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Abstract

Real-time simultaneously localization and dense mapping is very helpful for
providing Virtual Reality and Augmented Reality for surgeons or even surgical
robots. In this paper, we propose MIS-SLAM: a complete real-time large scale
dense deformable SLAM system with stereoscope in Minimal Invasive Surgery
(MIS) based on heterogeneous computing by making full use of CPU and GPU.
Idled CPU is used to perform ORB-SLAM for providing robust global pose. Strate-
gies are taken to integrate modules from CPU and GPU. We solved the key problem
raised in previous work, that is, fast movement of scope and blurry images make
the scope tracking fail. Benefiting from improved localization, MIS-SLAM can
achieve large scale scope localizing and dense mapping in real-time. It transforms
and deforms current model and incrementally fuses new observation while keep-
ing vivid texture. In-vivo experiments conducted on publicly available datasets
presented in the form of videos demonstrate the feasibility and practicality of MIS-
SLAM for potential clinical purpose.

1 INTRODUCTION
Comparing with open surgery, Minimally Invasive Surgery (MIS) brings shortcomings
such as lack of field of view, poor localization of scope and fewer surrounding informa-
tion. Limited by these, surgeons are required to perform the intra-operations in narrow
space with elongated tools and without direct 3D vision [1]. To overcome these prob-
lems, surgeons spend large amount of time training to be familiar with doing operations
under scopes.
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SLAM (simultaneous localization and mapping) is a technique applied in robotics
for pose estimation and environment mapping. Efforts have been devoted to exploit
the feasibility of applying SLAM to localize the scope and reconstruct a sparse or
even dense soft-tissue surface. [2] and [3] adopt conventional feature based SLAM,
these are extended Kalman filter (EKF) SLAM and Parallel Tracking and Mapping
(PTAM). They improved EKF and PTAM by using threshold strategies to separate
rigid and non-rigid feature points. [4][5][6] exploit and tune a complete and widely
used large scale SLAM system named ORB-SLAM [7]. They analyze and prove that
ORB-SLAM is also suitable for scope localization in MIS. In [5], a quasi-dense map is
generated off-line based on pose imported from ORB-SLAM. Many researchers adopt
feature points for localization and sparse mapping. Contrary to feature based SLAM,
Du et al. [8] adopts dense matching SLAM which employed a special optical flow
namely Deformable Lucas-Kanade for tracking tissue surface. Aside from SLAM,
other approaches also contribute greatly to enable augmented reality (AR) and virtual
reality (VR) in MIS. [9] proposes an approach to recover 3D geometry from stereo
images. A structure from motion pipeline [10] is proposed for partial 3D surgical scene
reconstruction and localization. [11] and [12] extract whole tissue surface from stereo
or monocular images. All these approaches contribute significantly to MIS. However,
they still don’t provide a real-time complete and robust solution for localizing scope
while reconstructing dense deformable soft-tissue surfaces. All the SLAM techniques
mentioned above focus on monocular scope and fail to solve the problem of missing
scale, thus making localization not practical.

To broaden surgeons’ field of view, 3D laparoscopy, or binoculars is applied to gen-
erate two images from different viewing point so that a 3D geometry based on parallax
is created in surgeons’ mind for better understanding of the environment. Recently,
similar stereo vision is adopted by some AR devices for enhancing MIS procedures.
Therefore, it will be very helpful if stereo vision related approaches in computer vision
community could be integrated, extended and improved to recover deformable shape
in real-time while estimating the pose of the camera. In our previous work, we pro-
posed dynamic reconstruction system of deformable soft-tissue with stereo scope [13].
A warping field based on the embedded deformation nodes approach is introduced
with 3D dense shapes recovered from stereo images. With the help of general-purpose
computing on graphics processing units (GPGPU), all the processes are achieved in
real-time. Mentioned in [13], the first and most important challenge to the pipeline is
the fast movement of scope. Fast movement not only makes visual odometry unstable
but also causes blurry images and worse registrations. This issue has also been reported
in [2] and [3].

Inspired by the researches [4] [5] [6] which demonstrate the robustness of cam-
era pose estimation from ORB-SLAM, we figure out ORB-SLAM is suitable to be
improved and coupled with dense deformable SLAM. In this paper, we propose MIS-
SLAM based on our preliminary work [13] with the following major improvements:
(1) We proposed a heterogeneous framework to make full use of both GPU (dense de-
formable SLAM) and CPU (ORB-SLAM) to recover the dense deformed 3D structure
of the soft-tissues in MIS scenario. Computational power of CPU is fully exploited
to run an improved ORB-SLAM to provide complementary information to GPU mod-
ules. (2) Modules from GPU and CPU are deeply integrated to boost performance



Figure 1: The framework of MIS-SLAM. CPU is responsible for ORB-SLAM, up-
loading features, global pose and start a visualization module. GPU processes depth
estimation, registration, fusion and visualization.

and enhance the efficiency. Sparse ORB features as well as global pose are uploaded
to GPU. (3) We upgrade former model point storage system and fusion management
strategy to enhance large scale soft-tissue reconstructing. Comparing with truncated
signed distance function (TSDF) widely used in computer vision community [14] [15]
and [16], point cloud management in MIS-SLAM notably reduces memory as well as
boosts the performance. (4) Real-time visualization is achieved on GPU end. MIS-
SLAM can process large scale surface reconstruction in just one desktop in real-time.
We suggest readers to view the associate video to fully appreciate the live capabilities
of the system.

2 Technical Details

2.1 Overview of MIS-SLAM
The architecture we adopt can be divided as initial tracking and deformable tracking
and dense mapping. The initial tracking is achieved with an improved ORB-SLAM
algorithm on CPU end. Deformable tracking and dense mapping is implemented on
GPU end.

In the initial tracking step, ORB-SLAM is first launched on CPU; ORB features
and global pose are uploaded from CPU to GPU global memory. This initial global
pose significantly increases robustness of the system.

In the deformable tracking and dense mapping step, after receiving initial global
pose from CPU end, it first initializes the model with the first estimated depth. Each
time when a new observation is acquired, the matched ORB features are uploaded to
GPU. Potential visible points are extracted from the model and projected on 2D depth
images. A registration process is performed to estimate optimum global pose as well
as non-rigid warping field. Live model is then deformed to current shape according to
this transformation and fused with the new observation. We make use of the feature
called ‘Graphic Interoperability’ in Compute Unified Device Architecture (CUDA) to
directly visualize model from GPU side. Fig. 1 demonstrates the pipeline of these



processes.
Realizing the point cloud generated from stereo images are much less reliable than

depth perception sensors, we modify and update our previous approach of generating
point cloud [13] with more properties. Each point stores six domains: coordinate vvvi,
normal nnni, weight ωi, color CCCiii, time stamp ti and a boolean variable stability SSSiii. We
update original visible points selection approach to have better model to depth regis-
tration (Algorithm 1). We add ti and SSSiii and introduce model filtering technique to have
smooth model with less noisy points (Algorithm 2 and 3).

2.2 Depth estimation from stereo images
Efficient Large-scale Stereo (ELAS) [17] is adopted as the depth estimation method.
ELAS has been widely proved to achieve good result in surgical vision [18]. Fig. 2
shows the example of original depth and smoothed depth.

Original depth Smoothed depth

Figure 2: Examples of depth and smoothed depth.

2.3 Sparse key correspondences and camera pose estimation
The main issue in previous work [13] is the inaccuracy of global scope pose lead-
ing to instability of the pipeline. The deformation graph based approach is a typical
model-to-frame visual odometry process lacking additional mechanics to ensure global
pose tracking robustness. Without good camera pose initialization, dense mapping
inevitably suffers from drift or lost tracking. To improve the robustness of the sys-
tem, idled CPU is fully exploited to run ORB-SLAM for providing good initial pose
for enhancing robustness. ORB-SLAM module provides the ORB features which are
fully exploited on GPU. This strategy save computational powers on GPU: (1) Dense
Speeded Up Robust Feature (SURF) extraction and matching step in original approach
[13] is therefore not needed as we upload matched ORB features. (2) Visual Odometry
and Random sample consensus (RANSAC) on GPU end in [13] is replaced with initial
pose and ORB features from ORB-SLAM on CPU end.

2.4 Deformation
The basic idea of deformation graph is weighted average of locally rigid rotation and
transformation defined by neighboring deformation nodes, which are sparsely and



evenly scattered in space. Each source point is transformed to its target position by
several nearest embedded deformation (ED) nodes which are defined by position ggg jjj

∈R3, affine matrix AAA jjj ∈R3×3 and translation vector in ttt jjj ∈R3. Practically, we down-
sampled the reconstructed model to get nodes and initialize AAA jjj with identity matrix and
ttt jjj with zero vector. We would like to address nodes are used for describing deforma-
tion and is irrelevant of model. For any given vertex vvvi, deformed position ṽvviii is defined
by the ED nodes as:

ṽvviii = RRR
k

∑
j=1

w j(vvviii)[AAA jjj(vvviii−ggg jjj)+ggg jjj + ttt jjj]+TTT (1)

where k denotes the number of neighboring node. w j(vvviii) is quantified weight for trans-
forming vvviii exerted by each related ED node. RRR and TTT denote rigid rotation and transla-
tion. We confine the number of nearest nodes by defining the weight in Eq. 2. Defor-
mation of each point in the space is limited locally by setting the weight as:

w j(vvviii) = (1−||vvviii−ggg jjj||/dmax) (2)

where dmax is the maximum distance of the vertex to k+ 1 nearest ED node. Please
note that all the poses are in the coordinate of the first frame.

2.5 Energy function
Following our previous formulation [13], two new terms are added to ensure robustness
of global pose. The objective function formulated is composed of six terms: Rotation,
Regularization, the point-to-plane distances between the visible points and the target
scan, sparse key points correspondence and global pose (new terms) as:

argmin
RRR,TTT ,AAA111,ttt111...AAAmmm,tttmmm

wrotErot +wregEreg +wdataEdata +wcorrEcorr

+wrEr +wpEp

(3)

where m is the number of ED nodes. We follow [19] to constrain deformation graph
from unreasonable deformation with two constraints Rotation and Regularization.
All m nodes follows the two constraints.

Rotation. Erot sums the rotation error of all the matrix in the following form:

Erot =
m

∑
j=1

Rot(AAA jjj) (4)

Rot(AAA jjj) = (ccc111 · ccc222)
2 +(ccc111 · ccc333)

2 +(ccc222 · ccc333)
2+

(ccc111 · ccc111−1)2 +(ccc222 · ccc222−1)2 +(ccc333 · ccc333−1)2 (5)

where ccc111, ccc222 and ccc333 are the column vectors of the affine matrix AAA jjj.
Regularization. This term is to prevent divergence of the neighboring nodes exerts

on the overlapping space. For details, please refer to [13].



Ereg =
m

∑
i=1

k

∑
j=1

αi j||AAA jjj(gggiii−ggg jjj)+ggg jjj + ttt jjj− (gggiii + ttt iii)||2 (6)

where αi j is the weight calculated by the Euclidean distance of the two ED nodes. We
follow [19] by uniformly setting αi j to 1.
Data Term. We follow Algorithm 1 to find registrations of model points and minimize
point to plane distance of all the registered points. For each model point vvviii, if it is
registered to depth, it is assumed to be a visible point. In Algorithm 1, εd and εn are
thresholds for measuring distance and angle. P(·) is projecting 3D point to 2D pixel,
Γ(·) is lifting 2D pixel into 3D space, H(·) is converting 2D pixel from depth into 3D
normal.

After extracting registered visible points, we adopt back-projection approach as a
model-to-scan registration strategy that penalizes misalignment of the predicted visible
points vvvi (i ∈ {1, ...,N}) and current depth scan D. Data Term is sum of point-to-plane
errors in the form of:

Edata =
N

∑
i=1

(HHH(P(ṽvvi))
T (ṽvviii−Γ(P(ṽvvi)))

2 (7)

Point-to-plane distance is calculated by multiplying corresponding normal to the pixel
in depth D(·) with normal H(·). ṽvviii is the deformed position of point vvvi.

As described in [16], back-projection and point-to-plane strategies make full use of
the input depth image so that the Jacobians can be calculated in regularized 2D space
which leads to fast convergence and robustness to outliers.
Correspondence. Similar to previous work [13], we also utilize RGB information
for enhancing robustness. We first track frame-to-frame feature points and minimize
the Euclidean distance between pair-wise sparse key points generated from features
described in Section 2.3 in the following form. We substitute previous Dense SURF
with ORB features uploaded from ORB-SLAM.

Ecorr = ||ṼVV iii−−−VVV iii|||||| (8)

where ṼVV i and VVV i are the 3D points of current frame and deformed points from last
frame of ORB features.
Global Pose. We add this new term with regard to previous formulation [13]. It is
measured by the variations of rotation and transformation. First frame is fixed as the
coordinate origin. We use Euclidean distance and Euler angles to define the difference
between optimized global pose (orientation R̃RRi and position P̃PPi) and global pose (ori-
entation RRRi and position PPPi) generated by ORB-SLAM. It is presented in the following
form:

Er = ||R̃RRiii−−−RRRiii|||||| Ep = ||P̃PPiii−−−PPPiii|||||| (9)

2.6 Optimization
We adopt Algorithm 1 to find visible point set V for optimization. We follow our previ-
ous strategy [13] using Levenberg-Marquardt (LM) to solve the nonlinear optimization



problem. The efficiency is almost the same as [13] because only 6 more variables
(Global orientation and translation) are added.

Algorithm 1: Model points to depth image registration
Input: Point cloud state in last frame (position vvvi normal nnni)

Depth map in current state Dn
Distance threshold of two points εd
Normal angle threshold of two normals εn

Output: Visible points set Vn regarding to depth Dn
foreach Model point vvviii do

if D(P(vvvi)) 6= null then
if (‖vvvi−Γ(P(vvvi))‖< εd and nnniii ·HHH(P(vvvi))> cos(εn))
then

Add vvvi to Vn
end

end
end

2.7 Model update with new observation
Inspired by [20], we add new properties (time step and stability) to point management.
We fuse model with depth following Algorithm 2. After that we follow Algorithm 3 to
remove noisy model points.

The basic idea of Algorithm 2 is building three different groups of point cloud. The
original model is classified into registered (Group 1) and unregistered (Group 2) with
regard to depth image. Points in Group 1 are fused with depth image. After which
pixel from depth image that’s not registered with model points are lifted and initialized
as new observations (Group 3). All three groups are merged and form the new model.

In Algorithm 3, we apply ‘stability SSSiii’ to filter model points influenced by noisy
depth. Unstable model point is defined as point with low weight (only seen in few
times) which has not been observed for several recent frames. This point is likely a
noisy point resulting from inaccurate depth estimation. Please refer to Algorithm 3 for
how to filter points.

For a single point vvvi in nth step, fusion with new depth is achieved by:

ṽvvn+1|z =
ṽvvn|z ∗ωn +Dn+1(P(ṽvvn))

ωn +1
(10)

CCCn+1 =
CCCn ∗ωn +Cn+1(P(ṽvvn))

ωn +1
(11)

ñnnn+1 =
ñnnnωn +Nn+1(P(ṽvvn))

ωn +1
(12)

ωn+1 = min(ωn +1,ωmax) (13)



Algorithm 2: Fusion of Point cloud with depth image
Input: Model Pn−1 in last frame and current depth Dn

Distance and normal thresholds εd and εn
Output: Fused model set Pn
Step 1: Register and fuse model with depth (Group 1), the rest model are

unregistered points (Group 2)
foreach pppk ∈ Pn−1 do

Deform pppk to p̃ppk
if D(P(vvvi)) 6= null and
‖p̃ppk−Γ(P(p̃ppk))‖< εd and
nnniii ·HHH(P(p̃ppk))> cos(εn) then

Fuse p̃ppk following Eq. 10, 11, 12 and 13.
Push fused p̃ppk Group 1

else
Push p̃ppk to Group 2

end
end
Step 2: Add newly observed points (Group 3)
foreach uk ∈ Dn do

if uk is not fused in Step 1 then
Lift uk into 3D space (position (vvvi), normal(nnni), color CCCiii
Initialize color, ωi = 1, time stamp ti = i+1, stability SSSiii= False. and

pushed into Group 3
end

end
Step 3: Fuse different types of points
Merge Group 1 Group 2 Group 3 to new model Pn.

Algorithm 3: Removing noisy unstable model points
Input: Fused model set Pn

Time and weight thresholds τtime and τweight

Output: Filtered model set P′n
New node positions ggg

foreach pk ∈ Pi+1 do
if tk < (i− τtime) and ωk < τweight and SSSiii= False then

Delete pk
else

Stamp tk = i+1
if tk ≥ (i− τtime) and ωk ≥ τweight then

SSSiii= True
end

end
end
Regenerate new nodes ggg and initialize rotation AAA as identity matrix and

translation ttt as zero vector.



where ṽvvn|z is the value of deformed point ṽvvn on the z direction. ñnnn is deformed normal
nnnn. Dn, Cn and Nn are depth map, color map and normal maps in step n respectively.
ωmax is the maximum weight for each point. Different from rigid transformation where
uncertainty of all the points in 3D space are considered as equal, in the case of non-
rigid fusion, if a point is further away to the nodes of warping field, we are less likely
to believe the registered depth [14]. Therefore, we practically measure this certainty
by using the minimum distance from point to nodes and regularize it with half of the
unified node distance. Algorithm 2 and Eq. 10,11,12 and 13 show the details for point
fusion.

Our improved weighted points based method offers a number of benefits: Point
based data management is free of extent limitation. With our fusion based Algorithm
2 and noise point filter approach Algorithm 3, fused geometry can still keep its shape
smoothly while avoiding noisy input. The reconstructed geometry preserves more vivid
texture and details.

3 Results and discussion
We first validate MIS-SLAM on publicly available in-vivo stereo video datasets pro-
vided by the Hamlyn Centre for Robotic Surgery [21]. We also validate MIS-SLAM
on ex-vivo phantoms and some simulations and compare with ground truth. In in-vivo
validation, three videos with deformation and rigid scope movement are utilized. Other
videos either have no deformation or no scope motion. Please note that no extra sens-
ing data other than stereo videos from the scope is used in the our algorithm. The frame
rate and image size of in-vivo porcine dataset (model 1 in Fig. 3) is 30 frame per second
and 640×480 while the other dataset is 25 frame per second and 720×288. Distance
from camera to surface of soft-tissue is between 40 to 70 mm. In our previous research
[13], due to poor quality of obtained images and some extremely fast movement of
camera, videos tested on porcine with fast or abrupt motion cannot generate good re-
sults. In this paper, however, MIS-SLAM can process large scale with data much better
robustness. Deformations are caused by respiration and tissue-tool interactions.

3.1 Robustness enhancement
The robustness of MIS-SLAM is significantly improved when global pose from ORB-
SLAM is uploaded to GPU and employed as initial scope pose. Fig. 4 shows the
comparison between our previous work [13] and the proposed method.

One challenge facing reconstruction problem using stereoscope is the fast move-
ment of scope [13]. Configuration without global pose initialization fails to track mo-
tion when camera moves fast. Like traditional SLAM approaches, severe consequences
of fast motion are the blurry images and relevant disorder of depths. These phenomena
happen especially when current constructed model deforms to match the depth with
false edges suffering from image blurring. Fast motion is a very challenging issue be-
cause the only data source is the blurry images. ORB-SLAM, however, is a robust
feature based system even works in deformable surgery scenario [4] [5] [6]. Though



Figure 3: MIS-SLAM process different soft tissues using in-vivo datasets. Pictures
present the whole constructed model at different frames. The three videos are (from
top to bottom): Abdomen wall (1), abdomen example (2) and abdomen example (3).



Figure 4: Comparisons between our previous work [13] (First row) and current work
(Second row).

based on prior of stationary environment, it still relatively keeps global pose. Our sup-
plementary video clearly shows how initialization of global pose prevents the system
from failing to track camera pose.

3.2 Deforming the model and fusing new depth
For model 1, the point cloud density is set to 0.2mm and node density is set to 4mm.
For the model 2 and 3, the point cloud density is set to 1mm and node density is set
to 10mm. Point cloud downsampling process is carried out by setting a fixed box to
average points fill inside each 3D box. The weights for optimization are chosen as
wrot = 1000,wreg = 10000,wdata = 1,wcorr = 10,wcorr = 1,wr = 1000000,wp = 1000.
A threshold is set to extract predicted visible points with point to plane distance εd as
15mm and angle threshold εn as 10◦. We measure the error by subtracting projected
model image and the observed depth image. The maximum weight is set to 20 and
time stamp threshold is set to 10. Threshold εn and εd for point to depth registration is
set as 10 degree and 10mm (20mm for model 2/3). Truncated distance is set as 40mm
(60mm for model 2/3).

Threshold is employed to discard some frames when average errors are above due
to low-quality depth generated from blurry images. Different from previous research,
as we have good initialization of depth image, MIS-SLAM is robust to lost track. Fig. 3
shows the results of soft-tissue reconstruction of MIS-SLAM in different frames, using
3 in-vivo laparoscope datasets [21]. From the results it can be seen that the soft-tissues
are reconstructed incrementally with texture.

The average distance of back-projection registration of the three simulation scenar-
ios are 0.18mm (1), 0.13mm (2) and 0.12mm (3). Dataset with ground truth (Hamlyn



Figure 5: The Axial, Coronal, Sagittal and 3D views of the deformed model and ground
truth at the last frame (liver). The red points denote the scan of the last frame.

dataset 10/11) achieves 0.08mm, 0.21mm (Average errors).

3.3 GPU implementation and computational cost
Our system is implemented on heterogeneous computing. The ORB-SLAM runs on
CPU. The rest is executed on GPU. Initial global pose and ORB features are transferred
to GPU for further optimization. This CPU to GPU data transferring doesn’t require
much bandwidth as the amount of data is fairly small. CPU initialize OpenGL for
visualization framework but we utilize the interoperability from Nvidia’s CUDA to
directly visualize model in GPU end which saves huge amount of data transferring.
Because in most cases GPU module is slower than CPU part, we utilize first-in-last-out
feature in the ‘stack’ data structure to ensure GPU always process the latest data.

The open source ORB-SLAM is executed on desktop PC with Intel Core i7-4770K
CPU @ 3.5 GHz and 8GB RAM. We follow [4] to tune the parameters and structures.
The average tracking time is 15ms with 640x480 image resolution and 12 ms with
720x288 image resolution. As the frame rate of the three datasets are 25 or 30 fps,
ORB-SLAM can achieve real-time tracking and sparse mapping.

By parallelizing the proposed methods for GPGPU, MIS-SLAM algorithm is cur-
rently implemented in CUDA with the hardware ‘Nvidia GeForce GTX TITAN X’.
Current processing rate for each sample dataset is around 0.07s per frame. ORB-SLAM
does feature matching on CPU end, saved computation is spent on visualization. Com-
putation increases as model grows and number of nodes rise.

3.4 Validation using simulation and ex-vivo experiments
We also validate the MIS-SLAM on simulation and ex-vivo experiment. In simulation
validation process, three different soft-tissue models (heart, liver and right kidney) are
downloaded from OpenHELP [22], which are segmented from a CT scan of a healthy,



young male undergoing shock room diagnostics. The deformation of the soft-tissue
is simulated by randomly exerting 2-3 mm movement on a point with respect to the
status of the deformed model from the last frame [23]. We randomly pick up points in
the model as the accuracy is measured by averaging all the distances from the source
points to target points. Fig. 5 shows the final result of the simulation presented in axial,
coronal, sagittal and 3D maps figures. By initializing with camera pose, the overall
accuracies are improved from 0.46, 0.68, 0.82 to 0.41, 0.66, 0.62 (mm) regarding to
heart, liver and right kidney.

We also tested MIS-SLAM on two ex-vivo phantom dataset from Hamlyn [21].
As the phantom deforms periodically, we do the whole process and compare it with
the ground truth generated from CT scan. The average accuracies are 0.28mm and
0.35mm.

3.5 Limitations and discussions
One of the biggest problem in MIS-SLAM is texture blending. Results (Fig. 3 and at-
tached video) indicate that when camera moves, the brightness of visible region shows
significant illumination differences from other invisible region. Few tissues even in-
dicate blurry textures. The texture blending procedure involves pixel selection and
blending described in Fig. 1. If in perfect registration and identically fused, the re-
construction will only suffer from illuminations from different angles of light. This il-
lumination problem cause systematic difference between two images. In MIS-SLAM,
creating clean, pleasing looking texture map in our non-rigid scenario is more difficult
than static scenario. There are many other challenges in MIS-SLAM: The number of
nodes increases leading to slow optimization; the camera is very close to the tissue and
the exposure differs much as it moves, resulting in visible seams in final model; image
motion blurring is another problem due to the camera moves fast.

Another improvement will be how to design a better close loop module. ORB-
SLAM uses sparse features to relocate camera based on assumption that no relative
motion exist in environment. In surgical vision, however, the deforming scenario makes
the assumption invalid.

4 Conclusion
We propose MIS-SLAM: a complete real-time large scale dense deformable SLAM
system with stereoscope in Minimal Invasive Surgery based on heterogeneous com-
puting. We significantly improved the robustness by solving unstableness caused by
fast movement of scope and blurry images. Benefiting from robustness, MIS-SLAM
is the first SLAM system achieving large scale scope localization and dense mapping
in real-time. MIS-SLAM can potentially be useful for clinical AR or VR applications
when camera is moving relatively fast. Future work will be focused on reducing the
computational complexity when models grows and exploring an approach to balance
textures from different illumination. We will also find a way to do close loop when
previous shape is re-discovered.
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