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Fusing Joint Measurements and Visual Features for
In-hand Object Pose Estimation

Martin Pfanne1, Maxime Chalon1, Freek Stulp1, and Alin Albu-Schäffer2

Abstract—For a robot to perform complex manipulation tasks,
such as in-hand manipulation, knowledge about the state of the
grasp is required at all times. Moreover, even simple pick-and-
place tasks may fail because unexpected motions of the object
during the grasp are not accounted for. This work proposes
an approach which estimates the grasp state by combining
finger measurements, i.e. joint positions and torques, with visual
features that are extracted from monocular camera images. The
different sensor modalities are fused using an extended Kalman
filter. While the finger measurements allow to detect contacts and
resolve collisions between the fingers and the estimated object,
visual features are used to align the object with the camera
view. Experiments with the DLR robot David demonstrate the
wide range of objects and manipulation scenarios that the
method can be applied to. They also provide insight into the
strengths and limitations of the different, complementary types
of measurements.

Index Terms—Perception for Grasping and Manipulation,
Dexterous Manipulation, Sensor Fusion

I. INTRODUCTION

INSPIRED by the capabilities of the human hand, robotic
manipulators have become more and more dexterous, com-

pliant and sensitive. However, while the mechanics of these
robotic hands open up new possibility for complex interactions
with the environment, actually performing skilled manipula-
tion largely remains an open problem. One of the aspects that
make it so challenging to reliably manipulate an object is
that it requires knowledge about the state of the grasp at all
times. Indeed, even simple pick-and-place tasks may fail due
to unreliable information about the location of the object inside
the hand. When grasping, inaccuracies in the planning model
or the execution often cause the object to move differently than
was anticipated. Although the object may still settle in a stable
grasp, if not accounted for, these deviations may negatively
affect the outcome of a task. For example, the ketchup bottle
in Fig. 1 would fall over if its unintended tilt during the grasp
was not compensated before releasing it.
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Traditionally, object localization is performed from visual
data, for example by Ulrich et al. [1], who used monoc-
ular camera images to recognize objects from their known
3D geometry. However, during object manipulation, these
methods may suffer from occlusions of the object by the
manipulator. Recognizing this problem, Bimbo et al. proposed
several methods that combined visual information with other
sensor modalities. While the iterative optimization algorithm
in [2] fused information from vision, tactile sensors and joint
encoders, the method presented in [3] estimated the object
pose solely from tactile and force sensing, requiring visual data
only for the initialization of the object pose. Similarly, in [4],
Zhang et al. proposed a particle filter that incorporates tactile
sensor data to improve the object tracking during periods
of visual occlusion. At the same time they were able to
estimate dynamic parameters of their model. [5], [6] built
on this work, presenting probabilistic frameworks for the
dynamic system state estimation. In addition to the object
pose, Corcoran et al. [7] used a particle filter to estimate the
shape of an unknown object through tactile sensing. In [8],
information from the high resolution GelSight contact sensor
was fused with RGB-D visual data to track objects using a
point-cloud-based approach. Schmidt et al. [9], on the other
hand, combined depth-only vision with physical constraints
to solve the in-hand localization problem. Another popular
approach was presented by Hebert et al. [10], who fused stereo
vision with force-torque and joint position measurements to
determine the object pose.

Our approach differs from these methods in that it only
relies on joint position measurements as the minimal set of
sensor inputs. Depending on the manipulation scenario, the
estimation from this data may already be sufficient to solve

Fig. 1. Left: In-hand object pose estimation from joint position measurements
(blue) and fused with visual features from a monocular camera image (green).
Right: Knowledge about the scene.
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(a) Initial estimation
of an object grasp

(b) Correction with
finger positions

(c) Prediction of
object motion

(d) Correction with
finger torques

(e) Feature extraction
from camera image

(f) Correction with
visual feature

Fig. 2. (a) Initial estimation of an object grasp including ground truth (dashed). (b) Correction of the object pose to resolve the collisions. (c) Pose prediction
from finger motions. (d) Corrected pose from an inferred contact from joint torques. (e) Camera view of the grasp and an extracted object feature m. (f)
Corrected object pose to match the pixel coordinates of the visual feature.

a task that otherwise would fail. Estimating the pose of the
tilted ketchup bottle in Fig. 1 from joint positions (blue) alone
is enough to make sure that it does not fall when released.

At the same time, the proposed method allows the integra-
tion of additional sensor information. Joint torque measure-
ments, if available, are used to infer contacts, without requiring
additional tactile sensors. Visual features are extracted and
fused from monocular camera images, offering a sensor-
minimal option to integrate visual data, even if only small
parts of the object are visible. Aligned with features from the
camera image, the combined estimation (green) in Fig. 1 is
able to precisely localize the ketchup bottle.

The proposed method continues our previous work on in-
hand localization. Similar to [11], the formulation of lineariz-
able motion and measurement models allow the probabilistic
fusion of the sensor data with an extended Kalman filter.
Compared to the preceding work in [12], which presented a
particle filter solution, the EKF offers faster convergence at
reduced computational cost.

The outline of the paper is as follows. Section II describes
the estimation problem and gives an intuition about how the
different types of measurements are used. Subsequently, Sec-
tion III focuses on the implementation of these concepts. The
experiments that were conducted to validate the method and
compare the different types of measurements, are illustrated
in Section IV. Finally, Section V gives a brief summary of the
work, as well as concluding remarks.

II. PROBLEM DESCRIPTION AND MAIN CONCEPT

This work is concerned with the estimation of the grasp state
of a manipulated object. Primarily, this consists of identifying
contacts between the manipulator and the object, as well as
estimating the pose of the object. This section will give an
intuition of how to use different types of measurements in
order to inform this process.

Kinematic measurements: Fig. 2(a) illustrates a simple
manipulation problem. An object is held by a manipulator
using its three fingers. The assumed pose differs from the
ground truth, represented by the dashed line. Given incorrect
assumptions about the pose of the object and the finger links,
the object is in collision with two of the fingers of the
manipulator. Since this is physically not possible, without
further information, it can be inferred that either the estimated

pose of the object or the assumed pose of the finger links
in collision are incorrect. An update to the estimated grasp
state can resolve this collision by moving the object and/or
the fingers, as illustrated in Fig. 2(b). While still not perfect,
this correction moves the estimated object pose closer to the
ground truth.

Furthermore, if the fingers are actively repositioned, the
motion of the object can be predicted as well. Fig. 2(c) shows
how the rotation of the object is inferred from the displacement
of the fingers by mapping the finger motions to the object
motion using the estimated contact points.

This example illustrates the information and assumptions
that are necessary in order to estimate the grasp state from
kinematic measurements. First, the object has to be rigid, of
known geometry and an (inaccurate) initial estimate of the
object pose has to be available. This, for example, can be
provided by a vision system previous to the manipulation.
During the manipulation, occlusions of the object by the hand
make it much more challenging to localize purely from vision.
Second, all parts of the hand have to be rigid, of known
geometry and (inaccurate) measurements of the poses of the
finger links have to be available. The poses of the finger
links are calculated from the joint angles, using a kinematic
description of the fingers.

Torque measurements: In the same way that kinematic
measurements provide information about the position of con-
tacts between the object and the manipulator, torque mea-
surements allow the estimation of the forces that are applied
through these contacts. Fig. 2(d) highlights the torques that
are applied to the joints of one of the fingers when grasping
the object. Given a kinematic description of the fingers and
an estimation of possible contact positions, the direction and
magnitude of the contact forces can be inferred. In addi-
tion to estimating the contact forces of known contacts, this
also allows the detection of new contacts. Similarly to the
kinematic contacts that were inferred from colliding bodies,
these torque contacts can be used to correct the object and/or
finger positions. If there is a contact between the object and a
finger link, these two bodies have to be in touch. Therefore,
as illustrated in Fig. 2(d), by satisfying this constraint, the
estimated object and finger poses can be improved.

Visual features: Combining kinematic and torque mea-
surements improved the estimated grasp state in Fig. 2(d)
and brought it closer to the ground truth. Unfortunately, the
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Fig. 3. Illustration and quantities of a two finger grasp of an object.

estimation of the object pose is not fully constrained by the
finger measurements in the vertical direction. However, this
aspect of the estimation can be improved already with very
sparse visual information. If there are characteristic features
of the object that can be detected on a camera image, the pixel
coordinates of these features help to align the estimated object.
For example, if the upper-right corner of the object in Fig. 2(e)
is detected in a camera image, the estimated object pose can
be corrected. These characteristic features have to be either
known beforehand or automatically extracted and matched to
a virtual camera image of the estimated scene. Fig. 2(f) shows
the result of the correction.

In summary, the integration of visual features requires that a
monocular camera feed is available and that object features can
be extracted and matched to the estimated state of the scene.
Additionally, the camera transformation has to be known in
order to relate 2D pixel coordinates to 3D points on the object.

III. IMPLEMENTATION

After the previous section gave some intuition about how
different types of measurements can inform the estimated
grasp state, this section describes the actual implementation of
these concepts, starting with the estimation from joint position
measurements.

A. Kinematic Measurements

Definitions: Fig. 3 illustrates a manipulated object, while
also highlighting the most important quantities of the grasp.
The pose of the object is x ∈ R6. It represents the translation
and rotation, described in Euler angles, of an object fixed
frame {O} w.r.t. a palm fixed frame {P}. Fixed to each finger
link with index j is a frame {F [j]}. The pose of these frames
w.r.t. {P} can be calculated from the vector of joint positions,
q ∈ Rm, using the forward kinematics of the fingers. The
number of joints is denoted by m.

The position of a contact with index i between a finger
link and the object is denoted by c[i] ∈ R3 and expressed in
{P}. If there is some distance between the object and the link,
c
[i]
o ∈ R3 and c[i]f ∈ R3, both described in {P}, denote the two

points on the surface of the object and on the link, respectively,
that are closest. Similarly, c[i]o and c

[i]
f can be expressed for

two colliding bodies, where c[i]f − c
[i]
o is the smallest possible

displacement to resolve the collision.
Contact detection: Section 2 described how the estimated

grasp state should be corrected if finger links are penetrating
the object. However, before this correction is possible, these
collisions have to be identified. A wide range of methods have
been proposed to determine if two geometric bodies are in
collision. For this work, a modified version of the Gilber-
Johnson-Keerthi (GJK) algorithm was used [13]. Given the
poses and 3D meshes of the two bodies, this version of the
GJK algorithm not only returns the information if the bodies
are touching. It also calculates the two contact points, c[i]o
and c

[i]
f , as they were previously introduced. Therefore, the

distance between these two points, d[i] = ‖c[i]f −c
[i]
o ‖, describes

either the smallest distance or penetration depth of the two
bodies. A finger link is considered to be in contact with
the object if d[i] < 0. Distance calculations of non-convex
geometries are realized by decomposing them into convex
pieces, since the core GJK algorithm is only applicable to
convex bodies.

Extended Kalman filter: The central part of the proposed
method is an extended Kalman filter (EKF) [14]. It allows the
recursive incorporation of new measurements in a probabilistic
manner. At any time step it provides the current best estimate
of the grasp state including its covariance. Furthermore, it
accounts for inaccuracies in the measurements and the initial
estimate of the grasp state.

The most important quantities of the EKF are the mean, y,
and covariance, P , of the estimated grasp state. For the esti-
mation from kinematic measurements y at time t is comprised
of two components:

yt =

(
xt
q̃t

)
(1)

namely the pose of the object, xt, and a vector of joint position
biases, q̃t ∈ Rm. The biases are used to estimate constant
errors in the joint position measurements.

The initial value y0 at t = 0 has to be provided, including
its initial uncertainty, P0. The initial object pose, x0, can for
example be obtained by a visual localization system, which
is able to detect the object before being hindered by hand
occlusions. The initial covariances of the object pose accounts
for inaccuracies in this method.

The joint biases q̃0 may be initialized to zero if no additional
information is available. However, the respective covariance
should be non-zero if inaccurate joint measurements are to be
expected.

The first part of the EKF loop is the prediction step. In this
case, its purpose is to relate motions of the fingers to those of
the object. The appropriate control vector, u, for this task is
the vector of joint velocities:

ut = q̇t (2)

The joint velocities can either be measured or calculated
discretely. In the EKF framework, the state at time t is
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described by the sum of a motion model, f , and zero mean
Gaussian motion disturbances, w:

yt = f(yt−1, ut) + wt (3)

Using these definitions, the mean and covariance of the state
can be predicted as follows [14]:

yt = f(yt−1, ut) (4)

P t = Ft−1Pt−1F
T
t−1 +Qt (5)

where Qt is the covariance of wt and:

Ft =
∂f

∂y

∣∣∣∣
yt−1,ut

(6)

Joint velocities can be related to object twists using the
grasp matrix G ∈ R6×3n and the hand Jacobian J ∈ R3n×m

for hard-finger contacts [15], with n being the number of
contacts that have been identified between the fingers and the
object using the GJK algorithm:

ẋt = WG+Jq̇t (7)

where G+ is the Moore-Penrose inverse of G and W is the
matrix that maps the object twist to changes in its position
and Euler angles.

The joint biases, q̃t, remain unaffected by the prediction.
Therefore, the complete motion model can be expressed as
follows:

f(yt−1, ut) = yt−1 +

(
WG+J
0m×1

)
ut∆t (8)

where ∆t is the time between two EKF steps.
This model is able to predict the object motion, while

assuming that the position of the contact points on the surface
of the object and the finger do not change. Of course, this
assumption is not correct for rolling or slipping contacts. The
errors caused by this assumption can be reduced by using more
complex contact and prediction models. In any case, it will be
corrected in the update step.

The update step is the second part of the EKF loop. Its
purpose is to resolve incorrect alignments between the esti-
mated poses of the object and finger links. Collisions between
these bodies can be caused by errors in the initial object pose
or inaccuracies in the finger measurements. Additionally, the
prediction may cause the object and fingers to penetrate or
separate by ignoring the rolling and slipping of contacts.

The magnitude of these misalignments can be described by
the distance or penetration depth of the bodies. As illustrated
in Fig. 3, this can be expressed by the difference between c[i]o
and c[i]f . If the object and a finger link are touching at contact
i, then the difference between c[i]o and c[i]f has to be zero:

0 = c
[i]
f − c

[i]
o (9)

This constraint shall be enforced by the update step of the
EKF. In the EKF framework, measurements are described by
the sum of a measurement model, z, and zero mean Gaussian
measurement disturbances, v:

zt = h(yt) + vt (10)

The measurement model is then used in the update equations
to correct the mean and covariance of the state [14]:

yt = yt +Kt(zt − h(yt)) (11)

Pt = (I −KtHt)P t (12)

with:

Ht =
∂h

∂y

∣∣∣∣
yt

(13)

Kt = P tH
T
t (HtP tH

T
t +Rt) (14)

where Rt is the covariance of vt.
Constraints, such as the one that is expressed in Eq. (9), can

be modeled as perfect measurements in the EKF. If we assume
that there is a contact of index i, where the object touches a
link, then the measurable distance between c[i]o and c[i]f has to
be zero. Therefore, it follows that z[i]t = 0. Expressed for all
n contacts, the complete measurement vector can be written
as:

zt = 03n×1 (15)

The value of the measurement model at time t is expressed
by the difference between the two contact vectors:

h(yt) = cf − co (16)

The consequence of this formulation is that Ht in Eq. (12)
cannot be directly obtained by deriving ht w.r.t. yt. While co
and cf are determined by the current estimate of the grasp
state, they are not obtained from a differentiable function.
Instead they are the result of the iterative GJK algorithm.
However, as was described in the EKF prediction step, the
velocities of contact points on the object can be related to the
object twist using the grasp matrix G:

∂co
∂x

= GW−1 (17)

Similarly, the velocities of contact points on the finger can
be related to the joint velocities using the hand Jacobian J .
It follows that this relation also applies w.r.t. changes in the
joint biases:

∂cf
∂q̃

= J (18)

The complete Ht matrix combines both partial derivatives:

Ht =
(
−GW−1 J

)
(19)

B. Torque Measurements

This subsection describes how the algorithm can be im-
proved by inferring additional contacts from torque measure-
ments in the finger joints.

Definitions: In addition to the kinematic quantities, Fig.
3 also shows the torques that are applied to each joint. The
vector of all joint torques is denoted by τ ∈ Rm. The force
that is applied to the object through contact i is denoted by
λ[i] ∈ R3.

Contact detection: If a finger link is touching the object,
it applies a force to it, transmitted through the contact. The
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Fig. 4. Left: Illustration of a partial camera view of the grasp. Right: Matching
virtual view of the estimated state of the scene.

magnitude and direction of the vector of all forces can be
estimated from the measured joint torques, using the hand
Jacobian, J :

λ = (JT )+τ (20)

Whether to consider contact i in the EKF is decided by
two factors. First, λ

[i]
has to lie inside the friction cone of

the contact. If the angle of the friction cone is not known,
it can be conservatively chosen, for example 45◦. Second,
the magnitude of the force is considered in order to avoid
false positives. Only contacts with a force that is greater than
an empirical threshold, for example 5 N, are included in the
estimation. Tactile sensors could be included in a similar way
to provide additional contact information.

C. Visual Features

The integration of position and torque measurements con-
strain the pose of the object. However, these measurements
alone are not always sufficient to fully constrain the pose esti-
mation. In such cases, already very sparse visual information
helps to improve the assumed location of the object.

Definitions: Fig. 4 shows two similar scenes. The left figure
illustrates the image from a monocular camera that partially
observes an object grasp. On the right is the estimated view
of the scene. A visual feature m, located at pixel coordinates
p ∈ N2, was extracted from the camera image. It is matched
to a corresponding feature in the estimated scene. The pixel
coordinates in the virtual image, p̄ ∈ N2, can be related to a
3D point on the object at xp ∈ R3 described in {O}, using
the pinhole camera model.

Feature extraction: Many methods have been proposed in
literature to extract and match visual features from images. The
experiments that were conducted as part of this work utilized
the following two procedures:

Visual markers: AprilTags [16] that are rigidly attached to
the object provide a simple way to extract features, as long
as they are not occluded. The detection of an AprilTag on the
object provides a set of four pixel coordinates, representing
the four corners of the tag. Since the pose of the tag w.r.t.
the object is known, the 3D coordinates of the features can be
easily obtained as well.

Feature detection + shape matching: Computer vision algo-
rithms can be used to extract and match features from images
without the need for dedicated markers. The procedure that

was used with the proposed method comprised of the following
steps:

1) Application of the Canny detector to the virtual and real
image to extract edge images

2) Extraction of corners from the virtual and real edge
images using the Harris corner detector

3) Extraction of characteristic contour pieces around the
corners

4) Matching of the two sets of contours pieces using the
generalized Hough transform

5) Filtering of outliers using the RANSAC algorithm
The result of this procedure is a list of features with

corresponding pixel coordinates in both the virtual and real
image. The 3D position of the features in the virtual images
can be calculating using ray tracing or a depth map of the 3D
scene.

Extended Kalman filter: For a feature of index k, the
difference between the pixel coordinates in the real image, p[k],
and those in the virtual image, p̄[k], describes the misalignment
of the object w.r.t. this feature. Therefore, the corrected esti-
mation should satisfy:

0 = p[k] − p̄[k] (21)

To realize this, the visual features can be included as an
additional measurement in the EKF. The measurement vector,
zt in Eq. (15), is extended to include the vector of the feature
pixel coordinates in the camera image:

zt =

(
03n×1

pt

)
(22)

The measurement model, h(yt) in Eq. (16), is modified to
account for the vector of pixel coordinates in the virtual image:

h(yt) =

(
cf − co
p̄t

)
(23)

In order to find the derivative of the measurement model,
Ht, p̄t has to expressed w.r.t. the pose of the object.

The pixel coordinates of a feature in the virtual image, p̄[k],
can be related to x[k]p , the estimated 3D position of the feature
on the object. The camera matrix, C ∈ R3×4, projects cx

[k]
p ,

the position described in the camera frame {C}, to p̄[k]:

s

(
p̄[k]

1

)
= C

(
cx

[k]
p

1

)
(24)

where s is a scalar factor.
The projection of the feature position described in the object

frame, {O}, can be expressed as follows:

s

(
p̄[k]

1

)
= CT−1

c To

(
x
[k]
p

1

)
(25)

where Tc denotes the transformations of {C} w.r.t. the palm
frame, {P}, and To denotes the transformation of {O} w.r.t.
{P}, which is calculated from x. Equation (25) can be derived
to obtain the partial derivative of ∂p̄[k]/∂x.

IV. VALIDATION

The proposed method was validated in a series of experi-
ments utilizing the DLR humanoid robot David [17]. In total,
five objects were manipulated using different grasps.
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Fig. 5. Experimental setup: Tracking markers on the object and the wrist
provide a ground truth of the object pose.

A. Experimental Setup

The ground truth for the experimental validation was pro-
vided by the K610 visual tracking system from Nikon. Fig. 5
illustrates the setup. All five experiments used the same set of
parameters to configure the algorithm. If not stated otherwise,
the initial pose of the object was provided by the tracking
system. The covariance of the state was initialized with 2 cm
in position, 5◦ in orientation and 5◦ in the joint biases. During
execution, the algorithm processed new measurements at a rate
of 10 Hz.

In each scenario, different types of measurements were
incorporated into the estimation in order to compare their
respective performances. Fig. 7 summarizes the results of all
experiments. For each experiment, it illustrates both the initial
and final state of the manipulation scenario, and highlights
the quality of the estimation from different combinations of
measurements. The center graphs show the estimated changes
in translation and rotation of the objects and compare them to
the ground truth from the tracking system. The terminal errors
in position and orientation at the end of the experiments are
summarized in the right graphs in Fig. 7, as well as in Table I.

In total, four combinations of measurements were evaluated.
The estimation from kinematic data, represented by the red
line, used only joint position measurements. The combination
of kinematic and torque measurements is shown in blue. The
orange line illustrates the fusion of both finger measurements
and visual features extracted from AprilTags. Finally, green
represents the estimation from finger measurements and au-
tomatically extracted visual features. The feature extraction
method is illustrated in Fig. 6.

A statistical analysis of the performance of the method, for
example to evaluate the effect of variations in the initial pose,
was not examined in the context of this paper. Future work
will extend in this direction.

B. Experiments

Exp. I: Power grasp of a ketchup bottle: The first
experiment consisted of a power grasp of a ketchup bottle,
where the fingers were commanded to close until a preset
torque limit was reached. During this grasp, the bottle tilted
inside the hand. The initial estimate of the object pose was

Fig. 6. Feature extraction: First, corner features (blue) are extracted from
both the camera (left) and virtual (right) edge images. Second, surrounding
contour pieces are used to identify matches between the features.

purposely set 20 mm higher, to illustrate the strengths and
limitations of different types of measurements.

The supplementary material of this work includes a video1

of a pick-and-place scenario using the same ketchup bottle
and grasp. The video illustrates the effect of no in-hand
localization, the estimation from joint position measurements
and the fusion with visual features, respectively, on the success
of the task execution.

Exp. II: In-hand manipulation of a brush: For the second
experiment, a brush, held in a fingertip grasp, was actively
rotated inside the hand, causing the contacts to roll on the
surface of the fingers and the object.

Exp. III: Push and grasp of a water bottle: The third
experiment was a power grasp of a water bottle. It highlights
two additional aspects of the proposed method. First, before
grasping the object, it was pushed on the table, as can be seen
in the change of y in the respective graph in Fig. 7. Second, the
water bottle is mostly transparent. Combined with occlusions
by the fingers, this makes it very challenging to estimate the
object pose solely using RGB camera vision.

Exp. IV: Grasp of a free-form shampoo bottle: While
the previous objects were either cylindrical or prismatic, the
shampoo bottle in the fourth experiment has a less common
shape. Furthermore, the grasp of the object was neither a
power grasp, nor a fingertip grasp.

Exp. V: Fingertip grasp and manipulation of a pen:
The final experiment consisted of the fingertip grasp and
manipulation of a pen on a table. After grasping, the pen
was rotated twice back and forth. This object was chosen
to illustrate the application of the proposed method to small
objects. Since the pen was to small to attach the ground truth
markers or an AprilTag, the respective figures in Fig. 7 only
show three lines and do not include an illustration of the
terminal estimation errors. The initial pose of the pen was
manually set, placing it flat on the table and roughly aligning
it with the view from the robot camera.

1In the video, the robot arm is first executing a preset trajectory, which
ensures that the ketchup bottle is properly placed inside the hand, even if the
initial object pose was not well known. Next, the hand is torque controlled
to robustly grasp the object, however, tilting it in the process. Based on the
estimated object pose, the arm is then moved to place the object. Relying
only on the initial assumption of the pose causes the object to fall.
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TABLE I
TERMINAL ABSOLUTE ERRORS IN POSITION AND ORIENTATION

Joint Positions AprilTag Extracted
Positions +Torques Features Features

Exp. I: Ketchup
Position in [mm] 29.3 26.6 20.2 11.1
Orientation in [deg] 22.9 9.0 7.0 11.2

Exp. II: Brush
Position in [mm] 37.6 22.7 13.5 13.7
Orientation in [deg] 26.5 10.8 10.1 11.1

Exp. III: Water
Position in [mm] 28.6 22.4 16.0 17.4
Orientation in [deg] 19.9 9.5 11.2 26.9

Exp. IV: Shampoo
Position in [mm] 34.4 15.9 8.4 8.5
Orientation in [deg] 22.1 14.7 6.8 10.4

C. Discussion

Both Exp. I and Exp. III show that the estimation from
kinematic data is able to approximately track the motion of
objects during power grasps. While not as precise as the
combination with other measurements, the estimated pose can
be sufficient to ensure the successful execution of a task, i.e.
compensating the tilt of a bottle before placing it. However, for
the grasps in Exp. II and Exp. IV, which rely more on fingertip
contacts, joint position measurements alone are insufficient.
Since these grasps are much less kinematically constrained
than power grasps, the inclusion of torque measurements,
which improves the contact detection and maintenance, greatly
reduces the estimation error.

The estimated joint position biases, when using both finger
measurements, were in the range of +/- 20◦.

The limitation of both types of finger measurements is
their inability to constrain the object pose in all degrees
of freedom. For example, both the ketchup bottle in Exp.
I and the water bottle in Exp. III are not constrained by
the fingers along (z) or around (ψ) the vertical symmetry
axis of these objects. Therefore, neither DOF is observable
from finger measurements alone. However, the fusion with
visual features is able to complement the estimation in this
regard. All experiments show significant improvements from
the incorporation of visual information, both from AprilTags
and automatically extracted features. Exp. III and Exp. V also
demonstrate how even partial visual information can help to
inform the estimation. In both cases, only features on the
cap of the bottle or the pen could be reliably extracted. One
shortcoming of the proposed method for automatic feature ex-
traction is that it only considers contour features. Particularly
in Exp. III, the resulting lack of observability of ψ causes a
significant error in orientation.

V. CONCLUSION

This paper proposed a new method for the estimation and
tracking of the grasp state of a manipulated object by com-
bining position and torque measurements from the manipulator
with visual features that are extracted from a monocular cam-
era image. By fusing these different measurement modalities

using an extended Kalman filter, the algorithm is able to
resolve collisions in the estimated grasp configuration, infer
the contact configuration and align the estimated object with
the camera view of the robot. Experiments with the DLR
robot David and a variety of different objects illustrated the
performance of the method in general, as well as the strengths
and limitations of the different types of measurements.

Future work will continue in several directions. First, the
scope of the algorithm can be extended. Torque measurements
not only allow the detection of contacts, they also make it
possible to continuously estimate the contact forces. Second,
the availability of a reliable estimate of the grasp state enables
research on more complex manipulation scenarios, such as in-
hand manipulation.
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Fig. 7. Left image: Camera view of the object before the grasp including the initial estimate (green). Right image: Final view and estimation results. Center
graphs: Change in position and orientation of the ground truth (black) compared to the estimation. Right graph: Terminal absolute errors in position and
orientation at the end of the experiment. The colors denote the different combinations of measurements as follows: joint positions (red), joint positions and
torques (blue), both joint measurements and AprilTag features (orange), and both joint measurements and automatically extracted features (green).


