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The Repetition Roadmap
for Repetitive Constrained Motion Planning

Peter Lehner

Abstract—We present the Repetition Roadmap, a motion
planner which effectively exploits the repetitiveness of a set of
tasks with small variations to efficiently compute new motions.
The method learns an abstract roadmap of probability distri-
butions for the configuration space of a particular task set
from previous solution paths. We show how to construct the
Repetition Roadmap by learning a Gaussian Mixture Model and
connecting the distribution components based on the connectivity
information of the prior paths. We present an algorithm which
exploits the information in the Repetition Roadmap to guide the
search for solutions of similar tasks. We illustrate our method in a
maze, which explains the construction of the Repetition Roadmap
and how the method can generalize over different environments.
We show how to apply the Repetition Roadmap to similar
constrained manipulation tasks and present our results including
significant speedup in computation time when compared to
Uniform and Adaptive Sampling.

Index Terms—Motion and Path Planning, Mobile Manipula-
tion, Industrial Robots

1. INTRODUCTION

Robot manipulators working in flexible manufacturing envi-
ronments must compute motions to deliver or assemble parts
based on perception inputs. Most of these motions must adhere
to task constraints, for example not spilling the contents of
a box or keeping a drill aligned to an axis. In scenarios
where humans and robots collaborate, the robot must adapt
its paths to changes induced by the human. But to compete
with current, hand-programmed motions, the main constraint
of an industrial work-flow is the processing time: Online
computation of motions must be fast.

The time constraints of industrial robotics conflict with
the fact that planning constrained motions is computationally
expensive. The large number of joints in a manipulator form a
high-dimensional configuration space. The transformation be-
tween the manipulator workspace and the configuration space
is non-linear. The task and kinematic constraints form complex
composite constraints, which lead to unintuitive manifolds
in the configuration space. These difficulties lead to long
computation times for motion-planning algorithms.

In industrial manipulation, many of the robot tasks are
repetitive. For example, a mobile manipulator fetches boxes
from a shelf and delivers them for further processing, as shown
in Figure 1. The task may be similar in each case, but slight
differences may occur: Changes in the pose of the robot in
front of the shelf, in the start configuration of the manipulator,
and in the pose of the box already on the robot platform.

Sampling-based planners compute motions by efficiently
exploring the configuration space of the manipulator. One
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Fig. 1. Two similar tasks of constrained manipulation: Picking a box from
an industrial shelf with variations of the platform pose, manipulator start
configuration and obstacle box position.

difficulty of the approach is to reuse information from pre-
vious similar tasks. To shorten the computation time, multiple
new methods inject information from previous solutions to
efficiently solve a new planning problem in a similar scenario,
including our own contribution, Repetition Sampling [1].
These methods either adapt the sampling strategy of sampling-
based planners or construct a discrete roadmap, using previous
solutions.

In this paper, we present a novel approach to encode the key
information from previous solutions in a Repetition Roadmap
by combining findings of both adaptive sampling and roadmap
approaches. Our method improves on previous algorithms
by constructing an abstract roadmap which is a probabilistic
representation of the connectivity of the task-relevant configu-
ration space. This does not bind the roadmap to a discrete rep-
resentation, which has to be evaluated again after each change
in the environment, but still provides powerful guidance for the
configuration space search. We visualize and show the ability
of the algorithm to generalize over significant changes in the
environment in a two dimensional maze experiment. Further,
we evaluate the method on a constrained manipulation task
with our industrial mobile manipulator. The experiments show
that Repetition Roadmap’s ability to extract and utilize the
key information from previous motions to solve new queries
significantly faster.



II. RELATED WORK

Sampling-based planning builds mainly on the findings
of two core methods. The Probabilistic Roadmap Method
(PRM) [2] builds a roadmap in the robots configuration space
for multi-query planning. The method is useful for problems
where the start and goal configuration change between in-
dividual problems, but offers no direct solutions to changes
to the topology of the configuration space. The Rapidly-
Exploring Random Tree (RRT) [3] for single-query planning
implicitly decomposes planning problems with high dimen-
sionality into Voronoi regions. This guides the search tree to
unknown regions of the configuration space and afterwards
further develops the known regions of the tree. The RRT
algorithm has been modified to solve constrained motion-
planning problems. The CBi-RRT2 algorithm uses projection
and rejection sampling to extend a start and goal tree on the
constraint manifold to find such a solution [4].

Our method decomposes the overall search problem into
individual local search trees, an approach which has received
previous attention. Morales et. al. [S] improve the connectivity
of the PRM by growing RRTs between connected components
after construction. In a similar fashion Bekris et al. [6] connect
the components of the PRM using Bi-RRTs to reduce the
number of operations needed during construction. Plaku et.
al. [7] parallelize the construction of the PRM with local trees
to gain efficiency. Strandberg [8] decomposes a search query
into individual RRTs: New trees are spawned at configuration,
which cannot be connected to the existing trees. Important for
the decomposition into local trees is a) how many trees to grow
and b) where to place the root of the individual search trees.
Our method provides answers to these questions by exploiting
the experience of previous queries and placing the trees at
relevant configurations.

Our method adapts the sampling distribution of a sampling-
based planner to gain efficiency. Similarly, fixed bias methods
include a single Gaussian distribution [9], heuristic sam-
pling to find narrow passages [10], and Voronoi diagram
based sampling [11]. Adaptive sampling methods include the
Toggle-PRM [12] which constructs one roadmap in the valid
configuration-space and one in the invalid configuration-space
and adapts the sampling distribution to find narrow passages.
Burns et al. [13] introduce the utility-guided approach, learn-
ing a distribution to predict the next sample with the highest
utility, maximizing the information gain. Informed path sam-
pling [14] adapts the sampling distribution to find paths with
high variability. Kobilarov et al. [15] employ the cross-entropy
method by learning a Gaussian Mixture Model and optimizing
the sampling distribution of one query to converge towards
an optimal path. Gammell et. al. [16] iteratively adjust the
sampling domain in batches to converge to an optimal solution
for a current query. All of these approaches improve over
uniform sampling, but do not primarily extract information
from previous planning queries.

Planning methods which use information from previously
found solutions can be roughly divided into three categories:

1) Path library approaches match complete paths from previous
solutions to the new query, 2) roadmap methods build a graph
in configuration space to store the connectivity information
from previous queries, 3) and adaptive sampling strategies
guide the sampling-based planner with information from pre-
vious solutions.

1) Path library approaches attempt to match complete paths
from previous solutions to the new query. The authors of
[17] build a library of trajectories and extract features from
the trajectories as input to an imitation learning algorithm.
For new queries the algorithm computes the best match to
the new features and adapt this solution to the current query.
The authors of [18] employ probabilistic inference to select
a previous solution path. Other work investigates heuristics to
reduce a path set of previous solutions into a path library which
is robust with respect to unknown obstacle configurations [19].
Path library approaches can find a solution fast if a matching
path can be found, but they do not decompose the prior
solution paths and thus cannot construct new solutions from
individual elements of multiple paths. This leads to a lower
chance of generalizing to new problems, especially problems
which are combinations of problems contained in the learning
set.

2) Roadmap methods build a graph in configuration space to
store the connectivity information already gathered in previous
planning queries. The original PRM was optimized to slightly
changing environments by the Lazy PRM, which delays colli-
sion checks to the actual point of the query [20]. Lazy PRM
selects sets of candidate solutions from the PRM and removes
candidates to minimize the amount of collision checks. Experi-
ence Graphs [21] build a roadmap from the previous solutions
and decides based on heuristics if the current search follows
the graph or explores a different route. Experience-Based
Planning with Sparse Roadmap Spanners aggregates previous
solutions in a sparse roadmap [22]. The method evaluates the
connections of the sparse roadmap and recomputes colliding
paths with a local RRT. Elastic Roadmaps [23] create a
roadmap based on visibility around obstacles in the environ-
ment. The algorithm adapts the roadmap locally based on
changes in the environment to preserve structure. The method
was adapted in [24] to iteratively construct the roadmap
based on the paths of a sampling-based planner. Prentice and
Roy [25] construct a roadmap in belief space which is able
to plan paths with expected low uncertainty. Roadmap based
methods are efficient at extracting the relevant information of
the configuration space, but they represent the connectivity
in a discretized roadmap of configurations. For changes in
the configuration space, the roadmap must be reevaluated.
Additionally, constructing a roadmap for large configuration
spaces leads to high memory usage. In contrast, our approach
reduces the previous solution paths to an abstract roadmap
based on probability distributions, which can compress the key
information of previous queries and is not bound to a discrete
configuration space representation. We evaluate Thunder [22]
in our experiments, to provide a comparison with the presented
approach.



3) Adaptive sampling-based approaches guide the sampling-
based planner into task-relevant regions of the configuration
space. Adaptive workspace biasing learns a sampling distri-
bution using workspace features as input to reinforcement
learning [26]. The authors of [27] used the same biasing to si-
multaneously optimize the planning durations on task and mo-
tion layer. Kernel Density Estimation (KDE) based sampling
computes a sampling distribution in the configuration space by
extracting key configurations from previous solution paths, and
integrating kernels based on normal distributions [28]. Ichter
et al. [29] use a conditional variational auto encoder to learn
sampling distributions for optimal motion-planning. In our pre-
vious work, Repetition Sampling [1], we estimated a sampling
distribution by extracting key configurations from previous
solution paths and learning a Gaussian Mixture Model (GMM)
with Expectation Maximization, which was able to capture the
correlation between the individual joints. Adaptive sampling
strategies can efficiently guide the sampling-based planner to
speed up queries, but lack the connectivity information of
roadmap based methods. Our method goes beyond adaptive
sampling strategies by gathering previous information in an
abstract roadmap, thus additionally capturing the connectivity
of the configuration space. This allows us to guide and
decompose the search.

The presented method shares the ideas of learning the
relevant configuration space of repetitive tasks, generating
a GMM based on key configurations of the previous paths
as well as the idea of biasing sampling-based planners with
learned distributions with our previous work [1]. Beyond our
previous work the RepMap further exploits the connectiv-
ity information of previous solution paths by constructing a
roadmap of distributions from the GMM: This decomposes
the overall problem into local search problems, leading to
even faster computation of new queries of a repetitive tasks
as shown in the experiments in direct comparison with our
previous approach.

III. TrE REPETITION ROADMAP

The main motivation of the Repetition Roadmap (RepMap)
is to capture the key information of previous solution paths in
a roadmap, to guide the search for new queries of a similar
task. The RepMap is not a discrete representation, but instead
an abstract roadmap of the connectivity of the configuration
space based on probability distributions. The RepMap can
generalize over different start and goal configurations as well
as changes in the environment by remaining on this abstract
level. Nevertheless, the information contained in the RepMap
is representative enough to provide guidance through the
relevant parts of the configuration space.

The RepMap consists of a graph of distributions G = (V, E)
in the configuration space C. Each vertex v; € V represents a
local distribution of task-relevant configurations, approximated
by a Gaussian N; with the mean y; and the covariance Z;.
Each edge e; € E marks a task-relevant connection from one
distribution to another.

Algorithm 1: Construct Repetition Roadmap

1 Input: A set of M previous solution paths Py...Pps

2 QOutput: The Repetition Roadmap G

3 foreach path P; do

4 Extract key configurations qg...q, from path P;

5 L Insert key configurations qg...q, into learning set Q

6 Compute a GMM based on the learning set Q

7 Extract from the GMM all K Gaussians Np...Ng

8 foreach Gaussian Nj do

9 Insert a new vertex vy into the roadmap G

10 Assign the sampling distribution Nj to vg

11 foreach path P; do

12 foreach consecutive configurations q; and qj4 in P; do

13 Match q; to a Gaussian Ny

14 Match q; 1 to a Gaussian Ny

15 if N # Ni41 then

16 Insert a new edge ey into the roadmap G from
L the respective vertex vi to vi|

When computing a solution based on the RepMap the
algorithm initializes a local search tree 7; for each vertex v;.
Once the start and goal configurations of the current query
are connected to search trees T4y, and Tgoq;, the algorithm
estimates the most likely path P through G from vgq,; to
Vgoal- Along Pg the algorithm expands each search tree T;
based on the local distributions A; of the respective graph
nodes and connects consecutive trees. By focusing the search
on establishing the relevant connections in C the RepMap
reduces the computation time when finding new solution paths
for a repetitive task.

A. Constructing the Repetition Roadmap

We construct the RepMap based on a Gaussian Mixture
Model (GMM), a generic model to approximate the density
of a distribution. The construction is detailed in Algorithm
1. The individual steps are 1) Extracting key configurations
from the previous paths, learning a GMM based on the key
configurations (steps 3-7) and 2) Connecting the components
of the GMM based on the previous paths (steps 8-16).

1) Learning the Gaussian Mixture Model: We learn the
GMM in the same way as described in our previous work,
where we used the GMM for adaptive sampling of a Bi-RRT-
Connect [1]. From each of the M previous solution path,
P;, we extract key configurations ¢; and stack these N key
configurations in order to construct the learning set Q:
ey

Q=[qw - a a |

We select the number of components K based on the longest
path

2

K= m"§1><|en(7>j),
J:

initialize the GMM with k-Means and proceed to learn the
GMM based on Expectation Maximation [30]. In each iteration



the algorithm calculates the responsibility r;x of each Gaussian
Nk describing the configuration q; as

_ wicNk(qi) 3)
T wiNi (@)

and updates the model mean

N
1
- . 4
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variance
1
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of each component where

N
Ry = Zri,k, @)
i=1

until the log likelihood

N K
Inp(Q) = Zln(zri,k/vk(qi)) ®)

i=1  \k=1
reaches a local optimum.

2) Transforming the Gaussian Mixture Model into a
Roadmap: This step is one of the main contributions of the
presented paper: We construct a roadmap from the GMM
which contains probabilistic information about the connectiv-
ity of the configuration space for the current task. We initialize
the RepMap G with a vertex vy for each Gaussian Ny in the
GMM and with no edges. To generate the edges we take each
path #; and match the key configurations to the components
of the GMM. When two consecutive configurations q; and
qi+1 on P; are matched to two different Gaussians N; and
Nk+1, we connect the corresponding vertices v, and vi1 in the
RepMap with a new edge e,,,,. To determine the effectiveness
of the edges we count for each edge how many of the previous
solution paths use an edge e¢;. We estimate the utility u; that
each edge e; is useful for upcoming planning problems, based
on the number of cases e¢; was used L; relative to the number
of total edges established L:

W=, ©))

The utility gives an estimation which connections will be
useful on future instances of the same task.

B. Planning with the Repetition Roadmap

The RepMap contains information about the relevant config-
uration space and its connectivity. We use this information on
new instances of a task set, to focus the search on the relevant
area in the configuration space. The algorithm for using the
RepMap in a new planning query consists of the steps detailed
in Algorithm 2:

Algorithm 2: Query Repetition Roadmap

1 Input: Start configuration qszars, goal constraints Sgq a1,
Repetition Roadmap G

2 Output: A solution path Py,

3 Initialize each vertex vy of G with a search tree 7} with the
sampling distribution Ny

4 Match the start configuration (ssq,s to a Gaussian Ny and
the respective tree Tstqrr

5 Grow Tgrqr¢ until it connects to qgrqrr

6 Find a goal configuration qg,, satisfying the constraints
Sgoal> With projection sampling.

7 Match the goal configuration qg,4; to a Gaussian N4 and
the respective tree T'goal

8 Grow Tg,q; until it connects t0 qgoqy

9 repeat

10 Compute shortest path PG: vsrart 10 Vgoqr through G
11 foreach Edge e; on Pg connecting vy and vy, do

12 Attempt to connect tree Ty to Ty .

13 if fails then

14 Expland trees Ty and T

15 L Lower utility u; of e;: u; = ay*u;

16 until qszqr; is connected 10 qgoqi
17 Extract P

1) Initialize K search trees for the current planning problem
at the vertices of the RepMap (step 3).

2) Connect the start configuration to one of the search trees.
(steps 4.5)

3) Find a goal configuration which satisfies the goal con-
straints and connect it to one of the search trees. (steps
6-8)

4) Find the most likely path through the RepMap from the
start to the goal configuration. (step 10)

5) Establish connections between the search trees which are
the vertices on the most likely path. (steps 9-15)

6) Return the found path which connects the start config-
uration to the goal configuration through the relevant
search trees. (step 17)

1) Initializing the search trees: We initialize a search tree
Ty for each vertex vy of the RepMap. We choose a RRT-
Connect search tree with adaptive sampling-based on the
associated Gaussian distribution Ny of vi. When planning
for the constrained manipulation case we select a constrained
RRT-Connect, similar to the start tree of the CBi-RRT2 [4].
This allows us to grow Ty limited to the region of interest for
this component. We start the tree at the mean y configuration
of Ni. If ux does not fulfill the constraints of the new task
(e.g is in collision), we sample a new configuration from N
which fulfills the constraints.

2) Connecting the start configuration: To use the roadmap
as a guide to solve the planning problem we first must connect
the start configuration (s, to a vertex vy,4,, of the RepMap.
The algorithm matches qg;,,; to the Gaussian Ny, Which
best represents the start configuration. We then solve the local
planning problem by iteratively extending the associated RRT
Tstart Of Vsrqre until it connects qsyq,¢, While respecting the
task, kinematic, and collision constraints.



3) Finding and connecting the goal configuration: Next
we find and connect the goal configuration (g,q; to the
RepMap. The algorithm uses projection sampling to find qgoa;
and matches it to the Gaussian Ng,,; which best represents
Qgoai- We then solve the local planning problem by iteratively
extending the associated RRT T4 Of Vg4 until it connects
to goar, While respecting the task, kinematic, and collision
constraints.

4) Finding the most likely path as guidance: Once the
algorithm has found a connection to the RepMap from the
start and goal configurations it searches for the most likely
path through the RepMap. To estimate the most likely path
the algorithm computes the cost for each edge C; as

1
G =log(—),
Ui

which represent a zero connection cost when u; is one and
goes towards an infinite cost when the u; is close to zero.
Based on the edge costs C; we compute the shortest path from
the start to the goal configuration using the standard Dijkstra
algorithm. The found path P¢ represents the path through the
roadmap which is estimated to have the highest probability of
connecting the start and goal configurations.

5) Connect the search trees on the path: To solve the
current planning problem we need to translate the abstract path
P¢ through the RepMap into a a sequence of configurations
which respect the task, kinematic, and collision constraints.
The algorithm iteratively selects one unconnected edge e;
represented by vertices vg, vi4+; from the Pg. The algorithm
tries to connect the associated trees T, and Ty.;. If the
connection fails we extend both trees and update the Ps as
described in the last paragraph.

6) Extracting the solution path: Once all the edges on the
abstract path P through the RepMap have been established,
a path of configurations exists from the start to the goal
configuration. We extract this solution path Ps,; and return
it as the solution to the current planning problem.

7) Updating the most likely path: The most likely path Pg
through the RepMap does not always provide the best guidance
for the planning query, due to the variations. To reflect the
information already gathered for the current query, we update
the utility of the edges. If a connection attempt between two
RRTs fails, we scale the utility u; with a factor «:

(10)

= auuy’ O<ay<1)

ui‘]+l

(1)

After each update we recompute the most likely path Pg. ay
balances the exploitation and exploration of the RepMap and
indicates how much the algorithm trusts the prior connectivity
information in the RepMap. In our experiments we choose
a, =0.8.

IV. EXPERIMENTS

We illustrate the properties of the RepMap with two ex-
periments: The two dimensional maze example illustrates the
creation and usage of the RepMap and illustrates the ability

to generalize over large variations, while the constrained ma-
nipulation experiment shows the effectiveness of the method
in a realistic industrial use case. In both experiments we
compared the RepMap with a Bi-RRT with Uniform Sampling,
a Bi-RRT with Repetition Sampling and to the Thunder
framework [22], a sampling-based planner which constructs
a discrete roadmap from previous solution paths. We adapted
the Open Source implementation which was available through
the Open Motion Planning Library and integrated our collision
checker to achieve comparability. All data were recorded on an
Intel® Xeon® 3.60 GHz CPU with 8 GB RAM. To ensure the
statistical relevance of the data we computed a pairwise t-test
between the computation times of all planners. The largest p-
value of all t-tests is 0.02 which indicates the data is statistical
relevant.

A. Maze

We present a maze experiment to visualize the RepMap in
a two dimensional example and to show that the method can
generalize information from previous solutions to similar but
significantly different tasks.

We designed a basic maze as shown in Fig. 2 a) and
performed multiple evaluations where we added random ob-
stacles (circles) to the maze ranging from 10 to 120 additional
obstacles. In each evaluation we calculate 200 solution paths
on each of the learning scenarios (b). From the solution
paths we extract the key configurations and learn a GMM
(c). The algorithm classifies the key configurations to the
corresponding components of the GMM and connects them
to form the RepMap (d). To validate the RepMap we compute
solutions for 100 different scenarios e).

The overall computation time results are depicted in Fig. 5.
In all cases the RepMap was at least twice as fast as Uniform
Sampling. In most cases the RepMap was only slightly faster
than Repetition Sampling but had significant lower variance in
cases with many random obstacles. The Thunder Framework
performed faster in cases with few random obstacles, but
slower in cases with many random obstacles.

Figure 3 shows a more detailed analysis for the cases of ten
and one hundred random obstacles. With ten random obstacles
Thunder was roughly ten times faster than the RepMap in the
median case. In the case of one hundred random obstacles
the RepMap was about four times faster than Thunder in the
median case and the standard deviation of Thunder was eight
times larger.

To gain insights about path quality, Figure 4 compares the
relative path lengths for the case of one hundred obstacles. The
comparison methods had a path length of about 1.5 to 2 times
the width of the maze in the average case while the RepMap
had a path length of about 2.75 the width of the maze in the
average case.

B. Constrained Manipulation Tasks

To evaluate the RepMap on a real robotic platform we
choose a task from industrial mobile manipulation. The robots
task is to pick a box from an industrial shelf and place it on the



Fig. 2. The maze experiment in two dimensions (start upper left, goal lower right) for the case of one hundred random obstacles. During each evaluation
we place random obstacles into the basic maze (a, b) and compute paths on each of the learning scenarios b) (two shown). Based on the learning paths
we compute a GMM c) and construct the Repetition Roadmap d). Based on the roadmap the algorithm computed solution paths for one hundred validation

examples e) (two shown).
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Fig. 4. Validation set path length of the maze experiment (mean marked with
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platform of the robot, as shown in Figure 6. The box contains
parts for assembly at a second station and has to be kept level
to not spill the contents. For each instance of the task we
included three variations to the setting: 1) The pose of the
mobile platform differs each time in front of the shelf, 2) the
pose of a second box on the robot platform changes, and 3)
the start configuration of the manipulator is different in each
instance. We plan the manipulator motion decoupled from the
platform motion, since synchronization of the movements is
not possible in the current hardware setup.

We generated a learning set of one thousand solutions
paths by solving instances with a CBi-RRT2 with Uniform
Sampling. Based on these paths we fitted a GMM and created
the RepMap as shown in Figure 6 b). We evaluated all planners
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Fig. 5. Plot of the validation set computation time of the maze. The solid line
shows the median computation time and the shaded regions show the lower
and upper quantiles.

on a set of 300 validation tasks. The comparison results are
shown in Figure 7. The RepMap is about three times faster
than Uniform Sampling, about two times faster than Thunder
and about 1.3 times faster than Repetition Sampling in the
average case. Additionally the variance in computation time
of the RepMap is at least 1.5 times smaller than the variances
of the compared approaches.
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Fig. 6. Illustration of the constrained manipulation experiment, shown as a top view of Figure 1. The task of the mobile manipulator is to pick a box from a
shelf, while not spilling the contents. We vary the tasks in the pose of the robots base, the pose of a box on the platform of the robot and the start configuration
of the arm as shown in a). Based on the learning paths we compute the Repetition Roadmap b) and used it to guide the configuration space search along
the most likely path c) (the configurations represent the means of the distributions and the lines indicate the connections of the roadmap and the path). The
respective smoothed solution path of configurations for this instance of the task is shown in d)
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V. DiscussioN

The experiments show that the RepMap can a) generalize
over significant changes in the planning problem and b)
leverage information from previous solutions to solve new
problems of a similar kind significantly faster.

In both experiments the RepMap was able to generalize
over significant changes. In the maze experiment the method
was able to generalize over many random obstacles. In the
constrained manipulation experiment the RepMap was able to
generalize over three changes: The changing base position of
the robot, the changing start configuration of the manipulator
and the changing obstacle box position on the robot platform.

In both experiments the RepMap was able to compute
solutions for the validation tasks faster than a RRT with
Uniform Sampling or Repetition Sampling. In the low di-

mensional configuration space of the maze experiment and
especially in the constrained manipulation experiment the
RepMap was faster than Uniform or Repetition Sampling and
had a lower variability in computation time. A reduction of
the computation time of the collision checks by a factor of
five to ten seems feasible with newest software tools based
on GPU parallelization, bringing the method to a computation
time range which is desirable in industrial environments.

The RepMap was slower than Thunder in cases with low
variability but faster in cases with high variability. Thunder
discretizes the configuration space into a roadmap. Depending
on the placement of the random obstacles the roadmap does
not contain useful connectivity information. In these cases
Thunder uses an Uniform Bi-RRT planner to generate a
solution, which was the case in five percent of the validations
with ten obstacles, but in ninety percent of the validations
with on hundred obstacles. In cases with high variability the
computation time of Thunder approaches the computation time
of Uniform Sampling. The variability of the manipulation
experiment was seemingly high as about eighty percent of
queries were solved by the Uniform-RRT and only twenty
percent were solved with the help of the sparse roadmap. The
RepMap and Repetition Sampling were able to encode and
exploit the connectivity information for cases with high vari-
ability by learning a probabilistic distribution of the relevant
configuration space.

The results of the maze experiment indicate that the solu-
tions found by the RepMap have a lower path quality than of
the comparative methods. We believe this is due to the fact



that in its current instantiation the cost of the graph search is
purely based on expected connectivity. The guiding path of
search trees biases the discrete search towards robust areas of
the configuration space, irrelevant of the path cost. To balance
the likeliness of finding a valid path and path cost we suggest to
formulate a hybrid cost function which considers both aspects.

The underlying assumption of the RepMap is that the new
query is similar to the queries of the learning paths. This limits
the usability of the RepMap in cases where the environment
and the task change drastically. Major changes to the environ-
ment, for example rotating the whole maze by ninety degrees
or placing a large obstacle in between the shelf and the robot,
will slow the guidance of the RepMap. Major changes to the
task, for example introducing a conflicting task constraint with
a new grasp, will change which parts of the configuration space
are relevant and diminish the RepMap’s ability to guide the
search. When fundamentally redesigning a task, for example by
significantly changing the end-effector constraints or changing
the type of environment, a new RepMap should be generated
from a corresponding learning set.

The RepMap is designed to focus the search on the relevant
parts of the configuration space for a particular task. It bal-
ances exploration of the configurations space with exploitation
by updating the most likely path with the information from
the current query. Nevertheless, by guiding the RRTs with the
contained distributions it will not find a path to any general
planning problem, and thus has no probabilistic completeness
guarantees. If probabilistic completeness is a desired property
for the application, we propose two adaptations of the un-
derlying algorithm. The first adaptation uses a Uniform RRT
in parallel to the RepMap algorithm as suggested by [22].
This ensures the probabilistic completeness guarantees of the
Uniform RRT and the new solutions gained from the Uniform
RRT can enrich the experience of the RepMap. The second
adaptation iteratively broadens the Gaussian distributions of
the RepMap and the underlying sampling distributions of the
search trees converge towards uniform distributions, establish-
ing the prerequisite for probabilistic completeness.

VI. CoNcCLUSION

In this paper we presented the Repetition Roadmap, a
motion-planning algorithm to encode previous planning ex-
perience in an abstract roadmap, which we query to efficiently
partition the search into local planning problems and guide
the search through the task-relevant parts of the configuration
space. We evaluated the approach in a maze example to
visualize the method and to show how the roadmap can
generalize over significant task variations. Furthermore, we
evaluated the algorithm on a real constrained motion-planning
problem with an industrial mobile manipulator and were able
to show that the computation times of the RepMap were
significantly shorter than those of a standard RRT, those of
our previous contribution, Repetition Sampling and those of
the Thunder Framework. In future work we would like to
investigate an autonomous clustering of similar tasks, to enable
the robot to decide which tasks are similar.
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