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Fast Autonomous Flight in Warehouses for
Inventory Applications

Marius Beul, David Droeschel, Matthias Nieuwenhuisen, Jan Quenzel, Sebastian Houben, and Sven Behnke

Abstract—The past years have shown a remarkable growth
in use-cases for micro aerial vehicles (MAVs). Conceivable in-
door applications require highly robust environment perception,
fast reaction to changing situations, and stable navigation, but
reliable sources of absolute positioning like GNSS or compass
measurements are unavailable during indoor flights.

We present a high-performance autonomous inventory MAV
for operation inside warehouses. The MAV navigates along
warehouse aisles and detects the placed stock in the shelves
alongside its path with a multimodal sensor setup containing an
RFID reader and two high-resolution cameras. We describe in
detail the SLAM pipeline based on a 3D lidar, the setup for stock
recognition, the mission planning and trajectory generation, as
well as a low-level routine for avoidance of dynamical or previ-
ously unobserved obstacles. Experiments were performed in an
operative warehouse of a logistics provider, in which an external
warehouse management system provided the MAV with high-
level inspection missions that are executed fully autonomously.

Index Terms—Aerial Systems: Applications; Aerial Systems:
Perception and Autonomy; Motion and Path Planning;

I. INTRODUCTION

IN the last years, many novel applications for flying robots
emerged, enabled by two main factors: i) manufacturers de-

veloped affordable and capable micro aerial vehicles (MAVs)
for hobby, recreation and professional usage that do not
require extensive flight training; ii) recent advances in robotic
research led to efficient methods for environment perception
and safe navigation, enabling various applications that can
only be performed autonomously. This includes operations at
high velocities and close to structures. Both conditions are
prohibitive for safe operation by a human pilot. One driver
for developing such systems is also the DARPA-formulated
goal of flying fast and autonomously in cluttered environments
without GPS and external sensing or control in their Fast
Lightweight Autonomy Program (FLA) [1].

While in most current applications, MAVs maintain a safe
distance from the object to inspect or follow; many future
applications require the MAV to operate close to obstacles
or even in restricted indoor spaces. As an example, in this
paper, we consider the use case of automatic inventory in a
warehouse. It requires the MAV to quickly detect, identify,
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Fig. 1. Our inventory system performs a fully autonomous inspection
of a warehouse. The main challenges are the fast navigation in narrow
passages close to structures and the localization in a large self-similar indoor
environment with distant walls.

and map the stored items. In this way, it is possible to keep
an always-up-to-date inventory record of the contents within
the warehouse. Current commercial systems [2], [3] for this
task merely deploy a scanner on the platform and perform a
piloted flight in order to read tags on the goods.

Autonomous maneuvering inside such a building is highly
challenging as most of the space is occupied with high shelves
filled with stocked goods as shown in Fig. 1. This leaves only
small aisles for navigation which might also be obstructed by
other objects like forklifts. Additionally, the shelf rows lack
distinctive geometric features and are highly self-similar which
makes precise self-localization difficult. On the other hand,
these narrow structures are embedded in large halls with stable,
but far-away localization aids like walls. This requires real-
time localization with long-distance sensors in large maps with
many structures.

We present our self-localization and mapping approach
based on a 3D lidar, which is able to handle these challenging
situations robustly. The lidar is also the basis of a low-level
obstacle avoidance mechanism. In addition, the robot carries
a sensor setup to identify the stocked material by means of
fiducial markers and RFID tags. The flight mission is provided
by a warehouse management system (WMS) as a sequence
of storage panels that have to be inspected. The mission is
planned in a semantic, yet metric, map of the warehouse that
contains the approximate placing of all the shelf rows and the
number and relative position of the storage panels within. The
laser-based map is aligned with this representation in order to
define the inspection poses that the robot consecutively visits
during its flight.

Experiments are performed in a warehouse of a logistics
provider containing narrow aisles between shelves and larger
open areas. We mapped several shelf rows and performed
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Fig. 2. Design of our MAV equipped with a Velodyne Puck LITE, fast
onboard computer, two synchronized global shutter color cameras, and an
RFID reader. The landing feet are retractable to allow for true 360° perception.

autonomous inventory missions including the transition be-
tween rows and the avoidance of static obstacles. Furthermore,
we demonstrated the reactive avoidance of dynamic obstacles
approaching the MAV. We discuss guidelines for the develop-
ment of future systems for autonomous indoor operation and
draw prospects for the future of autonomous inventory robots.
To demonstrate the robustness of our localization and control
at high velocities, not reachable in our indoor environments
due to the required acceleration distance, we further evaluate
our system outdoors with flights reaching velocities over
28 km/h without GNSS feedback.

In our integrated system, we employ and extend methods
based on our own previous work: The SLAM system is
detailed in [4] and [5]. Our obstacle avoidance extends [6]
and the mechanics of our model predictive controller (MPC)
are described in [7].
Our main contributions are
• robust self-localization solely based on an onboard lidar

at high velocities up to 7.8 m/s (Sec. IV),
• fast fully autonomous navigation and control, including

avoidance of static and dynamic obstacles in indoor and
outdoor environments (Sec. V),

• an integrated autonomous robot system for aerial stock-
taking with multimodal tag detection, evaluated in an
operative warehouse (Sec. VI).

II. RELATED WORK

Today, fast MAV flight without external sensing is mostly
vision-based. Recently, Falanga et al. [8] presented an MAV
flying with 3 m/s through narrow gaps. This requires precise
relative localization and navigation. We focus on fast navi-
gation in allocentric maps with reliable obstacle avoidance,
which currently is not achievable by using cameras alone.

Shen et al. [9] present an MAV that is capable of au-
tonomous vision-based flight with up to 4 m/s on a straight
line, 2 m/s on a figure eight, and 1.5 m/s in an indoor
environment. Although the system is relatively fast, the authors
report significant drift, induced by solely relying on cameras
for state estimation.

Another vision-based, lightweight MAV system has been
presented by Burri et al. [10]. Their work focuses on industrial
boiler inspection with agile flight in industrial environments.
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Fig. 3. System overview. Inputs are depicted in green and software compo-
nents in blue. An external warehouse management system (WMS) provides an
unordered list of waypoints of to be inspected goods to the mission planning.
Control commands are sent to the SDK of the DJI Matrice 600 (red).

Florence et al. [11] use a combination of vision and a
2D laser scanner to avoid obstacles at high velocities. Their
system flies in cluttered unknown environments with large
state uncertainties. For our application, we rely on precise, but
still fast, allocentric localization and assume that an allocentric
map contains the major, complex obstacles.

Our targeted scenario is particularly adverse for the use of
visual perception. On one hand, panels and shelf rows carry
highly similar and repetitive visual cues, which preclude any
form of place recognition. On the other hand, local geometry is
also highly self-similar and symmetric. Hence, we solely rely
on high-frequency 3D laser scans for obstacle perception and
state estimation. Its large field-of-view and long measurement
range allow for resolving local similarities by using large-scale
structures for localization.

Ma et al. [12] addressed automatic inventory with a
lightweight Parrot drone. Their RFly system relays the RFID
signal to a reader and is able to triangulate the location of
the tag with a reported accuracy of below 20 cm. However, in
order to self-localize the robot, they rely on an external motion
capturing setup, which limits the practical feasibility.

Similar to our system, Ortiz et al. [13] perform inspec-
tion in narrow spaces. They developed a quadrotor MAV
for autonomous vessel inspection. A combination of laser
localization and visual odometry yields a 2D localization ap-
proach decoupled from the height measurements. Our system
performs SLAM with 6D pose estimation based on a high-
performance 3D lidar.

An early version of our inventory MAV [14] relied on a
combination of two rotating 2D lidars for a low frequency
localization and mapping with visual odometry performed
with three pairs of wide-angle stereo cameras. Although the
system proved itself robust, the setup proposed in this paper
only relies on a single 3D lidar as primary sensor and,
hence, significantly reduces the overall system complexity.
Furthermore, the increased frequency of 360° scans obviates
the requirement for additional visual odometry. To account for
the narrower vertical field of view in the proposed system, our
path planning optionally limits the ascension and descension
angle.

III. SYSTEM SETUP

Our MAV, shown in Fig. 2, is based on the DJI Matrice 600
platform with a diameter of approximately 170 cm. It is
equipped with a lightweight, yet powerful, Intel NUC6i7KYK
onboard PC with an Intel Core i7-6770HQ quadcore CPU
running at 2.6/3.5 GHz and 32 GB of RAM. As primary
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Fig. 4. 3D map from the initial manual flight. The top-down view (right) shows the dimensions of the acquired map of the 100× 60m warehouse. The
camera perspective is highlighted in green. The warehouse contains tight, self-repetitive, and cluttered structures like shelves and stock, and larger, far-away
structures like walls. For robust localization, the MAV has to employ a map of the structure of the large building.

environment perception sensor, a Velodyne Puck LITE lidar is
deployed. It features a low weight of 590 g and yields 300,000
range measurements per second in 16 horizontal scan lines at
a vertical angle of 30°. Its maximum range is 100 m.

In order to perceive visual tags in nearby shelf panels during
flight, the MAV is equipped with two synchronized global
shutter Point Grey Blackfly-S U3-51S5C-C color cameras with
5.0 MP. The Computar M0814MP2 lens features an apex angle
of 56.3× 43.7°. Each camera captures 3 frames per second.
For detection of RFID tags, the MAV is also equipped with
a ThingMagic M6e RFID reader with a SkyeTek SP-AN-04-
UF-BB6LP antenna.

The low weight of the components (11.2 kg take-off weight)
and a battery capacity of 600 Wh, yields a flight time of
approximately 20 min which allows to capture 1 km of shelf.
Since the batteries are hot-swappable, continuous operation
can be performed with only minimal interruptions.

The system uses the robot operating system (ROS) as
middleware on both the MAV and an additional ground control
station. We show an overview of the system in Fig. 3.

IV. ENVIRONMENT PERCEPTION

A. 3D Mapping

To localize the MAV within the environment, we build an
allocentric map of the warehouse from measurements of the
lidar. Fig. 4 shows parts of the warehouse and the initial
map. We incorporate measurements of the IMU to account for
motion of the sensor during acquisition. Using an extended
version of our lidar-based SLAM method described in [4],
we first aggregate 3D scans in a local multiresolution grid
map. Local multiresolution maps correspond to the sensor
measurement characteristics by having a high resolution close
to the sensor and a coarser resolution farther away. For each
grid cell, a local surface element (surfel) is estimated which
summarizes the aggregated measurements in the cell’s volume
and captures the statistics of the points. We recover the
transformation between a newly acquired scan and the local
map by matching surfels [5]. Compared to point-based regis-
tration, considerably less elements are taken into account for
registration, allowing for efficient registration of the extensive
amount of measurements from the sensor.

Registered 3D scans are added to the local map, replacing
older measurements. Local mapping allows to track the robot

in a local frame and provides a dense aggregation of measure-
ments in the robot’s vicinity.

We construct an allocentric pose graph by aligning local
multiresolution maps from different view poses which allows
the robot to localize itself in an allocentric frame. Hence, local
multiresolution maps from different view poses model nodes in
a graph G = (V, E) that are connected by edges. Edges model
spatial constraints between nodes and result from aligning two
local multiresolution maps by surfel-based registration. The
registration result xji between a new node vi and the previous
node vj constitutes an edge eij ∈ E .

Additionally, the current local map is registered towards a
reference node in order to connect the current pose to the
global pose graph and enable a straightforward optimization.
The reference node is the local map that is closest to the
current MAV pose. If the robot moved sufficiently far, we
extend the pose graph by the current local map.

Furthermore, we include edges between the newly added
local map and close-by local maps to obtain loop closure if
the robot revisits previously mapped areas. Hence, we check
for one new edge between the current reference vref and other
nodes vcmp. We determine a probability

pchk(vcmp) = N
(
d(xref, xcmp); 0, σ2

d

)
that depends on the linear distance d(xref, xcmp) between the
view poses xref and xcmp. According to pchk(v), we draw a
node v from the graph and determine a spatial constraint
between the nodes using our surfel registration method.

From the spatial constraints, we infer the probability of the
trajectory estimate given all relative pose observations

p(V | E) ∝
∏

eij∈E
p(xji | xi, xj).

Each spatial constraint is a normally distributed estimate
with mean and covariance determined by our probabilistic
registration method. This pose graph optimization is efficiently
solved using g2o [15], yielding maximum likelihood estimates
of the view poses xi.

We extend our mapping approach presented in [4] to allow
for efficient processing of Velodyne scans. In contrast to
the approach presented in our previous work, we do not
aggregate multiple 3D scans using odometry information but
register single 3D scans from the lidar sensor to the local
multiresolution map—only using orientation information from
the IMU and barometric height as prior for registration.
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Fig. 5. Left: Registration of a semantic map (coordinates of storage units,
geometric shelf model depicted in red) with a 3D laser map. Color encodes
height. Right: Generated inventory mission (depicted by the coordinate axes)
in the obstacle grid map.

B. Lidar-based Localization

Prior to autonomous operation, we acquire an initial map
from a manual flight. We extend our SLAM system to serialize
the graph-based structure of the allocentric map to gain
persistent storage of the so-far acquired pose graph.

For autonomous operation during mission, the mapping
system is initialized with the pose graph from the initial
flight. By aligning the current local map to the pose graph,
we gain a localization pose with respect to the initial map
and the warehouse model. Although the pose graph (and the
associated map) can be extended if the MAV traverses parts
of the environment that where not covered by the initial flight,
we choose the coverage volume of the initial flight to be larger
than the MAV’s workspace in the experiments since this is the
envisaged operating mode during standard inventory missions.

While executing the mission, we localize towards the closest
local map in the graph by registering the current local map
with it. Our approach allows to process the lidar scans in real-
time.

C. Tag Detection

We perceive the position of stock in the warehouse by
means of visual fiducial markers (AprilTags) and RFID tags
attached to storage boxes. Perceived RFID tags, the current
MAV position, signal strength, and direction of the detecting
antenna are transmitted to the WMS for further processing,
e.g., assigning stock to storage units. Regarding the fiducial
markers, we use the implementation by Olson et al. [16] and
transform the camera-based relative tag pose into an allocentric
frame via the known camera extrinsics and the estimated pose
of the MAV. Likewise, these allocentric positions and the
corresponding tag IDs are sent to the WMS for incorporation
into the warehouse model. We use the tag family 36h11 as
we experienced it to be very reliable.

V. NAVIGATION AND CONTROL

Autonomous navigation is a key capability for automated
stocktaking. Operator assistance functions—or optionally fully
autonomous operation—opens up the applicability of the sys-
tem to a large group of end users who are not trained MAV
pilots. Autonomy generates a direct interface between logistics
personnel and the stocktaking system without the indirection
of a professional pilot. We implement a hierarchical navigation
and control system that makes use of time scale separation
between the layers. On the top layer of our navigation stack,
global mission planning is executed once per mission. The

Fig. 6. Planning under visibility constraints. Left: Without visibility con-
straints the shortest path (yellow) from a start (green) to a target position
(red) below solely descents in place. Right: With visibility constraints, the
MAV has to move within the field of view of the lidar and consequently
follows a longer descent path with an angle of 15°.

next layer (allocentric path planning) is run in the order of
seconds, while the lowest layer (model predictive trajectory
planning) is executed every 20 ms.

A. Mission Planning

For the connection to a WMS, we developed a tool that
augments the laser-based maps described in Sec. IV with
semantic information. Fig. 5 shows the registration of the
semantic warehouse model with the laser-based map. After
a coarse manual alignment, we use the Iterative Closest Point
Algorithm (ICP) to automatically register both maps. This en-
ables us to semantically describe an inventory mission and au-
tomatically derive shelf numbers and indices of storage places.
The WMS can specify missions covering whole shelves—with
a coverage pattern shown in Fig. 5—or single storage units
to inspect. Here, all common strategies for manual inventory
like e.g., sampling inventory with sequential probability ratio
test (SPRT) can be utilized. An ordered list of view poses
is then sent to the MAV onboard computer for execution.
Before execution, this list is simplified to merge collinear path
segments, e.g., a number of storage units on the same height,
to achieve a smooth sweeping motion along the shelves.

B. Path Planning

The result of the mission planning is an ordered list of 4D-
poses (x,y,z,θ) in a discrete allocentric grid. We connect these
poses with an instance of A* planning and use the Ramer-
Douglas-Peucker algorithm to cull superfluous nodes. This is
necessary to allow for the generation of longer and more
continuous trajectories by our controller, described below.
During mission execution, the path is frequently replanned to
compensate for path deviations of the MAV, either by inaccu-
rate command execution, external disturbances or avoidance
of obstacles. Replanning takes place whenever a target pose is
reached and the next pose from the mission plan is processed
or at least every 10 s to correct deviations from the path.
Grid-based planning resembles the orthogonal structure of
warehouses if the aisles are parallel to the planning grid axes.
The planning grid and the model are, therefore, aligned after
the exploration flight. Our approach, in contrast to sampling-
based planners, has the advantage to follow the shelf-fronts
well, without much postprocessing and trajectory smoothing.
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Fig. 7. Reactive obstacle avoidance with artificial potential fields. A person
(circled blue in the laser map) approaches the MAV. The MAV is repelled by
the artificial forces (red lines) and dodges the obstacle. Green lines depict the
influence of obstacles in the passive avoidance distance.

In more generalized settings, the approach could benefit from
any-angle planning, e.g., Theta* [17], which we can omit here.

The onboard lidar does not cover a spherical field of
view. To nevertheless allow for safe navigation in cluttered
environments or in the presence of dynamic obstacles, we ex-
tended our planner with visibility-constrained planning. With
this extension, the planned MAV movements are restricted to
directions in the field of view of the lidar, i.e., 15° below and
above the current horizontal plane. To this end, we employ a
grid with anisotropic voxels to reduce the ascent and descent
angles from 45° in a grid with isotropic voxels to the opening
angle of the sensor. The resulting voxels have a height of
tan(15◦) ≈ 1

4 of the horizontal voxel size. Furthermore,
we remove edges connecting cells directly on top of each
other, disallowing ascents and descents in place. The direction
of flight—discretized to the eight possible transitions in the
plane—is introduced as a new planning dimension to penalize
changes in the flight direction. Angles of up to 45° are not
penalized. Without this penalty, a zigzag motion to ascent
or descent would be equal to larger straight glide paths in
path costs, but would significantly slow down the MAV due
to numerous stops to change direction. Fig. 6 illustrates the
resulting plans with and without visibility constraints.

C. Reactive Obstacle Avoidance

We use reactive obstacle avoidance as a low-level safety
layer complementing the deliberative path planning. For
our application, reactive obstacle avoidance has two impor-
tant properties—compared to fast local planning [18], or
optimization-based approaches [19]. First, it has the ability
to elude approaching dynamic obstacles, depicted in Fig. 7.
This might include leaving a hover position or even moving
into the opposite direction of the commanded flight path.
Second, a hazard minimizing solution will always be found
even if the distance constraints are violated. Furthermore,
reactive obstacle avoidance is computationally cheap and,
consequently, can be executed with the lidar frequency of
10 Hz. Our obstacle avoidance is based on [6] but directly
modifies the allocentric target waypoints from the global path
planner instead of velocity commands to adapt to the new
low-level trajectory controller.

We modified the basic algorithm to facilitate smoother flight
in narrow spaces by adding two spheres of influence around
the MAV, depicted in Fig. 8. Obstacles in the passive avoidance

Critical
distance

Active avoidance
sphere radius

Passive avoidance
sphere radius

Distance
to obstacle

St
re

ng
th

1

spush

sreduce

Fig. 8. Reactive obstacle avoidance. Top-Left: The MAV velocity setpoint
vector vin is split into the projection towards an obstacle vobst and the
remainder vfree. If the MAV is not close to obstacles, the output velocity
vout is equal to the setpoint. Top-Middle: When an obstacle is in the passive
avoidance sphere (dotted orange), vin is reduced by vslow = −sreducevobst.
Top-Right: Obstacles in the active avoidance sphere (dotted red) induce an
additional repulsive force resulting in the pushing velocity vpush directing
the MAV into free-space. For simplicity, we depict velocity vectors, the pose
modification vectors co and fo follow straightforward. Bottom: Scaling factors
in relation to the obstacle distance.

sphere with radius dp, cause a reduction of the MAV motion
into the direction of the obstacles. In the active avoidance
sphere with radius da, obstacles exert artificial repulsive
forces, increasing with proximity, that push the MAV away.
By dividing the obstacle avoidance into these two phases, we
achieve a stable equilibrium distance between obstacles and
MAV regardless of the MAV control inputs without influencing
the motion into orthogonal directions in the passive sphere—
e.g., the MAV can follow an exploration pattern along a shelf
even if the commanded pattern is too close to the shelf due
to protruding goods. In the warehouse, we set da and dp to
MAV radius plus 1 m and 2 m, respectively.

For simplicity of notation, all further calculations are de-
picted in an egocentric MAV frame to omit the localization
transform matrices. If both spheres are obstacle-free, we
execute the commands from the planning layer unaltered.
Egocentric targets farther away than 1 m are first normalized;
shorter vectors are processed without prior normalization to
avoid a speed up of the MAV while approaching an obstacle.
The new egocentric target position tnew is calculated as

tnew = torig − cospush + fosreduce.

Here, co is the projection of the current target torig onto the
direction of the obstacle, thus, the part of the command that
steers the MAV closer to the obstacle. The artificial force
direction fo is a normalized vector pointing away from the
obstacle. The magnitudes of the slow down strength spush
and the push back strength sreduce—depicted in Fig. 8—are
calculated as

spush =
dp + da − d
dp − da

, sreduce =
da − d
da

with distance d to the obstacle. Both results are clipped to the
interval [0, 1] afterwards.

D. Model Predictive Control

Since higher layers assume a straight connection between
waypoints (due to Ramer-Douglas-Peucker culling), flying on
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Fig. 9. The MAV continuously flies in a figure eight around pillars in a
parking garage. All perception and computation is done onboard. Velocities
exceeding 1.7m/s in the vicinity of obstacles require robust methods for state
estimation and control. The size of the ring represents the actual MAV size.
The arrow depicts the flight direction.

a straight trajectory is mandatory and overshoot is not per-
missible despite large turbulences caused by nearby obstacles.
Also inventory of large warehouses with multiple kilometers
of shelf requires fast flight to reduce the impact on the regular
logistic processes. We tackle this problem by employing time-
optimal trajectory generation and online replanning with 50 Hz
for low-level control. We use an extended version of the
method described in [7]. Planning is based on a simple
dynamic model of the MAV with three-dimensional jerk j as
only input. The method plans smooth, time-optimal trajectories
from the current 9-dimensional allocentric MAV state

x =

px py pz
vx vy vz
ax ay az


to the corresponding 9-dimensional target state by analytically
solving a system of 21 differential equations

pn = pn−1 +

∫ tn

tn−1

vn dt,

vn = vn−1 +

∫ tn

tn−1

an dt, n = {1; . . . ; 7}

an = an−1 +

∫ tn

tn−1

jn dt

per axis (x,y,z). Generated trajectories consist of up to n = 7
phases of constant jerk input, resulting in a bang-singular-
bang trajectory. Individual axes are coupled by synchronizing
the total time of the entire trajectory. The trajectories respect
per-axis constraints on minimum and maximum velocity, ac-
celeration and jerk.

With the ability to predict the target state, trajectories end
in an optimal interception point when the waypoint is non-
stationary like shown in Fig. 9. Since our method is very fast,
we use it in closed loop and send smooth pitch θ, roll φ and
climb rates vz to the DJI flight control.

We assume the yaw to be decoupled from the translatory
axes and use simple proportional control for the yaw. The yaw
rate setpoint Ψ̇setp = Kp · (Ψsetp−Ψ) with proportional gain
Kp is sent to the MAV.

In comparison to approaches that utilize a complex motion
model like Kamel et al. [20], our approach is very fast and the

Fig. 10. AprilTag detection. With two cameras directed to each side of
the aisle we detect AprilTags attached to the stock. The clusters of colored
markers show the estimated positions of the detected tags in a subsection
of an aisle during two consecutive flights. See Fig. 11 for the corresponding
trajectories. Detections from the first flight are marked with circles; detections
from the second flight are marked with triangles. Different colors correspond
to different tag IDs. In the bottom right corner, a detection of ID 14 is shown.
One can see the motion-blur induced by the relative motion between AprilTag
and MAV. We report statistics in Tab. I.

model does not need (often abstract) parameters. In contrast
to complex models, approaches like Mueller et al. [21] use a
simple motion model and are comparably fast. The generated
trajectories however are not time-optimal. Simple PID-control
is also not suitable, since overshoot is not permissible in
the close corridors. Thus, the controller would have to be
parameterized very conservative which would result in slow
MAV movement.

Please note that we use the same parameters for the con-
troller as in [22] in which we employed the method on a
DJI Matrice 100 that weighs only a quarter of the MAV used
here with a corresponding bounding box volume ratio of 1:12.
This shows the independence of our approach regarding model
parameters.

VI. EVALUATION

We evaluate our system in indoor and outdoor scenarios,
including an inventory mission in an active warehouse. A
video showing autonomous mission execution and reactive
obstacle avoidance can be found on our website1. Here, we
also publish recorded datasets, tools, and parts of our pipeline.

First, we test the robustness of the localization and control
pipeline with an experiment that involves fast flight between
alternating waypoints in an obstacle free courtyard over a
distance of 25 m. The localization in an allocentric map of the
courtyard and state estimation of the MAV was solely based
on the onboard 3D lidar and the IMU; no GNSS feedback
was used. Between the acceleration and deceleration phases of
the flight, the MAV reached a maximum velocity of 7.8 m/s,
measured by the onboard DJI GPS – considered as ground
truth. The laser localization was running at 20 Hz to account
for the large velocities. It was able to robustly track the
MAV pose during the whole flight. Despite strong wind, the
maximum deviation from the straight line connection between
both waypoints was only 49 cm during all 11 alternations.

1http://www.ais.uni-bonn.de/videos/IROS_2018_InventAIRy

http://www.ais.uni-bonn.de/videos/IROS_2018_InventAIRy
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a) b)

Fig. 11. Visualization of two consecutive flights in a warehouse. a) Side view, b) Top view. Despite flying in close proximity to obstacles, the MAV reaches
velocities up to 2.1m/s. Waypoints are precisely reached without overshoot. It can be seen that the flight behavior is repeatable and that aisle changes are
possible. View poses are marked with a red crossed ring. Via points that are inserted by the A* planner are marked with a red ring. Except for the manual
start, the whole flight was fully autonomous.

The maximum overshoot recorded during the experiment was
1.2 m.

In a second experiment, the MAV flew a figure eight around
two pillars in a garage to additionally test the influence of
turbulences close to structures and the ground. Due to the
high accelerations of approximately 0.85 m/s2 in the curved
segments of the trajectory, the maximum velocity in these runs
was reduced to yield a feasible, collision-free trajectory. Still,
the MAV reached velocities up to 1.75 m/s in this indoor
environment. The laser localization tracked the MAV pose with
10 Hz and was able to keep the MAV localized in the map of
the garage at all times. Fig. 9 shows the resulting trajectory
in the map of the garage. It can be seen that our method
yields robust repeatability in four consecutive flights despite
turbulences. Nevertheless, it can be seen that the MAV spirals
out of the curved segments as it cannot accurately track the
moving waypoint.

In a third experiment, our integrated system, including laser-
based localization, planned navigation, obstacle avoidance, and
acquisition of information about stock positions, was demon-
strated in a warehouse with a building area of 100× 60 m
with 1.3 km shelf (approximately 12 000 m2 storage front). As
described in Sec. IV-A, we built an initial laser-based SLAM
map of the environment with a manual flight, shown in Fig. 4.
This map is aligned with the semantic map containing storage
units from the WMS. For the demonstration of autonomous
inventory, a mission containing the complete inventory of
one shelf row and the inspection of a single storage unit in
another row was specified in the WMS. The MAV executed
this mission autonomously multiple times while avoiding static
obstacles, e.g., the shelves and stock protuding from the
shelves. In Fig. 11 we visualize the trajectory of two con-
secutive flights in the warehouse. The MAV reaches velocities
up to 2.1 m/s. Although faster flight is possible (as shown
in the previous experiments), we used the ability of our
MPC to limit the maximum velocity a) to account for the
acceleration/deceleration distance needed by the MAV and b)
to reduce motion blur in the cameras (see Fig. 10):

The closed loop dynamics of MAV and MPC dictate the dy-

namic behavior of the system. Even under the assumption that
the MAV is able to perfectly track the trajectories generated
by the MPC and without any perception- or communication
delay, an acceleration/deceleration distance of 12.1 m is nec-
essary with a maximum velocity of 7.8 m/s (with parameters
amax = 3.5 m/s2, jmax = 4.0 m/s3).

Furthermore, due to the artificial lighting in the warehouse,
the camera exposure time had to be set to at least 4 ms for
acceptable image quality. The used AprilTags have an edge
length of 16 cm that results in a patch size of 2× 2 cm.
Thus, the Nyquist frequency limits the relative velocity to
10 m/s under ideal conditions. This velocity, however, would
require special signal reconstruction techniques to preprocess
the image for the AprilTag detector. Also roll, pitch, and yaw
motion superimpose the linear MAV velocity and generate rel-
ative motion between tag and MAV. High-frequency vibrations
generated by the propellers provoke additional blur. Therefore,
we conservatively constrained the linear velocity in favor of
robust detections in the warehouse experiment.

In contrast to the visual detection pipeline, the RFID reader
did not limit the inventory speed since it is able to read up to
750 tags per second. We throttled the speed to 20 reads/second
which was enough for our experiments and allowed for a
higher detection range.

Every view pose is reached with a mean deviation of
only 9.65 cm respectively 5.78 cm in both flights. As no
dynamic obstacles above the MAV were to be expected in
this demonstration, we neglected the planning with visibility
constraints in favor of faster mission execution.

During both flights, AprilTags on the sides of the aisle and
RFID tags of the specified shelf row were captured and sent
to the WMS. Fig. 10 and Tab. I show the result of the two
flights. It can be seen that except for Tag 6, and 11, all tags are
reliably detected (Tags 8 and 12 were not used). Our method
was unable to detect Tag 11 due to a shadow that partially
covered the tag on a disadvantageously positioned stock. Tag 6
was not attached properly and was flipped by turbulent air from
the MAV. Not a single false positive detection happened during
the experiment. It can be seen that only minimal scattering
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TABLE I
STATISTICS OF APRILTAG DETECTIONS FOR TWO FLIGHTS.

Tag ID 0 1 2 3 4 5 7 9 10 13 14

n1 3 7 6 3 1 64 2 10 6 4 6
n2 7 7 6 3 1 41 3 5 3 4 5

σ1 10.4 3.2 4.7 2.7 - 4.7 - 3.3 4.2 3.3 3.9
σ2 3.9 4.3 5.0 3.4 - 3.8 3.3 3.5 2.1 2.8 4.8
|µ1−2| 28.6 2.9 8.9 5.5 3.3 2.1 1.2 3.2 1.0 2.1 10.7

ni is the number of detections per flight, σi the deviation of the
detections in cm. |µ1−2| is the distance of the means µi in cm.

occurs and thus the relative detection error is small.
After the executed inventory mission, the MAV hovered at

a height of 2 m above the ground. A person approached the
MAV, which avoided the dynamic obstacle by means of our
reactive obstacle avoidance, shown in Fig. 7. Furthermore, a
person stepped into the way of the MAV while it approached
a waypoint. The MAV stopped at a safe distance in all cases.

As shown in the experiments, the limiting factor for faster
inventory is motion blur in the cameras caused by the large
exposure time due to bad lighting conditions. In future work,
we want to oppose this bottleneck either by illuminating the
scene ourselves (by using a flash on the MAV) or by using
special equipment like e.g., event based cameras.

In the current setup, the MAV continuously records images
with 3 Hz. The AprilTags however only cover less than 3 % of
the area (0.0256 m2 tag size vs. 0.96 m2 storage unit front).
A more targeted strategy would reduce the generated data.
Furthermore, we also plan to extend our vision pipeline to
not only detect AprilTags, but also other visual indicators like,
e.g., barcodes, QR codes, and human readable text, commonly
found on stock. This would further enhance the versatility of
the system. We also plan to integrate multiple MAVs into the
mission planner for simultaneous inventory to speed up the
process even more.

One might also think of eliminating the first manual flight in
favor of an automated SLAM process, but that a manual flight
is more robust in this crucial map building phase. Furthermore,
in comparison to the service life of such a system, the map
building phase only causes a small fixed effort, since the map
is reusable. After the manual flight, the operators can check
the map for possible artifacts and misregistrations.

VII. CONCLUSION

In this paper, we presented an MAV that is capable of
fast autonomous indoor and outdoor flight without the aid of
external infrastructure, solely relying on an omnidirectional
laser scanner for localization. We approached this challenge
by employing fast 6D lidar based localization in 3D maps
in combination with time-optimal model predictive control.
Due to the fast runtime of our methods, the MAV motion
can be tracked and controlled even under high velocities
and accelerations. Our ROS-based mapping and navigation
pipeline allows for fully autonomous flight even in GNSS-
denied environments.

Ample onboard processing power in combination with a
high bandwidth ground connection and long battery life leads

to a system that is suitable to be deployed, e.g., in warehouses
for extensive stocktaking applications. We demonstrated the
system robustness in multiple experiments where the only
manual interactions were the starting and landing phases.
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