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Convex Properties of Center-of-Mass Trajectories
for Locomotion Based on Divergent

Component of Motion
George Mesesan , Johannes Englsberger , Christian Ott , and Alin Albu-Schäffer

Abstract—This letter presents an in-depth analysis of the convex
properties of center-of-mass (CoM) trajectories for legged robot
locomotion based on the concept of Divergent Component of Mo-
tion (DCM). In particular, we show that the union of all possible
trajectories forms a bounded convex set under appropriate bound-
ary conditions. Additionally, we describe in detail our approach of
generating closed-form CoM trajectories through piecewise inter-
polation over a sequence of waypoints and show how to compute
the CoM trajectory efficiently through equations given in a matrix
form. Applying the convex properties to our trajectory-generation
approach, we present an algorithm for computing convex overap-
proximations of the CoM waypoints. Finally, we provide an exam-
ple of usage in placing waypoints that lead to feasible CoM tra-
jectories with respect to kinematic and dynamic constraints. The
approach is validated with a multi-contact scenario in simulation
with the humanoid robot TORO.

Index Terms—Computational geometry, divergent component
of motion, humanoid and bipedal locomotion, legged robots, mo-
tion and path planning.

I. INTRODUCTION

LOCOMOTION of legged robots is a challenging problem
due to its hybrid dynamics (discrete contact sequencing

and continuous whole-body motion), and the constraints on the
direction and amplitude of the contact forces. While attempts
have been made to plan the motion directly in the robot joint
space [1], [2], a more promising approach has been to focus
on the motion of the center of mass (CoM) with respect to
the contact points, which has been shown to be consistent with
legged locomotion of biological systems [3].

Following the introduction of the Zero-Moment Point (ZMP)
[4] and Linear Inverted Pendulum (LIP) [5], several meth-
ods of generating CoM trajectories based on these two con-
cepts were presented in the literature. Harada et al. [6] use a
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piecewise spline interpolation for the ZMP, and give an ana-
lytical solution for the CoM trajectory, where both the initial
and the final position of the CoM are specified. Kajita et al. [7]
generate the CoM trajectory as piecewise cubic polynomials,
and minimize the CoM jerk for a predefined ZMP trajectory
using Model Predictive Control (MPC). A closed-form solution
for the CoM trajectory without using the CoM jerk is presented
by Tedrake et al. in [8]. Extending the ZMP to multiple non-
coplanar contacts led to the introduction of the Contact Wrench
Cone (CWC) [9], later simplified and applied to multi-contact
motion by Caron et al. [10]. The CWC was used for CoM trajec-
tory generation via convex optimization by Dai et al. [11], and
for computing convex CoM regions for static [12] and dynamic
[13] stability.

Recently, the concepts of three-dimensional Divergent Com-
ponent of Motion (DCM) and Virtual Repellent Point (VRP)
were introduced in [14], decomposing the second-order CoM
dynamics into two first-order linear dynamics, with the CoM
converging to the DCM (stable dynamics), and the DCM di-
verging away from the VRP (unstable dynamics) [14], [15].
Based on this formulation, closed-form DCM and CoM tra-
jectories can be generated using a piecewise interpolation of
the VRP trajectory over a sequence of waypoints. This highly
compact motion representation is a natural way of handling
the hybrid dynamics discussed above, with the discrete contact
sequencing being mapped onto the VRP waypoints. This ap-
proach has been successfully validated in our previous work:
for dynamic walking in [14], and dynamic multi-contact loco-
motion in [16]. Furthermore, the closed-form trajectories enable
the use of efficient search algorithms for planning, such as the
binary search approach for finding the contact transition timing
in [16].

The main contributions of this work are: (i) we formally
prove convex properties of the DCM and CoM trajectories for
arbitrary VRP trajectories; (ii) for piecewise interpolation tra-
jectories, we introduce an algorithm for computing overapprox-
imating convex hulls of the CoM waypoints; (iii) we present op-
timal VRP waypoint placement using the CoM waypoint convex
hulls. While we give only one example of usage in this letter,
we anticipate various applications for the convex properties of
DCM-based trajectories in locomotion planning and control.
For example, the CoM region of dynamic stability introduced
in [13] can be combined with the CoM trajectory convex hull
to produce a region of dynamically feasible and reachable CoM
points.
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The rest of the paper is structured as follows: in Section II
we prove the convex properties of the DCM-based trajectories,
while in Section III, we give a detailed treatment of CoM
trajectory generation based on VRP piecewise interpolation,
extending our work from [17] with CoM waypoint and trajec-
tory computations in matrix form. Based on the results from
Sections II and III, we introduce an algorithm for computing
overapproximating convex hulls for the region of reachable
CoM positions in Section IV. We give an example of usage
by extending our multi-contact motion planner [16] with
optimal VRP waypoint placement in Section V, followed by
the implementation details and simulation results in Section VI.
Section VII concludes the paper.

II. CONVEX PROPERTIES OF DCM-BASED TRAJECTORIES

The three-dimensional Divergent Component of Motion
(DCM) ξ was defined in [14] as a linear combination of the
CoM position x and velocity ẋ:

ξ = x + b ẋ, (1)

where b is a time constant defined as b =
√

Δ z
g . Here, Δz repre-

sents the average CoM height above the ground surface, and g
denotes the gravitational constant.

The Virtual Repellent Point (VRP) v was introduced in [14]
as a linear combination of the CoM position x and acceleration
ẍ:

v = x− b2 ẍ. (2)

The VRP encodes the effects of the total force f (i.e., gravity and
all external forces) acting on the CoM, as the CoM acceleration
is proportional to the total force (Newton’s 2nd law), ẍ = f

m ,
with m being the mass of the robot. From (1) and (2) we find
the relation between DCM and VRP to be

v = ξ − b ξ̇. (3)

A. Convexity Proof

We prove the convexity of the DCM and CoM trajectories
using the concept of reachable set [18]. For the CoM dynamics

ẋ = −1
b

x +
1
b

ξ, (4)

obtained by reordering (1), we denote the locus of the CoM
position at time t as

X (t) = {x(t) | x0 ∈ Hx0 , ξ ∈ Hξ}, (5)

where

x(t) = e−
t
b x0 +

1
b

∫ t

0
e−

t−τ
b ξ(τ)dτ, (6)

with x0 being the initial CoM position. We consider the sets
Hx0 andHξ to be bounded convex polyhedra, such that we can
enumerate their vertices. Let xj

0 be an arbitrary vertex of Hx0 ,
and ξk an arbitrary vertex ofHξ . For the initial CoM position xj

0
and constant DCM ξ = ξk , we find from (6) the CoM position
at time t to be

x(t) = e−
t
b xj

0 + (1− e−
t
b )ξk . (7)

Fig. 1. CoM convex hull example.

Using the convexity property of X (t) [18], we obtain

X (t) = e−
t
b Hx0 ⊕ (1− e−

t
b )Hξ . (8)

The set of all possible CoM positions, i.e., the union of all
possible CoM trajectories, can be written as the reachable set
Hx = ∪t�0X (t), which combined with (8) leads to

Hx = CONV(Hx0 ∪Hξ ), (9)

where the operator CONV(·) returns the convex hull of a set of
points, and we used the property 0 � e−

t
b � 1, ∀t � 0. Figure 1

shows an example of the shape of Hx given arbitrary sets Hx0

andHξ . Also shown are two instances of the set X (t) at t1 and
t2 with the relation 0 < t1 < t2 .

For the DCM trajectory, we consider the negative-time DCM
dynamics

ξ̇r = −1
b

ξ +
1
b

v, (10)

obtained by reordering (3), and reversing the sign of the time
variable t, with ξ̇r = −ξ̇ being the negative-time derivative of
the DCM. As shown in [19], the reachable set of the negative-
time system is identical with the recoverable set [19] of the
positive-time system, this being, in our case, the union of all
DCM trajectories ending in a given target set HξT

. Due to the
similarity between (10) and (4), we can use the same reasoning
as above, considering the set of target DCM positionsHξT

and
the set of VRP positions Hv to be bounded convex polyhedra.
We obtain thus

Hξ = CONV(HξT
∪Hv ). (11)

III. TRAJECTORY GENERATION

In this work, we generate CoM trajectories by splitting the
motion into a sequence of nϕ transition phases. As boundary
conditions for the complete motion we choose a DCM target
point ξf and a CoM start point xs . For each transition phase
ϕ ∈ {1, . . . , nϕ}, we specify the VRP trajectory vϕ (t) and solve
the differential equations (1) and (3) with appropriate bound-
ary conditions to obtain the DCM trajectory ξϕ (t) and CoM
trajectory xϕ (t). We denote by vϕ,0 , ξϕ,0 , and xϕ,0 the start
points, and by vϕ,T , ξϕ,T , and xϕ,T the end points of the VRP,
DCM, and CoM transition phase trajectories, respectively. The
continuity of the complete trajectories is ensured by linking
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Fig. 2. Generated trajectory example (xy-view).

the start points of a transition phase with the end points of
the previous transition phase, i.e., the following equalities hold
for all transition phases: vϕ,0 = vϕ−1,T , ξϕ,0 = ξϕ−1,T , and
xϕ,0 = xϕ−1,T .

Equivalently, the complete VRP trajectory v(t) can be de-
scribed as a piecewise interpolation function over a sequence
of n = nϕ + 1 VRP waypoints (vi)n

i=1 , with analogous inter-
pretations for the DCM trajectory ξ(t) with DCM waypoints
(ξi)n

i=1 , and for the CoM trajectory x(t) with CoM waypoints
(xi)n

i=1 . For example, for the first transition phase (ϕ = 1), v1 ,
ξ1 , and x1 are the start points, and v2 , ξ2 , and x2 are the end
points of the VRP, DCM, and CoM transition phase trajecto-
ries, respectively. Figure 2 shows an example of a sequence
of 7 waypoints, displaying generated trajectories and computed
waypoints for VRP, DCM and CoM, with duration Tϕ = 0.75 s
for all transition phases.

In this section, we focus first on a single transition phase, de-
riving closed-form DCM and CoM trajectories, and discussing
their respective convex properties. Subsequently, we present
an efficient way of computing the DCM and CoM waypoints,
(ξi)n

i=1 and (xi)n
i=1 , respectively, in terms of (vi)n

i=1 , ξf , and
xs .

A. Trajectories During a Single Transition Phase

VRP Trajectory [17]: We define the VRP trajectory vϕ (t) as
a spatial linear interpolation between the VRP start point vϕ,0
and the corresponding VRP end point vϕ,T with the following
general form:

vϕ (t) = (1− fϕ (t))vϕ,0 + fϕ (t)vϕ,T , (12)

where t ∈ [0, Tϕ ] is the local time of the transition phase,
with Tϕ being a constant, strictly positive value, denoting
the phase duration. The temporal interpolation function fϕ (t)
is a polynomial of degree p with the following properties:
fϕ (0) = 0, fϕ (Tϕ ) = 1, and 0 � fϕ (t) � 1, ∀t ∈ [0, Tϕ ]. For
example, a first-order polynomial with the required proper-
ties is fϕ (t) = t/Tϕ , while a third-order polynomial (p = 3)
is fϕ (t) = 3(t/Tϕ )2 − 2(t/Tϕ )3 (more examples with corre-
sponding boundary conditions are given in [17]).

The set of VRP positions during the transition phase ϕ is, by
design, the bounded convex set

Hϕ,v = CONV({vϕ,0 ,vϕ,T }). (13)

DCM Trajectory [17]: We derive the DCM trajectory by re-
placing (12) in (3) and solving the resulting linear differential
equation using the DCM end point ξϕ (Tϕ ) = ξϕ,T as bound-
ary condition, to obtain a closed-form solution for the DCM

Fig. 3. Example of DCM trajectories (red curves).

trajectory:

ξϕ (t) = (1− σϕ (t)− e
t−T ϕ

b (1− σϕ,T ))︸ ︷︷ ︸
αϕ , ξ (t)

vϕ,0

+ (σϕ (t)− e
t−T ϕ

b σϕ,T )︸ ︷︷ ︸
βϕ , ξ (t)

vϕ,T + e
t−T ϕ

b︸ ︷︷ ︸
γϕ , ξ (t)

ξϕ,T , (14)

where

σϕ (t) =
p∑

k=0

(
bk

(k)
fϕ (t)

)
, (15)

and σϕ,T := σϕ (Tϕ ). Here, the notation
(k)
fϕ (t) denotes the

k-th time derivative of fϕ (t). Applying (11) with (13) and
Hϕ,ξT

= {ξϕ,T }, we obtain the convex hull of the DCM trajec-
tories during the transition phase ϕ:

Hϕ,ξ = CONV({vϕ,0 ,vϕ,T , ξϕ,T }), (16)

which shows that ξϕ (t) is a convex combination of vϕ,0 , vϕ,T ,
and ξϕ,T , i.e., the coefficients αϕ,ξ (t), βϕ,ξ (t), and γϕ,ξ (t) are
nonnegative and their sum equals 1,∀t ∈ [0, Tϕ ]. Figure 3 shows
an example of DCM trajectories for a fifth order polynomial
fϕ (t) and different durations Tϕ ∈ [0.1, 10] s.

CoM Trajectory: Similarly to the DCM trajectory, we derive
the CoM trajectory by replacing (14) in (1) and solving the
resulting linear differential equation using the CoM start point
xϕ (0) = xϕ,0 as boundary condition, to obtain a closed-form
solution for the CoM trajectory:

xϕ (t) = (1−ρϕ (t)− 1−ρϕ,0

e
t
b

− e
t
b − e−

t
b

2e
T ϕ
b

(1−σϕ,T ))
︸ ︷︷ ︸

αϕ , x (t)

vϕ,0

+ (ρϕ (t)− ρϕ,0

e
t
b

− e
t
b − e−

t
b

2e
T ϕ
b

σϕ,T )
︸ ︷︷ ︸

βϕ , x (t)

vϕ,T

+
e

t
b − e−

t
b

2e
T ϕ
b︸ ︷︷ ︸

γϕ , x (t)

ξϕ,T + e−
t
b︸︷︷︸

δϕ , x (t)

xϕ,0 , (17)
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Fig. 4. Example of CoM trajectories (blue curves).

where

ρϕ (t) =
�p/2�∑
k=0

(
b2k

(2k)
fϕ (t)

)
, (18)

and ρϕ,0 := ρϕ (0). Applying (9) with (16) and
Hϕ,x0 = {xϕ,0}, we obtain the convex hull of the CoM
trajectories during the transition phase ϕ:

Hϕ,x = CONV({vϕ,0 ,vϕ,T , ξϕ,T ,xϕ,0}), (19)

which shows that xϕ (t) is a convex combination of vϕ,0 , vϕ,T ,
ξϕ,T , and xϕ,0 , i.e., the coefficients αϕ,x(t), βϕ,x(t), γϕ,x(t),
and δϕ,x(t) are nonnegative and their sum equals 1, ∀t ∈ [0, Tϕ ].
Figure 4 shows an example of CoM trajectories for the same
parameters as Fig. 3.

B. Efficient Computation of the DCM and CoM Waypoints

We collect the VRP waypoints vi in a matrix
V =

[
v1 · · ·vn

]T ∈ Rn×3 , the DCM waypoints ξi in a

matrix Ξ =
[
ξ1 · · · ξn

]T
, and the CoM waypoints xi in

X =
[
x1 · · ·xn

]T
. Our goal is to obtain equations in matrix

form for computing Ξ and X in terms of V , the DCM target
point ξf , and the CoM start point xs , by using the equations (14)
and (17). As these equations are expressed in terms of the tran-
sition phase start and end points (vϕ,0 , vϕ,T , etc.), we introduce
two selection matrices. S0 =

[
Inϕ ×nϕ

0nϕ ×1
]

selects the
transition phase start points, while ST =

[
0nϕ ×1 Inϕ ×nϕ

]
selects the transition phase end points from any waypoint matrix
(V , Ξ , or X). We denote by V 0 = S0V ∈ Rnϕ ×3 the VRP
start points, by V T = ST V ∈ Rnϕ ×3 the VRP end points,
and, analogously, we define Ξ0 , ΞT , X0 , and XT , containing
the DCM and CoM start and end points, respectively.

DCM Waypoints: We start by evaluating (14) for t = 0:

ξϕ,0 = αϕ,ξ0 vϕ,0 + βϕ,ξ0 vϕ,T + γϕ,ξ0 ξϕ,T , (20)

where αϕ,ξ0 := αϕ,ξ (0), βϕ,ξ0 := βϕ,ξ (0), and γϕ,ξ0 :=
γϕ,ξ (0). We write (20) in matrix form for all nϕ phases as

Ξ0 = AξV 0 + BξV T + Γ ξΞT , (21)

where Aξ , Bξ , and Γ ξ are square, diagonal matrices containing
the coefficients αϕ,ξ0 , βϕ,ξ0 , and γϕ,ξ0 , respectively. We use

a terminal constraint for the DCM, ξn = ξf ,1 which can be
expressed in terms of Ξ as

[
0nϕ ×nϕ

0nϕ ×1
01×nϕ

1

]

︸ ︷︷ ︸
Sn ∈Rn ×n

Ξ =
[
0nϕ ×1

1

]

︸ ︷︷ ︸
sf ∈Rn

ξT
f . (22)

Rewriting (21) in terms of V and Ξ, multiplying it on the left
with ST

0 , adding (22), and grouping the Ξ terms on the left side
of the equation yields

(ST
0 S0 + Sn − ST

0 Γ ξST )Ξ =

ST
0 (AξS0 + BξST )V + sf ξT

f . (23)

We observe that ST
0 S0 + Sn = I , and I − ST

0 Γ ξST , being
a triangular matrix with nonzero elements on the diagonal, is
invertible. Finally, we find the explicit solution for the DCM
waypoint matrix as

Ξ =
[

ΞCV
Ξcξ

]
︸ ︷︷ ︸

Ξ C

[
V
ξT

f

]
(24)

where
ΞCV = (I − ST

0 Γ ξST )−1ST
0 (AξS0 + BξST )

Ξcξ = (I − ST
0 Γ ξST )−1sf .

CoM Waypoints: We start by evaluating (17) for t = Tϕ :

xϕ,T = αϕ,xT
vϕ,0 + βϕ,xT

vϕ,T + γϕ,xT
ξϕ,T + δϕ,xT

xϕ,0 ,
(25)

where we used a similar notation for the coefficients as in (20),
i.e., αϕ,xT

:= αϕ,x(Tϕ ), etc. We write (25) in matrix form for
all nϕ phases as

XT = AxV 0 + BxV T + Γ xΞT + ΔxX0 , (26)

where Ax , Bx , Γ x , and Δx are square, diagonal matrices con-
taining the coefficients αϕ,xT

, βϕ,xT
, γϕ,xT

, and δϕ,xT
, respec-

tively. The initial constraint for the CoM at the start of the
motion, x1 = xs , can be expressed in terms of X as

[
1 01×nϕ

0nϕ ×1 0nϕ ×nϕ

]

︸ ︷︷ ︸
S1 ∈Rn ×n

X =
[

1
0nϕ ×1

]

︸ ︷︷ ︸
ss ∈Rn

xT
s . (27)

Rewriting (26) in terms of V , Ξ, and X , multiplying it on the
left with ST

T , expanding Ξ according to (24), and adding (27),
we find the explicit solution for the CoM waypoint matrix as

X =
[

XCV
Xcξ

Xcx

]
︸ ︷︷ ︸

X C

⎡
⎣

V

ξT
f

xT
s

⎤
⎦ (28)

where
XCV = (I−ST

T ΔxS0)−1ST
T (AxS0 +BxST +Γ xST

ΞCV )
Xcξ = (I−ST

T ΔxS0)−1ST
T Γ xST

Ξcξ

Xcx = (I−ST
T ΔxS0)−1ss ,

1note that in our previous work [17], we used ξn = vn (the DCM comes to
a stop at the end of the motion). Here, we use a more general constraint.
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Fig. 5. CoM trajectory convex hull example.

and we used the identity ST
T ST + S1 = I . Note that

I − ST
T ΔxS0 is a triangular matrix and is always invertible.

It can be verified that each row in XC consists of convex
coefficients2 by expanding the compact matrix notation in terms
of the transition phase coefficients, and using their respective
convex properties. We can thus write for each CoM waypoint

xi ∈ Hx = CONV({v1 , . . . ,vn , ξf ,xs}). (29)

Figure 5 shows the CoM trajectory convex hullHx for a trajec-
tory consisting of 7 waypoints.

IV. WAYPOINT CONVEX HULLS

In the previous section, we have treated the transition phase
durations Tϕ as known, constant values. From a motion plan-
ning perspective, however, the phase durations are an output of
the planning algorithm, and, therefore, not known a priori. In
this section, we treat the durations as parameters, and we also re-
duce the domain of Tϕ to a closed interval T = [T , T ] ⊂ R>0 ,
with the mention that we can choose T arbitrarily small and T

arbitrarily large.3 Let τ =
[
T1 · · ·Tnϕ

]T
denote the vector of

transition phase durations for the complete motion. The goal of
the motion planner is to find the phase durations τ ∈ Tnϕ that
lead to feasible CoM trajectories with respect to kinematic and
dynamic constraints. Ideally, the planner can treat each transi-
tion phase independently, enabling thus the usage of efficient
binary search algorithms on the duration interval T , as pro-
posed in [16], instead of searching in the complete duration
space Tnϕ . However, changing the duration of one transition
phase leads to new positions for all CoM waypoints, requir-
ing recomputation and validation of the complete trajectory; the
relation between phase durations and CoM waypoints is made
explicit by rewriting (28) as

X(τ ) = XC(τ )

⎡
⎢⎣

V

ξT
f

xT
s

⎤
⎥⎦. (30)

2convex coefficients are nonnegative and sum to 1
3In practice, we use T = 0.1 s and T = 10 s, as durations shorter than 0.1 s

are usually associated with unfeasible forces and torques, while durations longer
than 10 s are generally not desirable.

An alternative approach, circumventing this problem, is to use
the locus of a CoM waypoint

Xi = {xi(τ ) | τ ∈ Tnϕ } (31)

as the set of possible CoM start points for the i-th transition
phase. Then, multiple transition phase planners can run in par-
allel and find feasible pairs of CoM waypoints and phase du-
rations, while a global planner coordinates the local planners
and combines the transition phase trajectories into a complete
feasible motion.

As an exact computation of the shape of Xi is, in general,
not tractable, we propose in this work to generate a convex
overapproximation by taking advantage of the convex proper-
ties presented in the previous sections. In (29), we obtained
Hx (see Fig. 5 for an example), however this is a highly con-
servative overapproximation, as it uses all waypoints vi , and
boundary points ξf and xs . We are interested in finding a tighter
convex hull Hxi

for the CoM waypoint xi , with the property
Xi ⊂ Hxi

⊂ Hx . The key insight is that the convex coefficients
in XC have lower and upper bounds, which depend only on
our choice of the VRP interpolation function fϕ , and the tran-
sition phase duration bounds T and T . Moreover, as fϕ , T ,
and T are known a priori, the bounds of the XC coefficients
can be precomputed. Using this information, we can find a new
set of points that define the reduced convex hull Hxi

with the
following algorithm.

Convex hull with bounded coefficients (Algorithm 1): Let
P = {pi}Ni=1 be a set of N three-dimensional points, for which
we define a convex hull with bounded coefficients

PA = {p | p =
N∑

i=1

ai pi ,

N∑
i=1

ai = 1, ai ∈ [ai, ai ]}, (32)

where each coefficient ai has nonnegative lower and up-
per bounds, ai and ai , respectively. Then, our goal is to
find the vertices of PA , or, in more general terms, a set of
M points Q = {qj}Mj=1 such that CONV(Q) = PA ; note that
VERTICES(PA ) ⊆ Q. The main idea of the algorithm is to
rephrase the definition of PA : instead of a set of N three-
dimensional points multiplied by convex coefficients, we can
describePA as a set of N -dimensional points a =

[
a1 · · · aN

]T

projected to the three-dimensional space by multiplication with
a matrix P =

[
p1 · · ·pN

]
. Finding the vertices of PA is thus

equivalent to finding the vertices of the N-dimensional shape
corresponding to the constraints

∑N
i=1 ai = 1 and ai ∈ [ai, ai ].

We start by creating an N -dimensional hyperrectangleOR as
the Cartesian product of the closed intervals [ai, ai ] (line 1.2,
i.e., Algorithm 1, line 2), and the hyperplane A with equation∑N

i=1 ai = 1, corresponding to the convexity condition (line
1.3). The intersectionOA = OR ∩ A is an N -dimensional hy-
perpolygon with M verticesO = {oj}Mj=1 (line 1.4). Projecting
the verticesO to the three-dimensional space yieldsQ (line 1.5),
and CONV(Q) = CONV(P O) = P CONV(O) = P OA = PA

proves that we found the appropriate set Q.
Figure 6 shows a two-dimensional example with three points

forming a triangle (N = 3), and the bounded convex hull as a
polygon with five vertices (M = 5). In this particular example,
all points in Q are vertices of PA .
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Algorithm 1: Convex Hull with Bounded Coefficients.

Input: P = {pi}Ni=1 , a1 , a1 , . . . , aN , aN

Output: Q = {qj}Mj=1

1: P ← [
p1 · · ·pN

]
2: OR ← [a1 , a1 ]× · · · × [aN , aN ]
3: A ← PLANE

∑N
i=1 ai = 1

4: for oj ∈ VERTICESOR ∩ A do
5: qj ← P oj

6: end for

Fig. 6. Bounded convex hull example.

Fig. 7. CoM waypoint bounded convex hull example.

Using the algorithm presented above, we computed the
bounded convex hulls Hxi

for the example in Fig. 5, and ob-
tained significantly reduced convex hulls. Figure 7 shows the
bounded convex hull Hx2 of the second CoM waypoint x2
from our multi-step example (the first waypoint is the CoM ref-
erence start point xs , so Hx1 = {xs}). The volume of Hx2 is
16.8% of the volume of the trajectory convex hullHx , computed
previously.

V. OPTIMAL VRP PLACEMENT USING COM
WAYPOINT CONVEX HULLS

In our previous work [16], we presented a multi-contact tran-
sition planner for humanoid robots, which uses a sequence of
manually chosen VRP waypoints to generate feasible CoM tra-
jectories. Automatic VRP placement has been the focus of our
recent research with the goal of increasing the autonomy of the
robot. In this work, we present preliminary results of using the
CoM waypoint convex hulls for optimal VRP placement.

Before we proceed, we recapitulate several definitions from
[16]: a contact is a tuple c = (pc ,Rc), where pc is the
three-dimensional point of contact, and Rc ∈ SO(3) is the ori-

entation of the contact frame, chosen such that the z-axis is
aligned with the contact surface normal, a stance [20] is a set
of K contacts σ = {ck}Kk=1 , and a contact wrench is a gen-
eralized force on SE(3) written as a six-dimensional vector
wc = [fT

c τ T
c ]T [21], where f c denotes the force, and τ c is the

torque. The contact wrench acts at the contact point pc and is
expressed in the contact frame Rc . Given a stance σ and the
set of contact wrenches wck

, we can compute the total wrench
acting on the CoM as

wx =
K∑

k=1

[
Rck

03×3
[(pck

− x)× ]Rck
Rck

]

︸ ︷︷ ︸
Gk (x)

wck
= Gσ (x)wσ ,

(33)
where Gσ (x) =

[
G1(x) · · ·GK (x)

]
, and the contact

wrenches were stacked into wσ =
[
wT

c1
· · ·wT

cK

]T
. Con-

versely, given a desired CoM wrench wd
x and a CoM

position x, we can find the necessary contact wrenches wd
σ (x)

fulfilling dynamic constraints (contact unilaterality, friction
cone constraints, bounded normal force, and center of pressure
constraints), by solving a constrained quadratic optimization
problem

wd
σ (x) = argmin

w
‖Gσ (x)w −wd

x‖2Qw
, (34)

where Qw is a symmetric, positive definite weighting matrix.
The CoM position x is dynamically feasible for the stance σ and
the desired wrench wd

x if the magnitude of the residual wrench
vector

εd
σ (x) = Gσ (x)wd

σ (x)−wd
x (35)

is less than a tolerance value ε. Further, it is kinematically fea-
sible for the stance σ if the distances between the CoM position
x and the contact points pck

are within lower and upper bounds
determined by the robot kinematic constraints [22]. Finally, we
define the function FEASIBLE(x, σ,wd

x) to return true if the
CoM position x is kinematically and dynamically feasible for
the stance σ and the desired wrench wd

x , and false otherwise.
Optimal VRP placement algorithm: Given a sequence of

stances (σi)n
i=1 , we search for an optimal sequence of n VRP

waypoints (vi)n
i=1 . Choosing one VRP waypoint for each stance

is motivated by generalizing a walking motion with alternating
single support and double support phases to multi-contact loco-
motion. In this work, we find optimal VRP waypoints using a
two-step process.

First, for each stance σi , we search for a VRP waypoint vi that
can act as CoM rest position, i.e., vi is a feasible CoM position
for the gravity compensation wrench wd

x = [−mgT 01×3 ]T

and stance σi . Here, g = [0 0 −g ]T denotes the gravitational
acceleration vector. We find vi by solving the optimization
problem

vi = argmin
x

(‖εd
σi

(x)‖2Qd
+‖wd

σi
(x)‖2Qσ

+‖xz −Δz‖2Qz

)
,

(36)
where Qd , Qσ , and Qz are symmetric, positive definite weight-
ing matrices, xz is the vertical component of x, and Δz was
introduced in Section III. The first term in (36) attempts to place
vi within the region of static equilibrium, the second term re-
duces the required contact torques and tangential forces for static
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equilibrium, while the third term ensures that the VRP waypoint
is consistent with the definition of the time constant b. We use
the VRP waypoints (vi)n

i=1 as an initial sequence of waypoints
for the nonlinear optimization process in the subsequent steps.

Second, we use the feasibility of CoM waypoints sampled
from the convex hulls Hxi

to define a cost function for an ar-
bitrary VRP waypoint sequence. As discussed in the previous
section, a convex hullHxi

is an overapproximation of the CoM
waypoint locus Xi (31) with respect to the durations of all tran-
sition phases. Although the transition phase durations and the
timing of the stance transitions are not known (they are com-
puted by the motion planner from [16] given a sequence of VRP
waypoints), we can state that during the stance σi , the CoM
trajectory will pass through a waypoint within Xi . This is a di-
rect consequence of associating the VRP waypoint vi with the
stance σi . This insight motives the introduction of a VRP cost
function based on the feasibility of CoM positions within Hxi

with respect to the stance σi . Given an arbitrary VRP waypoint
sequence (vi)n

i=1 , we construct the matrix V , take xs = v1 and
ξf = vn , and compute the bounded convex hullHxi

as the finite
set of points Qxi

(V ) using Algorithm 1 (Hxi
= CONV(Qxi

)).
For each point qxi

∈ Qxi
(V ), we compute the wrench

wxi
= [fT

xi
01×3 ]T , with fxi

= m
b2 (qxi

− vi)−mg, accord-
ing to the definitions given in Section II. Let Fxi

be the set of
feasible points inQxi

under the feasibility definition introduced
above:

Fxi
(V ) = {qxi

∈ Qxi
(V ) | FEASIBLE(qxi

, σi ,wxi
)}. (37)

We define the cost function for V using the cardinality of the
feasible set Fxi

(V ):

g(V ) =
n∑

i=1

(
1− #Fxi

(V )
#Qxi

(V )

)
. (38)

We also considered sampling uniformly a set of points from
Hxi

, which better approximates the shape of the convex hull.
However, this method incurs a performance penalty, as we need
to compute explicitly the convex hullsHxi

for each evaluation of
the cost function. Here, we use the points Qxi

for performance
reasons, as they can be computed linearly from V .

Finally, we obtain optimal VRP waypoints via nonlinear op-
timization

V opt = argmin
V

g(V ). (39)

Intuitively, the optimization process increases the space of fea-
sible durations, thus aiding the motion planner in finding a
feasible CoM trajectory. Note that each iteration of the opti-
mization process requires multiple evaluations of the function
FEASIBLE(qxi

, σi ,wxi
), which in turn requires solving the con-

strained quadratic optimization (34). Alternatively, for our fu-
ture work, we consider generating a convex hull of feasible
wrenches Hw given a stance σi , and verifying the dynamic
feasibility of a wrench wxi

by checking whether wxi
∈ Hw .

VI. IMPLEMENTATION DETAILS AND SIMULATION RESULTS

To validate the presented approach, we implemented the de-
scribed algorithms in Matlab, and executed a multi-contact
scenario in simulation (Fig. 8), in which the humanoid robot

Fig. 8. Multi-contact scenario (initial and final stance).

Fig. 9. Multi-contact transition example.

Fig. 10. Optimal VRP placement example.

TORO [23] uses its left hand for support while stepping with
the right foot over a large hemispherical obstacle. Figure 9 shows
the contacts c1 and c4 for the right foot, c2 for the left foot, and
c3 for the left hand, each with their respective normals, as well as
the sequence of stances (σi)4

i=1 . We found the initial sequence
of VRP waypoints (vi)4

i=1 (Fig. 9) within 0.43 seconds by solv-
ing (36) for each stance with the built-in Matlab optimization
solver fminsearch.

We create the VRP sequence V ini by adding each VRP twice
V ini = [v1 v1 v2 v2 v3 v3 v4 v4 ]T , according to the require-
ments of the multi-contact transition planner from [16]. We use
V ini as initial guess to obtain optimal VRP waypoints V opt . We
solved (39) using fminsearch, which found a solution (Fig. 10)
in 27.8 seconds after 200 iterations, reducing the cost from
g(V ini) = 0.5 to g(V opt) = 0.42.
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Fig. 11. CoM reference trajectory tracking example.

Subsequently, the multi-contact transition planner from [16]
found the phase durations (Tϕ )7

ϕ=1 and stance transition times
for a feasible motion plan with a total duration of 3.8 seconds;
the planner execution time was 1.7 seconds. The reference CoM
trajectory was tracked successfully (Fig. 11) by the passivity-
based whole-body controller introduced by Henze et al. [24],
running in simulation with OpenHRP [25].

VII. CONCLUSION AND FUTURE WORK

In this letter, we have formally proven the convex proper-
ties of the DCM and CoM trajectories, and discussed them in
the context of trajectories generated using a piecewise interpo-
lation approach over a sequence of VRP waypoints. Further,
we have introduced an algorithm for computing the convex
hull of a set of points with bounded convex coefficients, and
we used it to obtain convex overapproximations for the CoM
waypoints. As an application example in the context of multi-
contact locomotion planning, the CoM waypoint convex hulls
can be used to find optimal VRP waypoints given a sequence of
stances (chosen manually or obtained from a contact planner).
We have discussed the current limitations of the algorithm and
intended approaches to circumvent them in the corresponding
section.

As future work, we plan to combine our DCM-based ap-
proach and convex approximations of the CoM waypoints with
the complementary concept of the CoM convex stability region
[13]. Additionally, we will work towards the goal of creating
a fast, autonomous motion planning algorithm, which can in-
teract closely with the whole-body controller to achieve robust
locomotion in challenging environments.
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