set to ∅; hence, there was no force requiring

agents to search, let alone do so intelligently. This formulation

investigated achievement through swarming alone, contained

in an area, and while avoiding obstacles.
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(a) Visual, t = 170 (b) Visual, t = 585 (c) Visual, t = 990

(d) Topological, t = 35 (e) Topological, t = 130 (f) Topological, t = 669

(g) Metric, t = 199 (h) Topological, t = 199 (i) Visual, t = 199

(j) Metric, t = 181 (k) Topological, t = 187 (l) Visual, t = 183

(m) Visual, t = 1212 (n) Visual, t = 1393 (o) Visual, t = 1830

Fig. 2. The predator/leader and obstacles are represented by enlarged triangles and circles, respectively. (a)-(c) Search: stars denote targets (fill indicates
discovered). (d)-(f) Rally: links between informed (no fill) and uninformed (fill) agents are shown. (g)-(i) Disperse: links are contained within the donut shapes
of the topological and visual trials. (j)-(l) Avoid: links between swarm agents are shown [52]. (m)-(o) Follow: links are shown between agents and the leader.
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2) Search for a Goal: This task included a single goal (star

in Figures 2(d)-(f)) that the swarm was required to locate. Once

an agent located the goal, it communicated the location to its

neighbors. Ftask,i(t) was enabled when an agent located the

goal area, which acted as an attractor. Within the framework

of Equation (1), agents aware of the goal’s location updated

their headings by weighing the desire to travel to the goal and

the desire to follow the interaction rules [7], [27], [53].

3) Rally: The objective was similar to the Search for a

Goal task’s objective, except informed agents were included

that were aware of the goal location (i.e., the rally point).

Moreover, informed agents did not communicate this location

to their neighbors. Each informed agent balanced its desire to

abide by the swarming forces with a desire to move towards

the rally point, similar to Ftask,i(t) described in the prior task.

The percentage of informed agents (pi) was 8%, 16%, or 24%
of N . (A small fraction of the swarm acting as anonymous

leaders has been shown to alter the group’s direction [7].)

Agents were initialized into starting groups (g) of 1, 2, or 4.

4) Disperse: This task required agents to distribute them-

selves in the environment. Agents began the task placed around

the center of the simulation environment (star in Figures 2(g)-

(i)). Each agent experienced a dispersing force, Ftask,i(t),
modeled by exerting a constant radial force away from the

center of the environment. The strength of the dispersal force

(s), was set to 45%, 90%, and 135% of the swarming force.

5) Avoid an Adversary: The swarm avoided a predator-like

agent, which was modeled with Ftask,i(t) being a repulsive

force exerted by the adversary [5] on the swarm agents ra
away. The swarm was initially aligned facing the predator.

The predator (moving in a predefined path) was the same size

as the agents (enlarged in Figures 2(j)-(l)) and occluded the

visual communication between agents.

6) Follow: The swarm followed a single, leader-like agent.

Ftask,i was modeled as an attractive force to the leader when

the leader was an agent’s neighbor. The leader was the same

size as the swarm agents (enlarged in Figures 2(m)-(o)), moved

at the same speed, and randomly navigated the world.

C. Trials

A trial was defined as a single simulation run for a given

selection of factors. Twenty-five trials for each parameter

selection were completed. The total number of trials per task

is summarized in Table I. The Search for Multiple Targets

task, for instance, had 5,400 metric, 5,400 visual, and 21,600

topological trials (due to the four levels of ntop).

TABLE I
TRIALS AND ITERATIONS BY TASK.

Task Factors per model Trials Iterations per run

Targets (N , No, Nt, rr , ro, ra) 32400 1000

Goal (N , No, rr , ro, ra) 10800 1000
Rally (N , pi, g, rr , ro, ra) 32400 750
Disperse (N , No, s, rr , ro, ra) 32400 200
Avoid (N , rr , ro, ra) 3600 200
Follow (N , rr , ro, ra) 3600 2000

D. Metrics

The swarm’s performance was measured through the con-

sideration of an array of metrics, not all of which are reported.

This manuscript focuses specifically on the metrics intended to

provide evidence that artificial swarm design needs to consider

the communication model and task pairing in order to optimize

the overall swarm performance. Still, a set of metrics emerged

that remained relevant across the different tasks (see Table

II). The analysis was constrained to the main effects of the

communication model and the simple interactions between

model and the additional factors.

TABLE II
UNRECORDED (×), RECORDED (◦), AND REPORTED (•) METRICS.

Metric Target Goal Rally Disperse Avoid Follow

NCC • × ◦ • • ◦

PF • × × × × ×

L × • × × × ×

SCC ◦ • ◦ ◦ ◦ ◦

PR × • • × × ×

DINF × × • × × ×

D ◦ ◦ ◦ • • ◦

PIC ◦ ◦ ◦ • • ◦

ASTK × × × × × •

SSTK × × × × × •

INF × × × × × •

The percent found (PF ) measured the number of targets

that have been discovered in the area. A target’s classification

was irreversibly changed from “undiscovered” to “discovered”

once an agent was within 10 pixels from the target’s location.

The number of connected components (NCC) was reported

as an average over a trial’s duration. A connected component

is defined as the largest collection of agents in which any two

agents are either connected directly by a communication link

or indirectly via neighbors [54].

The percent reached (PR) determined the fraction of the

swarm that reached the goal (50 pixels around goal’s center).

The latency (L) represented the total iterations required for

the swarm to transition from a state where at least one agent

knew the goal’s location to all agents being aware. Degenerate

cases set the latency to the trial’s duration.

The swarm clustering coefficient (SCC) was the average

clustering coefficient over the swarm. The clustering coef-

ficient in networks is the fraction of pairs of an agent’s

neighbors that are neighbors with each other [54]. The asym-

metric nature of links that resulted from the topological and

visual models were ignored, following Strandburg-Peshkin et

al.’s [4] treatment of directed links, when comparing different

communication models for fish data.

Dispersion (D) measured the percentage increase of the

average agent–agent distance from the start to the end of a

trial. This distance was one of the factors identified by Parrish

et al. [55] to characterize the emergent properties of fish.

The percent isolated components (I) represented the fraction

of the swarm that had no neighbors.

Direct influence (DINF ) was the fraction of the swarm

directly connected to an informed agent.
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Influence (INF ) was the fraction of the swarm that directly

or indirectly followed the leader, at least once.

Agent stickiness (ASTK) represented the number of itera-

tions an agent followed the leader, averaged over the swarm.

The Swarm stickiness (SSTK) was the number of iterations

during which at least one agent was following the leader.

V. RESULTS

A. Search for Multiple Targets

The topological model had the highest mean percent found

(M = 72.03, SD = 19.61). An analysis of variance (ANOVA)

showed that the effect of communication model on PF was

significant (F8,5392 = 12,493.10, p < 0.001). Fisher’s LSD

post-hoc test revealed that the three models had significantly

different performances compared to each other. The commu-

nication model had significant interactions with rr (F2,5398 =

631.23, p < 0.001), ro (F2,5398 = 160.75, p < 0.001), and No

(F2,5398 = 228.48, p < 0.001). The model by Nt interaction

was not found to be significant (Figure 3(a)). The visual model

had a higher PF (M = 38.35, SD = 17.98) than the metric

model (M = 31.66, SD = 18.60) for most cases, except at the

lowest values of the radii.

The visual model produced the lowest number of con-

nected components (M = 1.25, SD = 0.22), whereas the

topological model had the highest (M = 2.97, SD = 1.01). The

metric model’s mean NCC was 1.85 (SD = 1.45). ANOVA

found that the effect of model type was significant (F8,5392 =

7383.19, p < 0.001), and the post-hoc analysis of the pairwise

differences showed that the models were significantly different

from each other. The metric model at rr = 20 yielded the

lowest NCC (Figure 3(b)); otherwise, the visual model had

the lowest NCC across all N , ro, and ra levels.

B. Search for a Goal

The overall mean percent reached for this task was 35.95

(SD = 39.38). The topological and visual models produced

PR means that were virtually identical (topological: M =

39.08, SD = 31.75; visual: M = 41.10, SD = 42.56). The

metric model’s mean PR was 27.68 (SD = 41.60). ANOVA

found that the model type had a significant impact on PR
(F6,1794 = 76.66, p < 0.001). There was no significant

difference between the visual and topological models, but the

metric model had a significantly lower PR compared to the

other models. There was no significant difference between the

visual and topological models for N = 50. The mean PR was

the highest at N = 100 using the topological model; however,

the visual model had the highest mean PR at N = 200 (Figure

3(c)). No significant effect on PR was identified due to the

interactions between model and either rr or ro.

A significant difference in latency was found by an ANOVA

between the models (F6,1794 = 440.77, p < 0.001). L for all

three models were significantly different from each other in

the post-hoc analysis (metric: M = 637.79, SD = 471.73;

topological: M = 864.99, SD = 290.20; visual: M = 438.73,

SD = 487.99). The metric and topological models typically

had a median of 1000 for most cases; visual median was 31.00.

The mean swarm clustering coefficient was lowest in the

visual model (M = 0.31, SD = 0.07) and highest in the

metric model (M = 0.95, SD = 0.03). The topological model’s

mean was 0.62 (SD = 0.06). The effect of model type on

SCC was significant (F6,1794 = 1810, p < 0.001). Post-

hoc analysis revealed significant pairwise differences between

the models. The median SCC for all communication models

were generally close to the means across all parameters and

associated values. The interquartile ranges were typically tight

(Figure 3(d)), with only a few cases where the maximum value

of one model overlapped with the minimum value of another.

C. Rally

The overall mean percent reached (M = 81.40, SD =

23.08) was higher compared to the prior task. ANOVA showed

that the model type had a significant effect on PR (F8,5392

= 1175.31, p < 0.001). Post-hoc analysis revealed that all

three models’ performance was significantly different from one

another. The mean PR was highest for the visual model (M =

90.55, SD = 21.17), and the metric model (M = 81.17, SD =

25.06) outperformed the topological model (M = 72.48, SD
= 18.92). Model type significantly interacted with pi (F4,5396

= 90.93, p < 0.001); however, the interaction with g was not

found to be significant (Figures 3(e)-(f)).

ANOVA showed that there were significant differences

across the models in the mean direct influence exhibited by

informed agents on the remainder of the swarm (F8,5392 =

14997.31, p < 0.001). The metric model produced the highest

DINF (M = 0.90, SD = 0.12), whereas, the topological

model had the lowest (topological: M = 0.70, SD = 0.17;

visual: M = 0.81, SD = 0.13). A post-hoc test using the

Fisher’s LSD test revealed significant pairwise differences

between the models.

D. Disperse and Avoid an Adversary

The effect of the communication model on the dispersion

was significant during the Disperse (F8,5392 = 9232.53, p <
0.001) and Avoid an Adversary tasks (F4,596 = 492.82, p <
0.001). The topological model had the highest D for both tasks

(see Table III). ANOVA found the model by s interaction to be

significant for the Disperse task (F8,5392 = 996.64, p < 0.001).

The topological model at the lowest s value and the visual

model at the highest s value had comparable performances

(Figures 3(i)). There were significant interactions between

model and N for the Disperse (F8,5392 = 1112.47, p < 0.001)

and Avoid (F4,596 = 118.32, p < 0.001) tasks. Generally during

the Disperse task, D increased in N , but for all models, the

opposite occurred in the Avoid task (Figures 3(i)). Comparing

the visual and metric models for the Avoid task revealed that

at N = 50, the visual model was significantly lower; at N =

100, no significant difference was found; and at N = 200, the

visual model was significantly higher.

The metric model produced the greatest number of con-

nected components, followed by the topological model, and

then the visual model. The communication model’s effect

on NCC was significant for both the Disperse (F8,5392 =

4224.10, p < 0.001) and Avoid (F4,596 = 1638.76, p < 0.001)
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Fig. 3. The performances of the three communication models further visualized by the experiment’s additional factors.
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TABLE III
THE DISPERSE AND AVOID AN ADVERSARY TASKS’ DESCRIPTIVE

STATISTICS (MEAN (SD)).

Task Model D NCC I

Metric 364.52 (160.87) 2.14 (1.51) 0.66 (1.08)

Disperse Topological 548.01 (75.15) 1.39 (0.45) 0.00 (0.00)

Visual 452.81 (121.02) 1.12 (0.23) 0.16 (0.39)

Metric 275.61 (334.85) 4.46 (2.78) 1.19 (1.38)

Avoid Topological 493.92 (356.32) 1.75 (0.79) 0.00 (0.00)

Visual 232.03 (196.64) 1.35 (0.58) 0.33 (0.54)

tasks. The metric and visual models deliver comparable NCC
at rr = 20 for both tasks (Figures 3(h) and 3(j)).

E. Follow

The effect of model type on swarm stickiness was sig-

nificant (F4,596 = 26.89, p < 0.001), and the visual model’s

SSTK was the highest compared to the other models (metric:

M = 528.75, SD = 497.85; topological: M = 671.92, SD =

476.27; visual: M = 746.34, SD = 604.77). The metric model

produced the lowest SSTK for all N (Figure 3(k)), yet at N
= 200, it had a comparable performance to the visual model.

The metric model had the highest agent stickiness (metric:

M = 154.23, SD = 93.57; topological: M = 106.48, SD
= 91.92; visual: M = 6.45, SD = 1.01). ANOVA revealed

that model type had a significant impact on ASTK (F4,596

= 925.26, p < 0.001), and a post-hoc analysis revealed

significant pairwise differences between the models. ASTK
decreased in N for all models (Figure 3(l)).

ANOVA revealed the main effect of model type on the

leader’s influence on the swarm to be significant (F4,596 =

6068.82, p < 0.001). INF was highest for swarms using

the visual model (M = 0.94, SD = 0.06). The metric and

topological swarms yielded much lower INF compared to

the visual model (metric: M = 0.26, SD = 0.23; topological:

M = 0.39, SD = 0.21). The pairwise differences between

the three models was significant, according to the post-hoc

analysis. The visual model’s high INF was further observed

across all values of the additional factors.

VI. DISCUSSION AND CONCLUSIONS

The presented research focuses on a general hypothesis that

the selection of a communication model impacts a swarm’s

task performance. Six swarm robotics tasks were investigated

for the three most predominant communication models found

in the biological swarm literature. The primary finding is that

different tasks benefit from different models, and as such,

the task by communication model pairing is an important

dimension in the effective design of artificial swarms.

No single model outperformed the others across all the

tasks; however, some general trends emerged within the lim-

ited task design considerations. The visual model was more

TABLE IV
THE RECOMMENDED COMMUNICATION MODELS BY TASK.

Task Recommended Model

Search for Multiple Targets Topological
Search for a Goal Visual
Rally Visual
Disperse Topological
Avoid an Adversary Topological
Follow Visual

beneficial in tasks that required the swarm to move to a

particular area (see Table IV). The two tasks that had this

transport-like flavor were the Search for a Goal and Rally

tasks. The topological model was better at enduring a force

directed toward the swarm, as is the case with the Disperse

and Avoid an Adversary tasks.

The visual model, with its potentially long communication

links was better able to keep the swarm together, which

resulted in the lowest number of connected components. This

tendency also led to the model fairing poorly when exploring

the environment during the Search for Multiple Targets task.

Agents favorably oriented and not occluded had a higher

chance of establishing long-range links using the visual model.

Thus, agents were more likely to receive the goal’s location

(Search for a Goal) or be influenced (Rally) by an informed

agent. Any occurrence of a long-range link in the network,

regardless of how infrequent, acted as a “short-cut” [59] for

transferring information. Despite this advantage, at the lowest

and highest attraction values, the metric model had comparable

and lower latency, respectively, compared to the visual model.

Communication links in the metric and topological models

were unaffected by occlusions, a factor that yielded sparser

networks for the visual model [4]. A low clustering can be

disadvantageous in noisy environments without the benefit

of redundant links. Given a noisy environment with a low

requirement on the percentage of agents reaching goal, the

metric model is recommended.

A high dispersion in some species may serve to confuse a

predator from singling out a particular swarm agent [5]. Thus,

if a higher dispersion is preferred, the topological model was

the best model for the Avoid an Adversary task. The model

produced the highest dispersion, low connected components,

and no isolated components. A limitation of the Avoid task’s

design was the use of a singe adversary approaching in a

pre-defined motion, rather than a (coordinated) attack from

multiple adversaries.

Swarm agents in frontal positions influenced agents behind

them to follow the Follow task’s leader, in a cascading effect,

when using the visual model. The leader was lost multiple

times during a trial, a drawback of the model. The metric

model is a better choice for persistent tracking (and if tracking

by a small fraction of the swarm is tolerable). The metric

model tended to break the swarm into numerous, stable

clusters, one of which typically contained the leader.

The implemented model parameter values agreed with re-

ported behavior, and provides connections to the biological

swarm literature. Couzin et al. [37] showed that rr does not
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have an effect on the transitions between different swarm

movement patterns. Rather, the relative sizes of ro to rr, and ra
to ro produce the transitions. Simulated swarms, for instance,

rotate in a torus when the ro/rr ratio is relatively low and the

ra/ro ratio is relatively high. Presented results for the Search

for a Goal task conform to the rr finding. The duration of

this task resulted in trials that demonstrated swarm movement

patterns described by Couzin et al. [37], and the performance

was not impacted by the choice in rr. A mapping of movement

types to performance was beyond the scope of this work.

The scope of the reported research does not follow the

so-called prescriptive agenda [47], [48], where the values

of the model parameters are free design choices; thus, dvis
and φ are not varied, for instance. This line of inquiry will

become necessary when specific platforms attempt to adopt

the models (e.g., s-bots [56] are equipped with vision sensors).

The metric model, for instance, can be realized with omni-

directional antennas, as well as infrared LED sensors; however,

the LED range in Kilobots is only 10cm [57]. Similarly,

for the topological model, which can be implemented using

band-limited communication channels [27], the infrared-based,

band-limited platforms such as the r-one [58], achievable ntop

will be constrained by the maximum communication range.

Aside from task specific limitations, one of the general

limitations of the overall evaluation is the focus on individ-

ual tasks. For instance, each experiment is associated with

performing a unique task. Additional analysis over task com-

binations is required to fully support the general hypothesis.

However, the presented results provide preliminary evidence

that support the general hypothesis.
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