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An Effective Multi-Cue Positioning System for
Agricultural Robotics

Marco Imperoli∗, Ciro Potena∗, Daniele Nardi, Giorgio Grisetti and Alberto Pretto

Abstract—The self-localization capability is a crucial compo-
nent for Unmanned Ground Vehicles (UGV) in farming appli-
cations. Approaches based solely on visual cues or on low-cost
GPS are easily prone to fail in such scenarios. In this paper,
we present a robust and accurate 3D global pose estimation
framework, designed to take full advantage of heterogeneous
sensory data. By modeling the pose estimation problem as a pose
graph optimization, our approach simultaneously mitigates the
cumulative drift introduced by motion estimation systems (wheel
odometry, visual odometry, . . . ), and the noise introduced by raw
GPS readings. Along with a suitable motion model, our system
also integrates two additional types of constraints: (i) a Digital
Elevation Model and (ii) a Markov Random Field assumption.
We demonstrate how using these additional cues substantially
reduces the error along the altitude axis and, moreover, how this
benefit spreads to the other components of the state. We report
exhaustive experiments combining several sensor setups, showing
accuracy improvements ranging from 37% to 76% with respect
to the exclusive use of a GPS sensor. We show that our approach
provides accurate results even if the GPS unexpectedly changes
positioning mode. The code of our system along with the acquired
datasets are released with this paper.

Index Terms—Robotics in Agriculture and Forestry, Localiza-
tion and Sensor Fusion

SUPPLEMENTARY MATERIAL

The datasets and the project’s code are available at:
http://www.dis.uniroma1.it/~labrococo/fsd

I. INTRODUCTION

IT is commonly believed that the exploitation of au-
tonomous robots in agriculture represents one of the ap-

plications with the greatest impact on food security, sustain-
ability, reduction of chemical treatments, and minimization
of the human effort. In this context, an accurate global pose
estimation system is an essential component for an effective
farming robot in order to successfully accomplish several
tasks: (i) navigation and path planning; (ii) autonomous ground
intervention; (iii) acquisition of relevant semantic information.
However, self-localization inside an agricultural environment
is a complex task: the scene is rather homogeneous, visually
repetitive and often poor of distinguishable reference points.
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Fig. 1: (Left) The Bosch BoniRob farm robot used in the experiments; (Center)
Example of a trajectory (Dataset B, see Sec. IV) optimized by using our
system: the optimized pose graph can be then used, for example, to stitch
together the images acquired from a downward looking camera; (Right) The
obtained trajectory (red solid line) with respect to the trajectory obtained using
only the raw GPS readings (blue solid line). Both trajectories have been over-
imposed on the actual field used during the acquisition campaign.

For this reason, conventional landmark based localization
approaches can easily fail. Currently, most systems rely on
high-end Real-Time Kinematic Global Positioning Systems
(RTK-GPSs) to localize the UGV on the field with high
accuracy [1], [2]. Unfortunately, such sensors are typically
expensive and, moreover, they require at least one nearby
geo-localized ground station to work properly. On the other
hand, consumer-grade GPSs1 usually provide noisy data, thus
not guaranteeing enough accuracy and reliability for safe and
effective operations. Moreover, a GPS cannot provide the full
state estimation of the vehicle, i.e. its attitude, that is an
essential information to perform a full 3D reconstruction of the
environment. In this paper, we present a robust and accurate
3D global pose estimation system for UGVs (Unmanned
Ground Vehicles) designed to address the specific challenges
of an agricultural environment. Our system effectively fuses
several heterogeneous cues extracted from low-cost, consumer
grade sensors, by leveraging the strengths of each sensor and
the specific characteristics of the agricultural context. We cast
the global localization problem as a pose graph optimization
problem (Sec. II): the constraints between consecutive nodes
are represented by motion estimations provided by the UGV
wheel odometry, local point-cloud registration, and a visual
odometry (VO) front-end that provides a full 6D ego-motion
estimation with a small cumulative drift2. Noisy, but drift-
free GPS readings (i.e., the GPS pose solution), along with a
pitch and roll estimation extracted by using a MEMS Inertial
Measurement Units (IMU), are directly integrated as prior
nodes. Driven by the fact that both GPS and visual odometry

1In this paper, we use GPS as a synonym of the more general acronym
GNSS (Global Navigation Satellite System) since almost all GNSSs use at
least the GPS system, included the two GNSSs used in our experiments.

2In VO open-loop systems, the cumulative drift is unavoidable.
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provide poor estimates along the z-axis, i.e. the axis parallel to
the gravity vector, we propose to improve the state estimation
by introducing two additional altitude constraints:

1) An altitude prior, provided by a Digital Elevation Model
(DEM);

2) A smoothness constraint for the altitude of adjacent
nodes3.

Both the newly introduced constraints are justified by the
assumption that, in an agricultural field, the altitude varies

slowly, i.e. the soil terrain can be approximated by piece-wise
smooth surfaces. The smoothness constraints exploit the fact
that a farming robot traverses the field by following the crop
rows, hence, by using the Markov assumption, the built pose
graph can be arranged as a Markov Random Field (MRF). The
motion of the UGV is finally constrained using an Ackermann
motion model extended to the non-planar motion case. The
integration of such constraints not only improves the accuracy
of the altitude estimation, but it also positively affects the
estimate of the remaining state components, i.e. x and y (see
Sec. IV).
The optimization problem (Sec. III) is then iteratively solved
by exploiting a graph based optimization framework [3] in
a sliding-window (SW) fashion (Sec. III-C), i.e., optimizing
the sub-graphs associated to the most recent sensor readings.
The SW optimization allows to obtain on-line localization
results that approximate the results achievable by an off-line
optimization over the whole dataset.
In order to validate our approach (Sec. IV), we used and
made publicly available with this paper two novel challenging
datasets acquired using a Bosch BoniRob UGV (Fig. 1, left)
equipped with, among several others calibrated sensors, two
types of low-cost GNSSs: a Precise Point Positioning (PPP)
GPS and a consumer-grade RTK-GPS. We report exhaustive
experiments with several sensors setups, showing remarkable
results: the global localization accuracy has been improved up
to 37% and 76%, compared with the raw localization obtained
by using only the raw RTK-GPS and PPP-GPS readings,
respectively (e.g., Fig. 1). We also show that our approach
allows localizing the UGV even though the GPS performances
temporarily degrade, e.g. due to a signal loss.

A. Related Work

The problem of global pose estimation for UGVs has
been intensively investigated, especially in the context of self
driving vehicles and outdoor autonomous robots moving in
urban environments. The task is commonly approached by
integrating multiple sources of information. Most of the state-
of-the-art systems rely on IMU-aided GPS [4], while they
differ in the other sensor cues they use in the estimation
process. Cameras are used primarily in [5], [6], [7], [8], [9],
while LIDARs have been used in [10].
In urban scenarios, the presence of a prior map allows to
improve the estimation by constraining the robot motion.
[11], [12] use 2D road maps, while [13] propose to use
more rich DEMs. The sensors fusion is usually carried out

3The term ”adjacent“ denotes nodes that are temporally or spatially close.

by means of parametric [11] or discrete [10] filtering, pose
graph optimization [7], [8], set-membership positioning [13],
or hybrid topological/filtering [5].
As stated in the introduction, these approaches cannot be
used effectively in agricultural environments, since a prior
map is typically not available. In addition, crops exhibit
substantially a less stable structure than an urban environment,
and their appearance varies substantially over time. Hence,
the localization inside an agricultural field, by using a map
built on-line, turns out to be extremely difficult since stable
features are hard to find. For this reason, most of the available
localization methods for farming robots are based on expensive
global navigation satellite systems [14], [15], [2]. However,
relying on the GPS as the primary localization sensor exposes
the system to GPS related issues: potential signal losses, multi-
path, and a time-dependent accuracy influenced by the satellite
positions.
The main task of an agricultural robot is to follow the crop
rows and take some action along the way. To this extent,
English et. al [16], proposed a vision based crop-row following
system. While effective, this system assumes that the crops are
clearly visible from the camera of the robot, and this is not true
at all growth stages of the plants. Furthermore, the estimate of
a crop row tracking tends to accumulate drift along the row
direction.
To gain robustness and relax the accuracy requirements on
the GPS, it is natural to use the plants as landmarks to build
a map using a SLAM algorithm. To this extent, Cheein et al.
[17] propose to find and to use as landmarks, in a SLAM
system, olive tree stems. The stem detection algorithm uses
both camera and laser data. Other approaches are based on
the detection of specific plant species and thus they address
very specific use cases. Jin et al. [18] focus on the individual
detection of corn plants by using RGB-D data. In [1], the
authors propose a MEMS based 3D LIDAR sensor to map
an agricultural environment by means of a per-plant detection
algorithm. Gai et al. [6] proposed an algorithm that follows
leaf ridges detected in RGB images to the center. Similar ap-
proaches rely on Stem Emerging Points (SEPs) localizations:
Mitdiby et al. [19] follow sugar beet leaf contours to find
the SEPs. In [20] the authors perform machine learning-based
SEP localization in an organic carrot field. Kraemer et al.
[21] proposed an image-based plant localization method that
exploits a CNN to learn time-invariant SEPs.

B. Contributions

In this paper, we provide a robust and effective positioning
framework targeted for agricultural applications that aims to
achieve high level accuracy with low cost GPSs. We integrate
in an efficient way, a wide range of heterogeneous sensors
into a pose graph by adapting the features of each of them
to the specificity of the farming scenario. We exploit domain-
specific patterns to introduce further constraints such as a MRF
assumption and a DEM that contribute to the improvement of
the state estimation. We evaluate our system with extensive
experiments that highlight the contribution of each employed
cue. We also provide an open-source implementation of our
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code and two challenging datasets with ground truth, acquired
with a Bosch BoniRob farm robot.

II. MULTI-CUE POSE GRAPH

The challenges that must be addressed to design a robust
and accurate global pose estimation framework for farming
applications are twofold: (i) the agricultural environment ap-
pearance, being usually homogeneous and visually repetitive;
(ii) The high number of cues that have to be fused together.
In this section we describe how we formulate a robust pose
estimation procedure able to face both these issues.

 

  

 

 

 

Fig. 2: (Left) Illustration of an edge connecting two nodes xi and xj . The
error ei,j is computed between the measurement zi,j and the predicted
measurement ẑi,j . In addition, each edge encodes an information matrix Ωi,j

that represents the uncertainty of the measurement; (Right) Sliding-window
sub-graph optimization: nodes that belong to the current sub-graph are painted
in red, old nodes no more optimized are painted in blue, while nodes that will
be added in the future are painted in white.

The proposed system handles the global pose estimation
problem as a pose graph optimization problem. A pose graph
is a special case of factor graph4, where the factors 〈·〉 are
only connected to variables (i.e., nodes) pairs, and variables
are only represented by robot poses. For this reason, it is
common to represent each factor with an edge. Solving a
factor graph means finding a configuration of the nodes for
which the likelihood of the actual measurements is maximal.
Since we assume that all the involved noises follow a Gaussian
distribution, we can solve this problem by employing an
iterative least square approach.
We define X = {x0, ..., xN−1} as the vector of graph nodes
that represents the robot poses at discrete points in time,
where each xi = (Ti, Ri) is represented by the full 3D
pose in terms of a translation vector Ti = [tx,i ty,i tz,i]

′

and, using the axis-angle representation, an orientation vector
Ri = [rx,i ry,i rz,i]

′, both in R3. This pose is defined with
respect to a global reference centered in x05. We denote with z
the sensor measurements that can be related to pairs or single
nodes. Let zi,j be a relative motion measurement between
nodes xi and xj , while zi be a global pose measurement
associated to the node xi. Additionally, let Ωi,j and Ωi repre-
sent the information matrices encoding the reliability of such
measurements, respectively. From the poses of two nodes xi
and xj , it is possible to compute the expected relative motion
measurement ẑi,j and the expected global measurement ẑi (see
Fig. 2, left). We formulate the errors between those quantities
as:

ei,j = zi,j − ẑi,j , ei = zi − ẑi, (1)

4A factor graph is a bipartite graph where nodes encode either variables or
measurements, namely the factors.

5We transform each global measurement (e.g., GPS measurements) in the
reference frame x0.

Fig. 3: Overview of the built pose graph. Solid arrows represent graph edges,
that encode conditional dependencies between nodes, dotted arrows temporal
relationships between nodes. For the sake of clarity, we show here only
the edges directly connected with the node xi, by representing only one
instance for each class of edges: (i) the binary non directed MRF constraint
〈eMRF

i,i+1 ,ΩMRF
i,i+1 〉; (ii) the binary directed edge 〈eXi,i+1,Ω

X
i,i+1〉 induced

from sensor X ∈ {V O,WO,AMM,LID}; (iii) the unary edge 〈eYi ,ΩYi 〉
induced by sensor Y ∈ {GPS,DEM, IMU}. We superimposed the graph
on a cultivated field to remark the relationship between the graph structure
and the crop rows arrangement.

Thus, for a general sensor X providing a relative infor-
mation, we can characterize an edge (i.e., a binary factor
〈eXi,i+1,Ω

X
i,i+1〉) by the error eXi,i+1 and the information matrix

ΩXi,j of the measurement, as described in [22]. In other
words, an edge represents the relative pose constraint between
two nodes (Fig. 2, left). In order to take into account also
global pose information, we use unary constraints, namely
a measurement that constrains a single node. Hence, for
a general sensor Y providing an absolute information, we
define 〈eYi ,Ω

Y
i 〉 as the prior edge (i.e., an unary factor)

induced by the sensor Y on node xi. Fig. 3 depicts a portion
of a pose graph highlighting both unary and binary edges.
Each edge acts as a directed spring with elasticity inversely
proportional to the relative information matrix associated with
the measurement that generates the link. Our pose graph is
built by adding an edge for each sensor reading, for both
relative (e.g., wheel odometry readings) and global (e.g., GPS
readings) information. In addition, we propose to integrate
other prior information that exploit both the specific target
environment and the assumptions we made. In the following,
we report the full list of edges exploited in this work, divided
between local (relative) and global measurements (we report
in brackets the acronyms used in Fig. 3):

Local measurements: Wheel odometry measurements
(WO), Visual odometry estimations (VO), Elevation con-
straints between adjacent nodes (MRF), Ackermann motion
model (AMM), Point-clouds local registration (LID).

Global measurements: GPS readings (GPS), Digital Ele-
vation Model data (DEM), IMU readings (IMU).

We define 〈eV O
i,i+1,Ω

V O
i,i+1〉 as the relative constraint induced

by a visual odometry algorithm, 〈eWO
i,i+1,Ω

WO
i,i+1〉 as the relative

constraint induced by the wheel odometry, and 〈eLID
i,i+1,Ω

LID
i,i+1〉

as the relative constraint obtained by aligning the local point-
clouds perceived by the 3D LIDAR sensor.

Often, GPS and visual odometry provide poor estimates of
the robot position along the z-axis (i.e, the axis that represents
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its elevation). In the GPS case, this low accuracy is mainly
due to the Dilution of Precision, multipath or atmospheric
disturbances, while in the visual odometry this is due to the
3D locations of the tracked points. In a typical agricultural
scenario most of the visual features belong to the ground plane.
Hence, the small displacement of the features along the z-axis
may cause a considerable drift. On the other hand, agricultural
fields usually present locally flat ground levels and, moreover,
a farming robot usually traverses the field by following the
crop rows. Driven by these observations, we enforce the local
ground smoothness assumption by introducing an additional
type of local constraints that penalizes the distance along the
z-coordinate between adjacent nodes. Therefore, the built pose
graph can be augmented by a 4-connected MRF [23]: each
node is conditionally connected with the previous and the
next nodes in the current crop row, and with the spatially
closest nodes that belong to the previous and next crop rows,
respectively. We refer to this constraint as 〈eMRF

i,i+1 ,Ω
MRF
i,i+1 〉 in

Fig. 3 (e.g., the set {xi−1, xi, xi+1, xi−m, xi+n}). We then
add a further type of local constraint based on the Ackermann
steering model, that assumes that the robot is moving on a
plane. In this work, we relax this assumption to local planar
motions between temporal adjacent nodes. Such a motion
plane is updated with the attitude estimation of the subsequent
node. We integrate this constraint by means of a new type of
edge, namely 〈eAMM

i,i+1 ,ΩAMM
i,i+1 〉.

Local constraints are intrinsically affected by a small cumu-
lative drift: to overcome this problem, we integrate in the graph
drift-free global measurements as position prior information.
In particular, we define a GPS prior zGPS

i and an IMU prior
zIMU
i with associated information matrices ΩGPS

i and ΩIMU
i .

The IMU is used as a drift-free roll and pitch reference6,
where the drift resulting from the gyroscopes integration is
compensated by using the accelerometers data.

Finally, we introduce an additional global measurement by
means of an altitude prior, provided by a DEM. A DEM
is a special type of Digital Terrain Model that represents
the elevation of the terrain at some location, by means of a
regularly spaced grid of elevation points [24]. The DEM maps
a 2D coordinate to an absolute elevation. Since we assume
that the altitude varies slowly, we can use the current position
estimate Ti (i.e., the tx,i and ty,i components) to query the
DEM for a reliable altitude estimation zDEM,i = f(tx,i, ty,i),
with associated information matrix ΩDEM

i . The cost function
is then assembled as follows:

Ji =

N−1∑
i=1

(∑
X
eXi,i−1ΩXi,i−1e

X ′

i,i−1︸ ︷︷ ︸
Binary constraints

+
∑
Y
eYi ΩYi e

Y′

i︸ ︷︷ ︸
Unary constraints

+

∑
j∈Ni

eMRF
i,j ΩMRF

i,j eMRF ′

i,j︸ ︷︷ ︸
MRF constraint

)
(2)

6We experienced that integrating the full inertial information inside the
optimization did not positively affect the state estimation: our intuition is that
the slow, often unimodal, motion of our robot makes the IMU biases difficult
to estimate and sometimes predominant over the motion components.

where X and Y represent respectively the set of binary and
unary constraints defined above (see Fig. 3), and Ni stands for
the 4-connected neighborhood of the node xi.

III. POSE GRAPH OPTIMIZATION

In this section, we focus on the solution of the cost
function reported in Eq. 2, describing the error computation,
the weighting factors assignment procedure and the on-line
and off-line versions of the optimization. We finally report
some key implementation insights.

A. Error Computation

For each measurement z, given the current graph configu-
ration, we need to provide a prediction ẑ in order to compute
errors in Eq. 2. ẑ represents the expected measurement, given
a configuration of the nodes, which are involved in the
constraint. Usually, for a binary constraint, this prediction is
the relative transformation between the nodes xi and xj , while
for an unary constraint it is just the full state xi or a subset
of its components. We define Xi as a general homogeneous
transformation matrix related to the full state of the node xi
(e.g., the homogeneous rigid body transformation generated
from Ti and Ri) and Φ(·) as a generic mapping function from
Xi to a vector; now, we can express ẑi,j and ẑi as:

ẑi,j = Φ(X−1i · Xj), ẑi = Φ(Xi) (3)

In this work not all the constraints belong to SE(3): indeed,
most of used sensors (e.g., WO, IMU) can only observe
a portion of the full state encoded in x. Therefore, in the
following, we will show how we obtain the expected ẑ for each
involved cue (for some components, we omit the subscripts i
and j by using the relative translations dt and rotations dr
between adjacent nodes):

VO and LID: these front-ends provide the full 6D motion:
we build ẑV O and ẑLID by computing the relative transfor-
mation between the two connected nodes as in Eq. 3;

WO: the robot odometry provides the planar motion by
means of a roto-translation zWO = (dtx, dty, drz): we build
ẑWO as Φ(X−1i ·Xj)|tx,ty,rz , the subscripts after Φ(·) specify
that the map to the vector ẑ involves only such components;

MRF and DEM: they constrain the altitude of the robot,
we obtain the estimated measurements as:

ẑMRF
i,j = (0, 0, tz,i − tz,j , 0,0, 0) (4a)

ẑDEM
i = (0, 0, tz,i, 0, 0, 0) (4b)

GPS: this sensor only provides the robot position:

ẑGPS
i = (Ti, 03×1) (5)

IMU: from this measurement we actually exploit only
the roll and pitch angles, being the rotation around the z
axis provided by the IMU usually affected by not negligible
inaccuracies. Therefore, we obtain ẑIMU

i = Φ(Xi)|rx,i,ry,i
;

AMM: we formulate such a constraint by a composition
of two transformation matrices. The first one encodes a roto-
translation of the robot around the so called Instantaneous
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Center of Rotation (ICR). We follow the same formulation
presented in [25]:

X(ρ, drz) =


cos(drz

2 ) −sin(drz
2 ) 0 ρ · cos(drz

2 )

sin(drz
2 ) cos(drz

2 ) 0 ρ · sin(drz
2 )

0 0 1 0
0 0 0 1

 (6)

where ρ is the norm of the translation along dtx and dty .
Additionally, we add a further rotation along those two axes,
taking also into account the ground slope, by rotating the ideal
plane on which the vehicle steers following the Ackermann
motion model:

X(drx, dry) =

[
R(drx, dry) 01x3

03x1 1

]
(7)

Hence, we obtain ẑAMM as Φ(X(drx, dry) · X(ρ, drz)).

B. Dynamic Weight Assignment

The impact of each constraint in the final cost function
(Eq. 2) is weighted by its relative information matrix. As a
consequence, such information matrices play a crucial role in
weighting the measurements, i.e. giving much reliability to a
noisy sensor can lead to errors in the optimization phase. We
tackle this problem by dynamically assigning the information
matrix for each component as follows:

WO: we use as information matrix ΩWO
i,j the inverse of the

covariance matrix ΣWO of the robot odometry, scaled by the
magnitude of the distance and rotation traveled between the
nodes xi and xj , as explained in [26];

VO: we use the inverse of the covariance matrix ΣV O

provided as output by the visual odometry front-end, weight-
ing the rotational and translational sub-matrices (ΣV O,R and
ΣV O,T ) with two scalars λV O,R and λV O,T , experimentally
tuned. Since we do not directly tune the VO system internal
parameters, we employ these ”VO agnostic“ scaling factors
that have the analogous effects as injecting a higher sensor
noise. In the experiments, we set λV O,R = 5 and λV O,T = 1;

MRF: we set the information matrix ΩMRF
i,j =

diag(0, 0, wMRF
z , 0, 0, 0). The weight wMRF

z = λMRF /|xi −
xj |tx,ty is inversely proportional to the distance in the (x, y)
plane between the two nodes, while λMRF has been experi-
mentally tuned. λMRF = 0.8 in the experiments;

GPS: we use as information matrix ΩGPS
i , the inverse of

the covariance matrix ΣGPS provided by the GPS sensor;
AMM: we use as information matrix ΩAMM

i,j , an identity
matrix scaled by the magnitude of the traveled distance be-
tween the nodes xi and xj , similarly to the wheel odometry
constraint. This allows to model the reliability of such a
constraint as inversely proportional to the traveled distance;

IMU: we use as information matrix ΩIMU
i , the inverse of

the covariance matrix ΣIMU provided by the IMU sensor;
DEM: we set the information matrix ΩDEM

i =
diag(0, 0, wDEM

z , 0, 0, 0), where wDEM
z is empirically tuned.

In the experiments we set wDEM
z = 5;

LID: we set the information matrix ΩLID
i,j as the inverse

of the covariance matrix estimated from the transformation

provided by the registration algorithm (e.g., an ICP algo-
rithm), by using the procedure described in [27]. Such an
information matrix allows adapting the influence of the point-
cloud alignment inside the optimization process, enabling to
correctly deal also with the lack of geometrical structure on
some dimensions, e.g. in farming scenarios with small plants.

C. Sliding-Window Optimization

A re-optimization of the whole pose graph presented above,
every time a new node is added, cannot guarantee the real-time
performances required for on-line field operations, especially
when the graph contains a large amount of nodes and con-
straints. We solve this issue by employing a sliding-window
approach, namely performing the optimization procedure only
on a sub-graph that includes a sequence of recent nodes.
Each time a new node associated with the most recent sensor
readings is added to the graph, the sub-graph is updated
by adding the new node and removing its oldest one, in
a SW fashion. The optimization process is performed only
on the current sub-graph, while older nodes maintain the
state assigned during the last optimization where they were
involved. In order to preserve the MRF constraints, the size of
the sub-graph is automatically computed so that any adjacent
nodes in the previous row are included (see Fig. 2, right). A
global optimization of the whole pose graph is then carried out
off-line, using as initial guess the node states assigned on-line
using the SW approach.

D. Implementation Details

Temporal Synchronization: In the previous sections, we
tacitly assumed that all sensor measurements associated with
a graph node share the same time stamp. However, in a
real context, this is usually not true. In our implementation,
we trigger the creation of new nodes every stepWO meters
(0.3 m in our experiments), by using the wheel odometry as a
distance reference. We associate to each node synchronized
estimates of the other sensor readings, obtained by means
of linear interpolation over the closest readings of each used
sensor. This enables to associate to the same node a set of
heterogeneous sensor readings that share the same time stamp.
Visual Odometry Failures: VO systems are usually tuned
by default to provide high accuracy at the expense of the
robustness. We address this limitation by employing a simple
strategy designed to mitigate VO failures. We exploit the local
reliability of the WO: when the difference between WO and
VO is greater than a given threshold, we assume a failure of the
latter. In this case, we reduce the influence of the VO during
the pose graph optimization by downscaling its information
matrix.
Point-Cloud Registration: Point-clouds acquired by a 3D
LIDAR are typically too sparse to perform a robust alignment:
thus, we accumulate a number of LIDAR readings into a single
point-cloud by using the motion estimations provided by the
VO. The point-cloud registration is finally performed using the
Iterative Closest Point (ICP) algorithm.
Graph Optimization: We perform both the on-line and off-
line pose graph optimizations (Sec. III-C) using the Levenberg-
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Marquardt algorithm implemented in the g2o graph optimiza-
tion framework [3].

IV. EXPERIMENTS

In order to analyze the performance of our system, we col-
lected two datasets7 with different UGV steering modalities. In
Dataset A the robot follows 6 adjacent crop rows by constantly
maintaining the same global orientation, e.g. half rows have
been traversed by moving the robot backward, while in Dataset
B the robot is constantly moving in the forward direction.
Both datasets include data from the same set of sensors: (i)
wheel odometry; (ii) VI-Sensor device (stereo camera + IMU)
[28]; (iii) Velodyne VLP-16 3D LIDAR; (iv) a low cost U-
blox RTK-GPS; (v) an U-blox Precise Point Positioning (PPP)
GPS. For a comprehensive description of the UGV farm robot,
the sensors setup and the calibration procedure, we refer the
interested readers to the on-line supplementary material8.
In all our experiments, we employ Stereo DSO [29] as VO
subsystem and the ICP implementation provided by the PCL
library as point-cloud registration front-end. The IMU, the
wheel odometry and both the GPSs provide internally filtered
outputs (attitude, relative and absolute positions, respectively),
along with covariance matrices associated to the outputs in
the IMU and GPSs cases. We built the DEM of the inspected
field by using the Google Elevation API that provides, for the
target field, measurements over a regularly spaced grid with a
resolution of 10 meters. We interpolated such measurements
to provide a denser information. We acquired a ground truth
3D reference by using a LEICA laser tracker. This sensor
tracks a specific target mounted on the top of the robot and
provides a position estimation (x, y and z) with millimeter-
level accuracy. Both datasets have been acquired by using the
Bosch BoniRob farm robot (Fig. 1, left) on a field in Eschikon,
Switzerland (Fig. 1, right). In addition to these two datasets,
we have created a third dataset (Dataset C), where we simulate
a sudden RTK-GPS signal loss, e.g. due to a communication
loss between the base and the rover stations. In particular, we
simulated the accuracy losses by randomly switching for some
time to the PPP-GPS readings.

In the following, we report the quantitative results by using
the following statistics build upon the localization errors with
respect to the ground truth reference: Root Mean Square
Error (RMSE in the tables), maximum and mean absolute
error (Max and Mean), and mean absolute error along each
component (errx, erry and errz).

A. Dataset A and Dataset B

This set of experiments shows the effectiveness of the
proposed method and the benefits introduced by each cue.
We report in Tab. I the results obtained by using different
sensor combinations and optimization procedures over Dataset
A and Dataset B. The table is split according to the type
of GPS sensor used; the sensor setups that bring the overall
best results are highlighted in bold. We also compared our

7www.dis.uniroma1.it/~labrococo/fsd
8www.dis.uniroma1.it/~labrococo/fsd/ral2018sup.pdf
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Fig. 4: Dataset A, PPP-GPS: (Top) Qualitative top view comparison between
the raw GPS trajectory (left) and the optimized trajectory (right); (Bottom):
absolute x, y (left) and z (right) error plots for the same trajectories.
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Fig. 5: (Left) Dataset A, RTK-GPS: Absolute error plots for the raw GPS
trajectory and the optimized trajectory obtained by using the best sensors
configuration (see Tab. I). (Right) Dataset C, absolute error plots for the raw
GPS trajectory and the optimized trajectory (see Tab. III). The time interval
when the signal loss happens is bounded by the two dashed lines.

system with the ORB SLAM 2 system [30], a best-in-class
Visual SLAM system, with its mapping and loop closures
back-ends activated. For a fair comparison, we added the GPS
information (PPP and RTK) as a global constraint at each key-
frame triggered by ORB SLAM 2.
A first result is the positive impact of including the new pro-
posed constraints in the optimization: both the ELEV and MRF
cues individually integrated lead to noteworthy improvements
in the estimation along the z when a noisy GPS is used (PPP-
GPS case). Another remarkable result is the decreasing error
trend, almost monotonic: the more sensors we introduced in
the optimization process, the smaller the resulting RMSE
and Max errors are. This behavior occurs in both Dataset A
and Dataset B, and proves how the proposed method properly
handles all the available sources of information. Another im-
portant outcome is the relative RMSE improvement obtained
between the worst and the best set of cues, which is around the
37% for RTK case, and 76% for the PPP case; in both these
setups our system outperforms the ORB SLAM 2 system. A
noteworthy decrease of the error also happens to the Max
error statistic, respectively, 40% and 70%: this fact brings a
considerable benefit to agricultural applications, where spikes
in the location error might lead to harming crops. For the best
performing sensor setup, we also report the results obtained
by using the SW, on-line pose graph optimization procedure
(Sec. III-C): also in this case the relative improvement is
remarkable (32% and 67%, respectively), enabling a safer and
more accurate real-time UGV navigation.
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TABLE I: Error statistics in Dataset A and Dataset B by using different sensor setups and constraints for the global, off-line and the sliding-window (SW),
on-line pose graph optimization procedures. The results of the ORB SLAM 2 system (OS2 in the table) are reported for both type of GPSs.

DatasetA DatasetB
G

PS

W
O

V
O

IM
U

A
M

M

E
L

E
V

L
ID

A
R

M
R

F

SW errx erry errz Max RMSE errx erry errz Max RMSE

PP
P

0.349 0.582 1.577 2.959 1.710 0.306 0.501 1.484 2.875 1.621
X 0.311 0.520 1.537 2.954 1.630 0.246 0.416 1.424 2.829 1.504
X X 0.343 0.572 0.475 1.627 1.071 0.241 0.408 0.492 1.782 1.168
X X 0.239 0.412 0.672 1.628 0.961 0.222 0.362 1.298 2.392 1.211
X X X 0.233 0.422 0.649 1.421 0.863 0.227 0.361 1.292 2.571 1.242
X X X 0.239 0.411 0.528 1.398 0.719 0.221 0.364 1.019 2.362 1.119
X X X X 0.224 0.411 0.551 1.375 0.726 0.201 0.397 0.881 2.019 0.951
X X X X 0.222 0.389 0.531 1.281 0.729 0.229 0.407 0.652 1.613 0.829
X X X X 0.239 0.361 0.523 1.272 0.739 0.231 0.369 0.641 1.461 0.732
X X X X X 0.224 0.371 0.453 1.124 0.621 0.221 0.362 0.619 1.611 0.734
X X X X X 0.234 0.360 0.440 1.093 0.564 0.199 0.360 0.475 1.161 0.660
X X X X X X 0.234 0.342 0.311 0.921 0.422 0.198 0.361 0.463 1.121 0.604
X X X X X X 0.211 0.331 0.282 0.897 0.416 0.182 0.339 0.369 1.198 0.471
XXX XXX XXX XXX XXX XXX XXX 0.201 0.331 0.289 0.824 0.401 0.173 0.331 0.321 1.117 0.461
X X X X X X X X 0.252 0.419 0.349 0.991 0.549 0.291 0.431 0.459 1.291 0.652

OS2+GPS 0.234 0.417 0.643 1.534 0.915 0.209 0.401 0.371 2.123 1.047

R
T

K

0.059 0.051 0.121 0.431 0.128 0.054 0.062 0.091 0.322 0.122
X 0.053 0.042 0.105 0.431 0.125 0.049 0.058 0.086 0.321 0.119
X X 0.053 0.042 0.054 0.279 0.088 0.047 0.048 0.062 0.192 0.091
X X X 0.048 0.049 0.060 0.306 0.092 0.045 0.046 0.064 0.209 0.091
X X X 0.046 0.047 0.061 0.279 0.090 0.045 0.045 0.064 0.211 0.090
X X X X 0.046 0.047 0.061 0.278 0.089 0.045 0.045 0.062 0.197 0.090
X X X X 0.046 0.050 0.056 0.248 0.088 0.045 0.046 0.039 0.165 0.075
X X X X X 0.047 0.049 0.034 0.251 0.076 0.045 0.046 0.035 0.154 0.074
X X X X X X X 0.051 0.049 0.068 0.312 0.097 0.046 0.048 0.064 0.219 0.095
XXX XXX XXX XXX XXX XXX 0.045 0.048 0.034 0.260 0.075 0.044 0.046 0.034 0.151 0.073
X X X X X X X 0.053 0.051 0.042 0.272 0.084 0.051 0.051 0.035 0.172 0.084

OS2+GPS 0.051 0.045 0.059 0.293 0.097 0.051 0.054 0.068 0.231 0.102

Fig. 6: Comparison between output point-clouds: (top) without IMU and
LIDAR and (bottom) with IMU and LIDAR in the optimization.

Fig. 4 (top) depicts a qualitative top view comparison between
the raw PPP-GPS trajectory (top-left) and the trajectory (top-
right) obtained after the pose graph optimization, using the
best sensors configuration in Dataset A. The error plots
(bottom) show how the introduction of additional sensors and
constraints allows to significantly improve the pose estimation.
Similar results for Dataset A and RTK-GPS are reported in
Fig. 5 (left).
For both GPSs, the maximal error reduction happens when all
the available cues are used within the optimization procedure
except for the low cost RTK-GPS case, where the ELEV
constraint worsens the error along the z axis. Actually, the
RTK-GPS usually provides an altitude estimate, which is
more accurate than the one provided by the interpolated
DEM. It is also noteworthy to highlight the propagation of
the improvements among state dimensions: the integration of
constraints that only act on a part of the state (e.g., IMU,

LIDAR, ELEV) also positively affects the remaining state
components.
As a further qualitative evaluation, in Fig. 6 we report the
global point-cloud obtained by rendering LIDAR scans at each
estimated position, with and without the IMU and LIDAR
contributions within the optimization procedure: the attitude
estimation greatly benefits from these contributions. The run-
times of our system are reported in Tab. II, for both the off-line
and on-line, sliding-window cases.

TABLE II: Runtime performance for the global, off-line and the sliding-
window (SW), on-line pose graph optimization (Core-i7 2.7 GHz laptop).

SW #Nodes #Edges #Iters time(s)

Dataset A
786 8259 24 13.493

X 98 763 4 0.0989

Dataset B
754 8032 22 12.993

X 104 851 5 0.1131

B. Dataset C

This set of experiments is designed to prove the robustness
of the proposed system against sudden losses in the GPS
sensor accuracy. In Tab. III we report the quantitative results
of our system over Dataset C by means of RMSE and Max
errors. Even in the presence of a RTK-GPS signal loss that
lasts for more than one crop row, the best sensors setup leads to
a remarkable RMSE of 0.166 m and a relative improvement
around the 72%. Moreover, also in Dataset C the RMSE
and the Max error statistics follow the same decreasing trend
shown in Tab. I. In Fig. 5 (right) we compare the absolute
error trajectories for the best sensors configuration against the
error trajectory obtained by using only the GPS measurements:
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TABLE III: Error statistics in Dataset C by using different sensor setups and
constraints in the optimization procedure.

DatasetC
G

PS

W
O

V
O

IM
U

A
M

M

E
L

E
V

L
ID

A
R

M
R

F

Max RMSE

R
T

K
+P

PP

1.313 0.647
X 1.291 0.613
X X 1.259 0.552
X X X X 1.171 0.431
X X X X 0.882 0.356
X X X X X 0.551 0.223
X X X X 0.655 0.204
X X X X X 0.521 0.201
X X X X X X X 0.534 0.181
XXX XXX XXX XXX XXX XXX 0.419 0.168

the part where the signal loss occurs is affected by a higher
error. Another interesting observation regards the non-constant
effects related to the use of the ELEV constraint. As shown
in Tab. III, in some cases it allows to decrease the overall
error, while in other cases it worsens the estimate. The latter
happens when the pose estimation is reliable enough, i.e.
when most of the available constraints are already in use. As
explained in section IV-A, in such cases the ELEV constraint
does not provide any additional information to the optimization
procedure, while with a less accurate PPP-GPS its use is
certainly desirable.

V. CONCLUSIONS

In this paper, we present an effective global pose estimation
system for agricultural applications that leverages in a reliable
and efficient way an ensemble of cues. We take advantage from
the specificity of the scenario by introducing new constraints
exploited inside a pose graph realization that aims to enhance
the strengths of each integrated information. We report a
comprehensive set of experiments that support our claims:
the provided localization accuracy is remarkable, the accuracy
improvement well scale with the number of integrated cues,
the proposed system is able to work effectively with different
types of GPS, even in presence of signal degradations. The
open-source implementation of our system along with the
acquired datasets are made publicly available with this paper.
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