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Sample Efficient Learning of Path Following and
Obstacle Avoidance Behavior for Quadrotors

Stefan Stevšić , Tobias Nägeli , Javier Alonso-Mora , and Otmar Hilliges

Abstract—In this letter, we propose an algorithm for the train-
ing of neural network control policies for quadrotors. The learned
control policy computes control commands directly from sensor in-
puts and is, hence, computationally efficient. An imitation learning
algorithm produces a policy that reproduces the behavior of a su-
pervisor. The supervisor provides demonstrations of path following
and collision avoidance maneuvers. Due to the generalization abil-
ity of neural networks, the resulting policy performs local collision
avoidance, while following a global reference path. The algorithm
uses a time-free model-predictive path-following controller as a
supervisor. The controller generates demonstrations by following
few example paths. This enables an easy-to-implement learning
algorithm that is robust to errors of the model used in the model-
predictive controller. The policy is trained on the real quadrotor,
which requires collision-free exploration around the example path.
An adapted version of the supervisor is used to enable exploration.
Thus, the policy can be trained from a relatively small number
of examples on the real quadrotor, making the training sample
efficient.

Index Terms—Collision avoidance, deep learning in robotics and
automation.

I. INTRODUCTION AND RELATED WORK

MANY applications of micro aerial vehicles (MAVs) re-
quire safe navigation in environments with obstacles and

therefore methods for trajectory planning and real-time collision
avoidance. Several strategies exist to make this problem com-
putationally tractable. The use of model free controllers with
path planning [1] is computationally attractive but requires con-
servative flight. Model based methods, including local receding
horizon methods such as Model Predictive Control (MPC) [2],
combining slow global planning with fast local avoidance [3],
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Fig. 1. A policy is learned from few, short local collision avoidance and path
following maneuvers (red). The learned policy generalizes to unseen scenes
and can track long guidance paths (green) through complex environments while
successfully avoiding obstacles (blue).

or avoidance via search of a motion primitive library [4] are
computationally demanding, but can achieve more aggressive
maneuvers. A theoretical analysis of the dynamical system can
provide insights in a limited number of cases [5], [6] leading
to faster computation times. These methods have limited scope,
taking into account a specific dynamics model. Furthermore,
these methods require estimation of obstacle positions from the
sensor data. In this letter, we address such issues with a novel im-
itation learning algorithm, schematically summarized in Fig. 1,
that produces control commands directly from sensor inputs.

Producing control signals directly form sensor inputs has two
main benefits. First, the algorithm does not require estimation
of obstacle positions. Second, function approximators, such as
neural networks, can be much more computationally efficient
compared to traditional planning methods [2]–[4] while still
achieving safe flight. Learning can be combined with motion
planning. Faust et al. [7] combine learning of a low level con-
troller with a path planning algorithm. This hybrid approach
shows that control for quadrotor navigation can be learned, but
still requires expensive off-line collision avoidance. Our algo-
rithm produces a controller that learns how to avoid collisions
and runs in real time.

The most general approach, to learn a controller, here called
a control policy, is model-free reinforcement learning (RL) [8],
a class of methods that learns the control policy through interac-
tion with the environment. However, these methods are sample
inefficient, requiring a large number of trials, and therefore can
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only be applied in simulation [9]. A more sample efficient op-
tion is model-based RL [10], [11], where the model parameters
are learned while the control policy is optimized. In this setting,
learning the model requires dangerous maneuvers, which can
lead to damage of the quadrotor or the environment [12]. A fi-
nal option is to learn the policy by imitating an oracle, either a
human pilot or an optimization algorithm [13]. If the oracle can
provide examples of safe maneuvers, this is the most immediate
choice to learn policies for real quadrotors.

Imitating the oracle is not a trivial task. Primarily because
data from the ideal trajectory is not enough to learn a policy,
since it does not provide examples of correcting drift from the
ideal trajectory. In [14], the policy learns to steer the quadrotor
from a human pilot demonstration. The biggest challenge was
to collect sufficient data, since it is challenging to control the
quadrotor manually. As a result, the controls were limited to
steering commands while speed and attitude were controlled
externally. We resolve this issue by learning the policy from a
trajectory optimization oracle.

Imitating a trajectory optimization oracle requires to gener-
ate data that can efficiently train the control policy. Two main
issues arise when training the policy with this approach. First,
efficiently generating training data that can produce the control
policy is not straightforward because the trajectory optimiza-
tion is computationally demanding. Thus in prior work a single
trajectory was used to compute control signals for states on
the trajectory and states close to the trajectory [15]. However,
this approach only works in simulation with a perfectly known
model. Second, the algorithm needs to work with an approxi-
mate model to be applied on a real world system. In [16], a long
horizon trajectory was followed with a short horizon Model Pre-
dictive Controller (MPC) to generate training data efficiently.
Since the model is not correct, this learning algorithm requires
a complex adaptation strategy that guides the control policy to
the desired behavior. Alternatively, one could use only a short
horizon MPC to provide samples for training of the control pol-
icy [12]. However, MPC can produce suboptimal solutions that
can lead to deadlocks or collisions during training.

We present an algorithm which produces a control policy by
learning from a Model Predictive Contouring Control (MPCC)
[17] oracle. Contrary to prior work [16], which relies on tracking
of a timed trajectory via MPC, MPCC is time-free. More specif-
ically: (i) the policy shows faster execution time compared to
non-learning approaches. (ii) MPCC allows for an easier to im-
plement training algorithm that is robust to modeling errors. In
comparison to the policy obtained by MPC, the MPCC based
policy performs better and shows faster convergence behavior.
(iii) A collision-free exploration strategy, bounding divergence
from the collision-free region during on-policy learning.

The policy can be trained using paths of arbitrary length i.e.
the planning horizon length is not a limit as in [12]. As a result
of (ii) and (iii), the algorithm is sample efficient, requiring a rel-
atively low number of trials. This results in a training algorithm
that can be executed on a real quadrotor.

II. PRELIMINARIES

A. Robot Model

The full state of a quadrotor is 12-dimensional, consisting
of quadortor position, velocity, rotation and angular velocity.

Fig. 2. (Left) Coordinate systems: Global and quadrotor coordinate systems.
The quadrotor coordinate system is denoted with a subscript q. Policy inputs
and outputs are always calculated in the quadrotor frame. (Right) Contouring
error approximation: Illustration of the real contouring and lag errors (green)
as well as the approximations (orange) used in our MPCC implementation.

However, in our experiments we use a 8-dimensional state [18],
based on the Parrot Bebop2 SDK inputs. The state is defined by
the position p ∈ R3 , velocity v ∈ R2 in x, y directions, and roll
φ, pitch θ and yaw ψ:

x = [p,v, φ, θ, ψ] ∈ R8 . (1)

The set of feasible states is denoted by X . The control inputs
to the system are given by u = [vz , φd, θd , ψ̇d ] ∈ R4 , where vz
is the velocity of the quadrotor in z direction, φd and θd are
the desired roll and pitch angles of the quadrotor. The rotational
velocity around the z-body axis is set by ψ̇d . The set of fea-
sible inputs is denoted by U . Sets U and X are described in
Section III-B1. We use a first order low-pass Euler approxima-
tion of the quadrotor dynamics. Notice that velocities vz and
ψ̇d are directly controlled. The velocity vz directly controls the
position dynamics in z direction ṗ = [v, vz ]. The dynamics of
the state velocity vector are:

v̇ = R(ψ)
[− tan (φ)

tan (θ)

]
ag − cdv, (2)

where ag = 9.81ms2 is the earth’s gravity, R(ψ) ∈ SO(2) is the
rotation matrix only containing the yaw rotation of the quadrotor
and cd is the drag coefficient at low speeds. The rotational
dynamics of the quadrotor are given by

φ̇ =
1
τa

(φd − φ), θ̇ =
1
τa

(θd − θ) and ψ̇ = ψ̇d , (3)

where τa is the time constant of a low-pass filter. As a result,
the position p and velocity v cannot change instantaneously.

B. Control Policy

Our work is concerned with dynamical systems, such as
quadrotors, described by a state vector x and controlled via an
input vector u (Fig. 2). We assume that the system has sensors,
such as a laser range finder, odometry etc. We denote sensor
readings at time t with an observation vector ot .

Dynamical systems are typically controlled via a manually
tuned control law e.g. PID or LQR control. In contrast, we ap-
proximate the control law by learning a control policy from
examples. The policy π(ot) is a function which, at every time
step t, takes the vector ot as input and outputs the system control
inputs uπ = π(ot). The control inputs uπ are independent of
the time step, producing the same control vector for the same ob-
servation, i.e. the control policy is stationary and deterministic.
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Fig. 3. (Left) Off-policy training example. Observation data is collected during
training while following the example path si with the MPCC controller. (Right)
Global path following. The policy produces control inputs based on the current
observation vector.

We learn a policy for local collision avoidance, while follow-
ing a global guidance g, coarsely describing the desired robot
trajectory (cf. Fig. 1, bottom). In our case, the guidance g is a
natural cubic spline. The guidance may be computed off-line
based on mission goals or given by human and does not need to
be collision-free. For example, maps provide information about
walls or buildings, while obstacles like trees or humans are not
represented. Thus, a control law that locally and at run time
alternates the prescribed path, while continuing to follow the
global mission goal is necessary.

C. Policy Inputs and Outputs

The input to the policy π(ot) is an observation vector ot =
[dt ,vt , lt ] (Fig. 3), consisting of the distance to the guidance dt
in the quadrotor yz-plane, the quadrotor velocity vt and laser
range finder readings lt ∈ R40 . Distance measurements dt are
obtained by subtracting quadrotor positions p from the current
setpoint on the guidance g (Fig. 2):

dt = (p − pd)R(φg), (4)

where R(φg) is a rotation matrix around z. The angle φg is
calculated from the global path tangent. The setpoint pd moves
along the path with constant velocity. The distance in x can
be omitted since the quadrotor is trained to progress along the
guidance g. Quadrotor positions p and velocity measurements
vt are obtained directly from the on-board odometry. The policy
π(ot) outputs continuous control signals: vertical velocity, and
roll and pitch angles of the quadrotor uπ = [vz , φd, θd ]. The
heading is controlled separately (Section V-A1). This enables
a simpler learning algorithm compared to learning of the full
quadrotor input u. Generally speaking, ot could consist of ar-
bitrary sensor data, such as depth images or ultrasound sensor
readings.

1) Sensor Models: At training time we have access to the full
state xt . To obtained simulated observations ost = [dst ,v

s
t , l

s
t ]

we calculate dst via Eq. (4), where p is taken directly from xt .
Analogously, vst is taken fromxt . The laser range finder readings
are obtained by casting rays from the quadrotor position in the
directions of the scanning laser lst = f l(xt ,pob), where pob are
obstacles position known at training time. We do not add any
noise.

D. Trajectory-Tracking (MPC) vs Path-Following (MPCC)

Receding horizon tracking is the most common method (e.g.,
MPC used in [16]) to steer a quadrotor along a trajectory. The
trajectory is a sequence of state vectors with associated tim-
ings ([xi , ti ])Ni=1 . The aim is to position the robot on a time-
parametrized reference trajectory i.e. to be at a particular posi-
tion at each time step. The MPC optimization depends on the
current time step and the quadrotor states.

We use a time-free path-following objective in an MPCC
formulation. In path-following control, the robot inputs are op-
timized to stay close to the desired path s and to make progress
along the path [17]. The desired path s is a geometric represen-
tation of desired robot positions p during movement. Through
the paper, we use s for paths followed by MPCC, while paths
followed by the policy π(ot) are refereed as global guidance
g. Control inputs u are obtained from an optimization problem,
which minimizes the distance to the desired path s, and maxi-
mizes the progress along s. The distance to the closest point on
s is denoted by the contouring error εc :

εc = ‖s(ν∗) − p‖, (5)

where s is a cubic spline parametrized with ν (cf. Fig. 2, right).
Finding the closest point on the path s(ν∗) is an optimization
problem itself and cannot be solved analytically. We discuss a
computationally tractable solution in Section III-B.

III. METHOD

A. Policy Learning Algorithm

We propose an imitation learning algorithm to iteratively re-
fine a control policy π(ot), learning a general behavior from a
set S = {si}Ni=1 of short example paths si .

The goal of the control policy π(ot) is to imitate the trajec-
tory produced by the MPCC supervisor, tracking the path si .
We employ supervised learning on the dataset of observation-
control mappings (ot ,u(xt)). The training data is obtained in
a two-step procedure. First, an off-policy step generates train-
ing samples via tracking the example path si with the MPCC
oracle (cf. Fig. 3). However, this only produces “ground truth”
data, containing samples from the ideal trajectory, which are not
enough to train the control policy as observed in DAgger [13].
We gather the necessary additional data by using the partially
trained policy in an on-policy step. Inevitably the policy outputs
uπ = π(ot) will lead to drift from the ideal trajectory. Correct
control inputs u∗ = u(xt), corresponding to recorded observa-
tions ot , are computed by the MPCC supervisor after the data
collection.

1) Example Paths: We provide examples via simple heuris-
tics (Fig. 1), demonstrating returning to the spline at 45o and
showing obstacle avoidance maneuvers starting 3 m from the
obstacle and passing it at a distance of 1.5 m. Each skill re-
quires several examples of the same type. Importantly, these
paths do not need to take the model of the robot into account.
We use 12 example paths in total. The obstacles are cylinders
of radius r = 0.2 m.

2) Policy Representation: The policy is parametrized by a
universal function approximator in the form of a neural net-
work. The network parameters define a matrix W. The full



STEVŠIĆ et al.: SAMPLE EFFICIENT LEARNING OF PATH FOLLOWING AND OBSTACLE AVOIDANCE BEHAVIOR FOR QUADROTORS 3855

Fig. 4. Overview: The algorithm for training the policy π(ot ) (left). Off-policy and on-policy steps for data collection (middle and right).

notation is π(ot ;W), but we often use π(ot) for brevity. We
use a fully connected network with two hidden layers, each
consisting of 30 neurons with softplus activation and linear
neurons in the output layer. Initial weights W are initialized
randomly using zero mean normal distribution with standard
deviation 0.01.

3) Data Collection: To collect data for training, we have
two different steps for which we use two different controllers:
off-policy step (MPCC) and on-policy step (on-policy MPCC).
Each of the steps is used to collect training data. The quadrotor
tracks the given path si using the respective controller and we
collect the observation samples ot and system state xt at each
time step.

Off-policy step (MPCC path tracking): In this learning step,
“ground truth” training samples are collected while the quadro-
tor tracks the given path si using the MPCC supervisor. After
the off-policy step the dataset D contains only ideal trajectory
data.

On-policy step (on-policy MPCC path tracking): We pro-
pose an exploration approach to visit the states xt that the
non-fully trained policy π(ot) would visit. For exploration, we
use an on-policy MPCC that generates control inputs uop (cf.
Section III-C). The on-policy MPCC optimization cost balances
between following the current policy output uπ = π(ot) and
minimizing the contouring error, pulling the quadrotor back to
the path (cf. Fig. 4, right). This enables the collision-free ex-
ploration. Here, we assume that the region around the example
path is safe and obstacle-free.

4) Data Augmentation and Training: The training dataset
is constructed from collected observations ot and states xt .
For each state xt , the MPCC supervisor computes the optimal
trajectory and control inputs in the horizon, with respect to the
path si . However, only the first control input u∗ = u(xt) is used
as a training sample:

D̄i = {(ot ,u(xt)), t = 1..n}. (6)

We add noisy samples to the dataset D̄i to prevent overfitting
during training [15]. First, Gaussian noise is added to every state
xt collected during path tracking. The resulting noisy states
xt + wt are used to calculate corresponding input samples
u(xt + wt) via the MPCC supervisor. Observation samples
os(xt + wt) are obtained by calculating the exact observations
from the noisy states using sensor models (cf. Section II-C1).
For each real sample, we add three noisy samples to augment

the dataset D̄i :

Di = D̄i

⋃
{(os(xt + wtk ),u(xt + wtk )),

t = 1..n, k = 1..3}. (7)

We add the augmented dataset Di to the global dataset D =
D⋃Di . Using the new dataset D, the policy π(ot) is trained
via optimizing the mean squared error (MSE) on D:

min
W

∑
oj ,u∗

j ∈D
‖π(oj ;W) − u∗

j‖2
2 . (8)

The neural network is trained incrementally by initializing the
network weights W from the previous solution. We use the
ADAM optimization algorithm for training.

5) Algorithm: The algorithm (Fig. 4) requires only a set of
example paths S as input. Data collection is done on the real
quadrotor because the on-policy data depends on the error of
the approximate model. These are the most important steps:

� Initialization. We execute two off-policy data collection
steps on two return-to-guidance paths selected at random.
The data is augmented (see Section III-A4) and the initial
policy is trained. The initial policy needs enough data to
ensure stable performance in the on-policy step.

� Learning loop. During training the algorithm alternates
between off-policy and on-policy data collection steps, aug-
menting data, and re-training the policy after every step
using the remaining samples S \{s1 , s2}. The off-policy
step collects ground truth data. The on-policy step helps to
correct the behavior of the intermediate policy.

� Output. The final policy is trained from different exam-
ples. This enables the policy to generalize to different ob-
stacle positions beyond the ones in the training set.

B. Policy Supervisor (MPCC)

To follow the path we seek to minimize the contouring error
εc defined in Eq. (5) and maximize the progress along the same
path s. To solve this problem we follow the formulation of
[18]. We introduce an initial guess s(ν) of the closest point
s(ν∗), which is found by solving the MPCC problem Eq. (11).
The integral over the path segment between the closest point
s(ν∗) and location of s(ν) denotes the lag error εl . To attain
a tractable formulation, the errors εl and εc are approximated
by projecting the current quadrotor position p onto the tangent
vector n, with origin at the current path position s(ν) (Fig. 2,
right). The relative vector between p and the tangent point s(ν)
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can be written as rp := s(ν) − p. Using the path derivative

s′ := ∂s(ν )
∂ν , the normalized tangent vector n = s′

‖s′‖ is found.
The approximated error measures are then given by:

ε̂l = ‖rp
T n‖, (9a)

ε̂c = ‖rp − (
rp

T n
)
n‖, (9b)

With these error measures, we define a stage cost function:

Jk = Kc(ε̂ck )
2 +Kl(ε̂lk )

2 − βν̇k , (10)

where the subscript k indicates the horizon stage in Eq. (11). Jk
represents the trade-off between path following accuracy and
progress along the path, where ν̇ is a velocity of the parameter
ν, describing path progress and β ≥ 0 is a scalar weight. The
scalar weightKl determines the importance of the lag error and
is set to a high value which gives better approximations of the
closest point s(νk ). The admissible contour error is controlled
by the weight Kc .

1) MPCC Formulation: The trajectory and control inputs of
the drone at each time step are computed via solving the follow-
ing N -step finite horizon constrained optimization problem at
time instant t:

minimize
u,x,ν,ν̇

N∑
k=0

Jk + uTk Ruk (11)

subject to xk=0 = xt (Initial state)

νk=0 = νt (Initial path parameter)

xk+1 = fm (xk ,uk ) (Robot dynamics)

νk+1 = νk + ν̇kTs (Progress path)

0 ≤ νk ≤ lpath (Path length)

xk ∈ X , (State constraints)

uk ∈ U , (Input constraints)

(12)

where R is a positive definite penalty matrix avoiding excessive
use of the control inputs. The vector xt and the scalar νt denote
the values of the current states x and ν, respectively. The scalar
Ts is the sampling time. The state constraints X limit roll and
pitch angles φ, θ to prevent the quadrotor from flipping. The
input constraints U are set according to the quadrotor’s allowed
inputs. This non-linear problem under constraints (11) can be
formulated in standard software, e.g. FORCES Pro [19], where
efficient code can be generated for real-time solving.

C. Exploration Algorithm (On-Policy MPCC)

For on-policy learning we apply a variant of the above MPCC,
attained by adding a following cost to Eq. (10):

ck = ‖xπk − xk‖2
2 . (13)

This term trades-off visiting states xπk obtained by rolling-out
the policy π(ot), while keeping the quadrotor close to the input
path si . The main difference compared to the off-policy super-
visor is a larger admissible contouring error ε̂c . In simulation
the policy π(ot) is rolled-out over the entire horizon length to
obtain the predicted quadrotor state xπk . The observation vector

Fig. 5. Generalization & limitations. Schematic of settings the policy gener-
alizes to and limits of generalization. We experimentally verified that obstacles
moving up to 0.7 m

s perpendicular to the quadrotor direction can be successfully
avoided, while faster moving obstacles cannot. Changing the obstacle diameter
up to 50% compared to training, results in satisfying behavior. Further, different
shaped obstacles of similar size can be avoided.

ok is computed from these states using the sensor models (cf.
Section II-C1).

The cost used in the on-policy MPCC is similar to the one
presented in PLATO [12], where the quadrotor tries to greedily
follow the policy output in the first state, while keeping the stan-
dard objective in the next states. We build on top of this cost to
improve safety during the exploration. The on-policy MPCC ob-
serves all policy states in the horizon xπk which provides more
complete information about the states. Furthermore, the explo-
ration area is more precisely defined because the contouring cost
is directly proportional to the distance from the collision-free
example path.

IV. METHOD DISCUSSION

A. Generalization and Limitations

It is important to note that our learning algorithm never sees
entire trajectories. Instead we provide multiple, short examples
of a class of behavior. They provide guidance on how to react in
different instances of the same problem. The final policy π(ot)
generalizes to unseen scenarios (cf. Fig. 5), following paths
much longer than those seen during training.

These generalization properties can be explained from a ma-
chine learning perspective. Neural networks are universal func-
tion approximators, able to learn a function from a set of input
and output pairs. In our case, we assume that samples come
from a non-linear stochastic function

u∗ = fnn (ot) + ε,

where ε is zero mean Gaussian noise N (0, σ). The control
inputs u∗ directly depend on the system state xt , but we assume
partial observability of the state xt from the observation ot .
The function output u∗ can be described by the conditional
probability distribution

p (u∗|O = ot ;W) = N (μ, σ),

where the distribution mean μ = fnn (ot) is parametrized by
the neural network. Given the sample pair (oj ,u∗

j ), for fixed
network parameters W, we can calculate the probabilityP (U =
u∗
j |O = oj ;W). Maximum log likelihood estimation (MLE)
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yields the neural network parameters W:

W = arg max
W

∑
oj ,u∗

j ∈D
ln P (U = u∗

j |O = oj ;W).

Since a Gaussian distribution is assumed, the mean can be ob-
tained directly via the MSE loss in Eq. (8).

The policy π(ot) is trained sequentially on example paths
to achieve sample-efficient learning. However, the policy π(ot)
directly depends on the statistics obtained from the training
samples in the final dataset D. The MLE principle provably
provides the best fit to the given samples, which leads to good
generalization properties in cases where test samples come from
the same (or a very similar) distribution. Our training set only
partially covers the full space of possible observations, which
results in successful avoidance of similarly sized and shaped
obstacles, but not in avoidance of very different obstacles since
they produce different observations. For moving obstacles, the
observations are the same but the underlying true states of the
world are different. The training set does not provide any exam-
ples of control inputs for moving obstacles.

Due to the nature of neural networks no formal guarantees re-
garding avoidance or stability can be given. We show experimen-
tally that our approach works well in practice (see Section V).
Finally, the results presented here are obtained by training the
policy on a single static obstacle. The policy can be trained
incrementally, e.g. adding larger obstacles.

B. Comparison to Related Work

While the proposed learning algorithm bears similarity to
DAgger [13], it differs in important aspects. The proposed on-
policy step maintains the sample efficiency of the original ap-
proach but makes exploration collision-free by using control
inputs uop . It has been shown that directly applying outputs
from intermediate policies can lead to crashes [12]. We analyze
the exploration scheme in depth in Section V-D.

Applying general model based RL, where the true model
is obtained during policy training, requires rollouts of the not
fully trained policy, which in the case of quadrotors can lead
to catastrophic failure [16]. Designing safe model based RL for
quadrotors is not a trivial problem and hence adaptive learning
techniques based on approximate dynamics have been used [12],
[16]. We follow this approach.

When tracking the timed reference based on the approximate
model using MPC [16], similar or identical states can be reached
at different time steps. This results in ambiguous mappings of
different control inputs for similar or identical states. In the case
of MPCC supervision, the control vector u∗ will be the same for
a given state xt . This results in less ambiguous data and a more
robust control policy π(ot) which we experimentally verify in
Section V-C.

V. EXPERIMENTAL RESULTS

To assess the proposed policy learning scheme we conducted
experiments both in simulation (policy trained in simulation)
and in real settings (policy trained on real robot).

Fig. 6. Execution time: Horizon length wrt. execution time of controllers. The
control policy imitates a long horizon behavior having the same computation
time of 2 · 10−4 s.

Fig. 7. Average flight distance: Distance to collision on different obstacle
courses (higher is better). Blue (ours), red (APF).

A. Implementation Details

1) Global Path Following: The global guidance g coarsely
specifies quadrotor motion, but does not need to be aware of ob-
stacles. The policy controls the φd, θd angles and the z-velocity
of the quadrotor, while the yaw angle is controlled separately
with a simple PD controller to ensure that the quadrotor always
faces the direction of the global path (the distance sensor points
in this direction). This parametrization allows for training on
straight guidance splines, while at test time this can be applied
to arbitrary splines (Fig. 3, right).

2) Hardware and Simulation Setup: We evaluate our method
in a full physics simulation, using the Rotors quadrotor physics
model [20] in Gazebo [21], and a Parrot Bebop 2 quadrotor for
real world experiments. We use a Vicon system to simulate the
sensor readings, using the method described in Section II-C. In
Experiment V-C1 we use a simple MATLAB simulation that
implements the model given in Section II-A.

B. Comparison With Non-Learning Methods

1) Runtime MPCC vs. Policy: First, we evaluate our method
in terms of computational cost by comparing it to a trajectory
optimization method. The baseline is a MPCC (cf. Section III-B)
with an additional collision avoidance cost [18]. The sampling
time of the MPCC is set to 0.1 s.

Fig. 6 shows that both average and peak time, measured over
3 iterations, of the MPCC increase depending on the horizon
length. The policy can be trained to imitate a long horizon
behavior while maintaining constant runtime.

2) Policy Evaluation—Simulation: We qualitatively evalu-
ate the learned policy. A long, non-linear guidance is generated
and we randomly place obstacles (cf. Fig. 10, left). To attain
quantitative results we increase the density of the obstacles
along the path of a length of 200 m. For comparison, we use
an artificial potential field (APF) method, which has similar
computational cost. The potential field pushes the quadrotor to
track the global guidance, while repelling it from obstacles. The
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Fig. 8. Comparison trajectories: Trajectories while avoiding a single obstacle
positioned on the guidance g.

quadrotor follows a constant velocity reference in the direction
of the potential field derivative.

Fig. 7 summarizes the average flight distance from three roll-
outs. The APF velocity reference is set to the average speed
of the policy (1.3 m

s ). For non-trivial cases, the average flight
of APF is shorter (cf. Fig. 7). Further, the APF method does
not consider the robot dynamics which in consequence pro-
duces non-smooth trajectories (cf. Fig. 8). Furthermore, APF
is only suited for slow maneuvers. Our policy generalizes to
much harder cases with obstacles closer to each other than seen
at train time. However, once the density surpasses 2 ± 1 m the
flight length drops drastically.

C. Supervision Algorithm—Comparison With the Baseline

One of the main contributions in this work is the MPCC-based
path-following supervisor. To evaluate its impact, we compare
to a MPC-based trajectory-tracking baseline. For the baseline
we obtain an exploration algorithm by augmenting the original
MPC objective with the cost in Eq. (13). Both supervisors are
tuned for best learning performance, while producing similar
task performance.

1) Single Obstacle Environment: To evaluate robustness
with respect to model errors we perturb the value of the dis-
cretized time constant α = e−

1
τ a
Ts = 0.85 used in the supervi-

sor’s robot model. Only in this experiment, we use a MATLAB
simulation and only use position and velocity measurements as
policy inputs.

The task is to learn a single maneuver from four examples,
each starting at different positions. At test time we roll-out
the policy from six different positions. We compute the error as
sum of squared distances of quadrotor positions from the ground
truth. This error measures how accurate the policy imitates the
supervisor.

Fig. 9 shows that our learning scheme leads to superior ro-
bustness and faster convergence compared to the MPC baseline
under modeling errors. The baseline achieves desirable scores
using the correct model parameters, but convergence behavior
is unstable or slower in presence of modeling errors. Even with
the true model parameter, MPCC yields faster convergence be-
havior. Besides modeling errors we have unmodeled effects on
the real system, which may lead to unstable convergence of
MPC-based schemes.

2) Multi-Obstacle Environment: In this experiment we com-
pare the MPCC supervisor to the MPC baseline in the Gazebo
simulator. The simulator implements complex quadrotor dy-
namics [20]. Contrary to the previous experiment, the policies
are trained for the final task i.e. guidance tracking with col-
lision avoidance. We train the policies on the same number
of examples (12). The examples for the MPCC supervisor are

Fig. 9. Policy robustness: Policy performance as a function of the supervisor.
The average error from three trained policies are shown. The error is bounded
to 50. From experiments, we found that error below 10 gives satisfactory per-
formance. Lower is better.

TABLE I
COMPARISON WITH THE BASELINE SUPERVISOR

TABLE II
EXPLORATION ALGORITHM PERFORMANCE

generated by our algorithm, while the examples for MPC are
generated by the off-line trajectory optimization algorithm. The
trajectory optimization cost is adjusted so that the quadrotor fol-
lows the global guidance with constant speed while avoiding the
obstacles.

Table I summarizes the results. We were able to train the pol-
icy with a MPC supervisor, but the performance of the policy
was not satisfactory. The first issue is that the quadrotor cannot
follow the global guidance, drifting from the prescribed path in
the z direction. Although the policy performance is not satis-
factory, we still evaluated the policy on the obstacle course. On
the obstacle course with density of 3 ± 1.5 m along the path,
the average flight length of the MPC policy is 41.67 m which
is significantly lower than the policy trained with the MPCC
(183.3 m) supervisor. In the light of the previous experiments
these results are logical since the policy trained with MPC is not
able to accurately follow trajectories in the presence of modeling
errors.

D. Evaluation of Collision-Free Exploration

The choice of the contouring penalty directly impacts which
states are being visited in the on-policy step. Table II summarizes
results for different values, measured as sum of squared dis-
tances from the example paths during training and from ground
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Fig. 10. (Left) Policy roll-out: Unseen test scene including long guidance
(green), obstacles and flown policy roll-out (blue). (Right) Static obstacle:
Policy roll-out in the real environment. Three obstacles are positioned along a
circular reference.

truth at test time under different parameters (averaged over tra-
jectories).

We were not able to train the policy by using intermediate
policies for exploration in the on-line step of the algorithm
(unsafe). A too small contouring cost (Kc = 0.1) leads to large
deviation from the example path (high train error) and results
in poor generalization (high test error). Too large penalization
of the contouring cost (Kc = 25.0) suppresses exploration and
leads to overfitting (high test error).

E. Policy Evaluation

1) Policy Generalization—Simulation: We test the general-
ization ability with different obstacles. Various courses are ob-
tained as in Section V-B2 (density 3 ± 1.5), and we change the
obstacle types. We increase the obstacle radius up to 50% where
the policy begins to predict invalid outputs (NaN). The policy
successfully avoids cubic obstacles of similar size as the train-
ing obstacles. We conclude that the size of the obstacle is the
critical factor for generalization.

Next, we evaluate the policy on obstacles that are moving
perpendicular to the global guidance path. The obstacle velocity
is gradually increased, until collision occurs at 0.7 m/s. Moving
obstacles reduce the effective lateral robot speed and no such
behavior was observed during training.

2) Policy Evaluation—Real: We conduct similar experi-
ments on a physical quadrotor, positioning obstacles directly
on the desired path (Fig. 10, right). Due to the small experi-
mental space we reduce the avoidance onset to d = 2 m. No
collisions occur and the course is always completed.

A final experiment evaluates policy under moving obsta-
cles such as humans. In our experiments the robot successfully
avoids slow moving targets, keeping away from the human at
distances similar to training time. Please refer to the accompa-
nied video for more results.

VI. CONCLUSION

We have proposed a method for learning control policies
using neural networks in imitation learning settings. The ap-
proach leverages a time-free MPCC path following controller
as a supervisor in both off-policy and on-policy learning. We
experimentally verified that the approach converges to stable

policies which can be rolled out successfully to unseen environ-
ments both in simulation and in the real-world. Furthermore, we
demonstrated that the policies generalize well to unseen envi-
ronments and have initially explored the possibility to roll out
policies in dynamic environments.
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