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Minimum-Time Trajectory Planning Under
Intermittent Measurements

Bryan Penin', Paolo Robuffo Giordano?, and Frangois Chaumette!

Abstract—This paper focuses on finding robust paths for a
robotic system by taking into account the state uncertainty and
the probability of collision. We are interested in dealing with
intermittent exteroceptive measurements (e.g., collected from
vision). We assume that these cues provide reliable measurements
that will update a state estimation algorithm wherever they are
available. The planner has to manage two tasks: reaching the
goal in a minimum time and collecting sufficient measurements
to reach the goal state with a given confidence level. We
present a robust perception-aware bi-directional A* planner for
differentially flat systems such as a unicycle and a quadrotor UAV
and use a derivative-free Kalman filter to approximate the belief
dynamics in the flat space. We also propose an efficient way of
ensuring continuity and feasibility by exploiting the convex-hull
property of B-spline curves.

Index Terms—Reactive and Sensor-Based Planning, Motion
and Path Planning, Aerial Systems: Perception and Autonomy

I. INTRODUCTION

NCERTAINTY-AWARE planning, also called belief-

space planning, has received considerable attention in
recent years. Indeed, model, sensors and environment uncer-
tainties are inherent to many robotic applications and may lead
to a failure of the task or impair the possibility to accurately
follow a path if disregarded at the planning stage. A class of
control techniques that operate over the belief space, known
as partially-observable Markov decision processes (POMDPs)
[1] has been derived to address the above problem. Another
class of works exploits local optimal control policies assuming
a linear quadratic Gaussian (LQG) control strategy. However,
these approaches suffer from the “curse of dimensionality”.
In particular POMDPs are notorious for their computational
complexity that may prohibit their application for navigation in
complex or uncertain environments in high dimensional state
spaces. In [2] a more scalable LQG variant is proposed and
applied to environments with discontinuous sensing regions.
An approximate solution to POMDPs is given in [3] but with
the use of considerable pre-processing. To deal with more
complex objectives, deterministic planners such as RRT* and
A* are now very popular since they benefit from asymptotic
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optimality and explore the whole configuration space effi-
ciently. In [4] a graph-search based on A* is proposed by
discretizing the environment into cells for finding a safe route
for a unicycle vehicle. Active perception with a quadrotor
has been addressed in [5] for determining the path with
minimal state uncertainty, and in [6] for maximizing coverage
in presence of obstacles, localization and sensing uncertainty.
Recently, [7] proposed an approximate POMDP control policy
based on an initial guess trajectory returned by a RRT planner
in a discretized environment.

/

Fig. 1: Simulation environment for our framework. An optimal
collision-free trajectory considering a unicycle connects the
initial state (green dot) and a final state (yellow dot) in
presence of obstacles (blue boxes). The pose uncertainty is
represented by the blue ellipsoids whose size is reduced as
soon as a landmark (red bars) is close enough to the robot and
enters the field of view of the camera attached to the robot.
We assume the landmarks are not occluded by the obstacles.
The propagated edges of the two graphs are rendered as the
red curves.

In this work, we aim at planning a trajectory from an initial
to a final state in presence of obstacles and input constraints for
non-trivial robotic systems (like a quadrotor). We assume that
the state is not available (especially the position) but on-board
sensors (including a camera) are used to reconstruct the state
with some estimation algorithm fusing position measurements
reconstructed from vision. Note that these measurements may
be temporarily unavailable because of limited field of view,
maximum range and so on. We want that the path guarantees
some desired level of uncertainty in the reconstructed state
despite the possible non-availability of the measurements.
More precisely, the goal state has to be reached with a
bounded state uncertainty to guarantee some confidence level



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2018

on the robot location. Therefore, the system has to collect
sufficient information from visual landmarks sparsely placed
in the environment to satisfy this final constraint (see Fig. 1
considering a unicycle equipped with a front-looking camera
with reference to Fig. 2).

Fig. 2: A unicycle equipped with a fixed camera receives
position measurements updates whenever a visual landmark
(red dot) is close enough and enters the field of view.

Literature in perception-aware planning has generally fo-
cused on maximizing observability (or minimizing the state
uncertainty) based on some criteria e.g., the trace or the small-
est eigenvalue of the covariance matrix. This strategy definitely
helps in finding a path that tries to collect as much information
as possible for preventing the state uncertainty to increase too
much. However, the path itself may be severely suboptimal
in terms of length and duration (e.g., [8] for optimal self-
calibration of UAVs). Indeed, the path length is generally
not constrained and can be excessively long, especially if the
robot needs to pass by all the regions/landmarks with richest
information.

In this work, we propose a minimum-time planning al-
gorithm for dynamic systems returning feasible and robust
trajectories that do not guarantee minimal state uncertainty
along the trajectory but a bounded state uncertainty with given
bounds at the goal, which we consider as a more practical
application.

II. RELATED WORKS
A. Planning in the belief space of dynamical systems

An admissible position uncertainty is defined in [9] as a
goal area of a given size that a nonholonomic robot has to
enter. A RRT variant is implemented where uncertain states
are modeled as boxes. Our work is mostly based on the recent
work of [10], [11] that propose an efficient A* planner in the
flat space of a quadrotor. It is applied to aggressive manoeuvres
and precise collision avoidance that are function of the robot
attitude. A variant of RRT for flat systems is detailed in
[12] to produce smooth dynamically feasible motion plans
in real-time and in [13] for online navigation in dynamic
environments with a quadrotor. Both works exploit differential
flatness to build a look-up table of pre-computed feasible
motion primitives.

B. Contributions

In a previous work [14] we considered hard visibility
constraints that may become too restrictive for minimum-time
planning. In this work, we propose to relax these constraints

by allowing temporary visual cues losses for performing
faster trajectories in larger and more complex environments.
We implement a bi-directional A* algorithm that grows two
graphs, one from the initial state and one from the final state.
A solution trajectory is built by connecting the two graphs.
The work presented in this paper blends the following features
within a graph-search algorithm: (i) incorporation of model
and sensor uncertainty in collision avoidance and perception,
(ii) generation of minimum-time and feasible trajectories for
flat dynamic systems, (iii) incorporation of discontinuous
visual measurements, (iv) efficient graph connection using the
convex-hull property of B-spline curves.

In contrast to [11] we include perception constraints and
state uncertainty and directly minimize the time. To the best of
our knowledge, this is the first time minimum-time trajectories
are generated in a graph-search planner while accounting for
uncertainty in the visual perception which is affected by the
system state.

The rest of this paper is organized as follows. Sect. III in-
troduces differential flatness and the modelling of a quadrotor.
Sect. IV presents the uncertainty-aware planner formulated as
a graph-search problem. How the graph is built is described
in Sect. V. The graphs rewiring is detailed in Sect. VI. In
Sect. VII simulation and experimental results are presented for
a quadrotor with an onboard camera. Finally we draw some
conclusions and future directions in Sect. VIII.

III. PRELIMINARIES
A. Differential flatness

Differentially flat systems are systems whose state x and
inputs u can be expressed as algebraic functions of flat outputs
derivatives up to some suitable order [15]. Differential flatness
is often used for planning purposes: i) the problem size is
reduced, ii) any smooth enough curve in the flat space is
feasible by the real system, iii) the system dynamics are linear
in the flat space. The proposed algorithm is applicable to
systems represented as d independent chains of integrators of
a given order r of the form

n" =v (1)

where v € R? denotes the new inputs and 1 € R? are the flat
outputs. Let us define the system state in the flat space as

s = (777 ...,77(7'_1)) e RH 1) (2)

In the rest of the paper we consider the system position as the
flat outputs, e.g., n = (x,y, z) in the three-dimensional space.

B. Application to a quadrotor UAV

With reference to Fig. 3 the quadrotor state is defined as
x = (p, R,v,w) € SE(3) x RS where p € R3 is the position
of the robot COM in the world frame W = {e1, e2, e3} (being
e; the i-th column of the identity matrix), R € SO(3) is the
rotation matrix from W to the body frame B = {5, yg, 25},
v the COM linear velocity expressed in Y and w the angular
velocity expressed in B. The quadrotor is known to be flat with
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Fig. 3: Quadrotor model

flat outputs (z,y, z,v) [16]. The quadrotor dynamics can be
decoupled into four linear subsystems of the form

.’17(4) = U1, y(4) = Uz, Z(4) = us, 1/1(2) = U4q (3)

where v = (u1,us,us,uys) defines the new control inputs in
the flat space. For the sake of simplicity, we do not plan
over the yaw angle v that is assumed to be constant at
zero. Moreover, we consider the quadrotor as three triple-
integrators controlled in jerk along axes X, Y and Z (i.e.,
n = (v,y,z) € R®). With the above simplifications we seek
to alleviate the planner whose complexity grows exponentially
with the state dimension. Finally, we consider the state vector
s = (n,7m,7) and inputs v = 1n(®). We consider that the
quadrotor is equipped with a fixed downward-looking camera
capable of providing reliable position measurements when
fixed landmarks on the ground enter the limited field of view.

IV. PROBLEM FORMULATION

We aim at solving an optimal control problem connecting
an initial state s;,,;; and a final state 54,4, in @ minimum time
T. Let us define the following optimal control problem.

Problem 1. Find the input v and time T such that:

mi%l T (4a)
st 8(0) = Sinit,  S(T) = Sgoal, (4b)
max{eig(P"(T))} < A, (40)
(n(7),7(r),n® (1)) e X vre[0,T] (4d)

where eig(P"(T)) € R? contains the eigenvalues of the
position covariance matrix P" at the goal state s40, and
xifree .= [—0,0]3 x [~a,a] x [—], j]® denotes the hypercube
space of the admissible velocities, accelerations and jerks.
The desired bound on the position uncertainty is defined
by A > 0. For nonlinear systems such as a quadrotor, the
Extended Kalman Filter (EKF) is often used for approximating
the belief dynamics. The EKF is based on a linearization of
the system dynamics which results in cumulative errors due to
the local linearization assumption. In this paper, since we plan
directly in the flat space we can use a so-called derivative-free
Kalman filter without the need for derivatives and Jacobians
calculations. Moreover, the state estimation accuracy of a
derivative-free Kalman filter can be improved w.r.t. a standard
EKF, especially for nonlinear systems [17]. Considering the
linear equivalent system in the flat space one defines the
process model. When a landmark is visible we have

s§=As+Bu+¢, y=Cs+e (5)

where ¢ is the process noise and € is the measurement noise.
For a flat system controlled in acceleration (i.e., r = 2),
assuming the velocity is estimated through filtering of position
measurements, the matrices A, B, and C are given by

0010 00
0001 00 1000
A=1looo00| B~ 10’0_(0100 ©
0000 01

In the next sections we will show how Problem 1 can be trans-
formed from an infinite dimensional optimal control problem
to a finite dimensional bi-directional graph-search problem.
We choose to extend two graphs to improve the search, to
increase the rate of convergence and the chance to find a
solution especially in complex and cluttered environments.
Moreover, the use of two graphs generally propagates fewer
vertices than with a single graph.

A. Motion primitives

As in [10] we use polynomials to parameterize the flat state
components and generate motion primitives to explore the flat
space in a discrete way (see (1)). More precisely, by applying
a number of sampled constant inputs v € [, ..., j]® along
each axis for a duration 7 > 0 one can iteratively build a graph
G(V, E) rooted in state sg. Here, V' defines the set of discrete
states denoted as the vertices s in the graph representation
that are connected with a motion primitive referred as an edge
in the set E (e.g., see Fig. 1). For a flat system controlled in
jerk (i.e,. r = 3) a motion primitive represents the state s(t)
starting at state sg for ¢ € [0, 7] with a curve defined as

3L 2
vi's + iy + 10t + Mo
I/kt + 'flo

s(t) = M(vy, so, t) :=

These trajectories reflect the system dynamics thanks to dif-
ferential flatness and provide the minimum jerk between the
states s and s(7) [18]. The free flat space will be explored
with a propagation of these motion primitives further detailed
in Sect. V. Naturally, changing the admissible bounds for vy
and duration 7 will affect the free space coverage.

Problem 1 can be reformulated as Problem 2 in the graph
representation where we seek the trajectory connecting the
initial and goal states with the optimal control sequence v}
and the minimal number N* of motion primitives.

Problem 2. Find the sequence vy and N such that:

b N (8a)
s.l. 80 = Sinit, SN = Sgoal, (Sb)
max{eig(P})} < A, (8¢)

(D 1o m ) € X7 VEe[0,N]  (8d)

where P7, is the covariance matrix on the position at the
goal vertex. The resulting trajectory will have a total time
N*7. Finally, collisions are avoided by considering the robot
shape as representative of the position uncertainty ellipse (or
ellipsoid in 3D) whose estimation is detailed in the next
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section. Motion primitives that violate the collision constraints
are not added to the graph.

In the next section we will show how state uncertainty
is included in visual perception and in collision avoidance
to guarantee perception of visual measurements and safe
navigation to a given level of confidence.

B. State estimation uncertainty

Let o be the major axis of the uncertainty ellipse P" at a
given state. Then, for a 99% confidence level one has oggy, =
v/9.214/X (from the Chi-Square probabilities) where ) is the
largest eigenvalue of P". This confidence ellipse defines the
region that contains 99% of all samples that can be drawn
from the Gaussian distribution. We take a sphere with radius
099y, as representative of the robot occupancy. It will vary
with the pose uncertainty and will be included in the planner
for ensuring robust collision-free paths. Now, let us consider
state uncertainty in the visual perception. With reference to
Fig. 4, in order to check that a landmark at position 7, is
visible along an edge, we impose conditions on angles 3; and
B2 on both planes X-Z and Y-Z. On a given plane one has

3; = arccos M , 1=1,2 )
lp—ril

where [; are given by

cosa —sina cosa sina
zl=(. )t,l2=( . )t (10)
sina  cosa —sina cos
With g as the (constant) gravity acceleration and a as the robot
acceleration in the world frame one has t = (a+g)/||a + g|.
Since the [3; are function of the position and the acceleration,

the bearing uncertainty A5 € R on a given plane can be
computed as

(B aB\" (P 0\ (3B 3B
- (mm) (o ) (Ga) o

where P is the acceleration covariance matrix. The state
covariance matrices are evaluated with the Kalman filter along
each valid discretized motion primitive. This way one can
ensure a (theoretical) 99% confidence on the perception if the
following upper bound conditions are satisfied on both planes
X-Z and Y-Z at a given state

1Bi] + V9.21A8 < 2, i = 1,2

These conditions allow an exact and fast evaluation of the
visibility and only rely on the flat state. Moreover, it allows
us to consider a realistic pyramid-shaped field of view (since
we do not plan over the yaw). The update step of the Kalman
filter is therefore applied with the simulated measurements
whenever conditions (12) are met along the propagated motion
primitives.

12)

V. BUILDING THE GRAPH

In this section we show how to exploit some vertices to
efficiently explore the free space with the design of an heuristic
function in order to build the graph. Traditionally, distance-
based heuristics are used but they are not very relevant for

- r

X Y

Fig. 4: The quadrotor in the vertical planes X-Z and Y-Z with
1 = 0. Having uncertainties on the state affects the perception.
To evaluate if a landmark (red blob) is visible under the state
uncertainty we check that condition (12) is satisfied on both
planes.

JTL

dynamic or nonholonomic systems that cannot change their
velocity, acceleration or orientation instantaneously. That is
why a heuristic function more appropriate for second- or
higher-order systems has been proposed in [10], by taking
smoothness into account. As well know, A* algorithms rely on
two functions: the heuristic function h(s, s’) that encodes an
(optimistic) approximation of the cost-to-go from a vertex s to
a goal vertex s’ and the function g(s) which represents the cost
of vertex s. Without a heuristic, A* is equivalent to a Dijkstra
search, but encoding some theoretic information into the
heuristic function can greatly reduce the number of expansions
in favouring exploration toward promising directions/areas. We
use the heuristic function proposed in [10] that originates from
the resolution of Pontryagin’s minimum principle and invite
the reader to refer to the latter paper for more information.
This function now encodes the “effort” required to connect
two states given the considered control input (e.g., velocity,
acceleration or jerk) and is used to select vertices leading to
the exploration toward regions with minimal energy in order
to encourage smooth trajectories. The cost of an edge itself is
g(s) = 7 because we want to minimize the time. We propose a
bi-directional A* algorithm that builds two graphs G; and G,.
G, starts at the initial state sy and G, starts at the final state
sy. Both graphs will be propagated and connected to return
full trajectories from s;,;; t0 S40q;. The planner is detailed in
the following section.

Designing an efficient space exploration is tedious when
complex tasks are involved and should not rely on a too strong
a priori. Namely, in our case, the search should not be biased
towards the goal since it may not collect sufficient visual cues
from the landmarks to satisfy (8c). When multiple goals are
present one may bias the search towards these goals, here, the
landmarks. However, ensuring convergence to the final goal
is not straightforward, especially for dynamic systems with
perception goals. In the end, we choose to not rely on any
exploration a priori to be able to deal with any environment
and landmark configurations (provided a solution exists). We
will rely instead on random-based exploration by smoothly
propagating vertices toward states sampled randomly in the
free space. Algorithm 1 runs for a given number of iterations
I and is detailed below. Note that the uncertainty is only
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propagated on graph G; with the Kalman filter since graph
Gs is grown backwards (i.e., from the final goal s, towards
the initial state s;,;¢). With reference to Fig. 5, the algorithm

Algorithm 1 Bi-A*

I: g(sl%est) «— o, g(sgest) —©

2: for i < 1 to I do

3: Srand — Sample()
(lezear’ Xr%ear) - Nearvertices(sranda G1, e, P)

4
5: (X}, X2) « NearVertices(Srand, G1, G2, Ve)
6: if X! # @ and X? # () then
;
8
9

(5t 820) < ConnectG(X2, X2)
(P, coll) — BackProp(s}..,,, Pst . ,G2)
‘ if max{eig(P%)} < A and !coll
10: if 9(Snew) + 9(57ew) < 9(Spest) + 9(S7esr)
11 Stest = Snews Sbest = Sgtew
122 if X}, .. # O then
13: Lg < GetSortedList(X}.,,)
14: s¥ « ChooseBestParent(Ls, sN)
15: L§ « ExtendVertex(s¥)
16: G1 <« InsertVertices(L§)
7. if X2, # O then
18: L < GetSortedList(X2,,,)
19: s3 «— ChooseBestParent(Ls, so)
20: L§ < ExtendVertex(sd)
21: G2 < InsertVertices(L$§)
2:  if X}, =0 and X2, = then
23: (s¥, s%) <« BestVertices(G1,Ga)
24: L§ «— ExtendVertex(s¥)
25: G1 <« InsertVertices(L§)
26 L§ « ExtendVertex(sd)
27: G2 <« InsertVertices(L§)

1 2
return sy, ;, S .

procedures are detailed below:

Sample: returns an independent and uniformly distributed
random sample vertex S,.,q in the free space.

NearVertices: given a sample vertex Spqng, a graph
G = (V,FE) and a ball region B, of a given radius p,
the set of near vertices is defined as Near(s,G,p) =
{s € V :d(s, srana) < p} where d is the Euclidean distance
and p = y(log(K)/K)"Y9 is the radius for expansion with
K is the number of vertices and ¢ is the space dimension.
The ball radius helps capturing vertices when the graph is
hollow and shrinks with the number of vertices to reduce the
computation time. We use a constant radius «y. for finding
connections candidates (see procedure ConnectG).

GetSortedList: given a list of vertices V' and a goal &', this
function returns a list L, of the sorted vertices s € V in
increasing heuristic cost h(s, s’).

ChooseBestParent: the vertex with lowest h cost from a list
of vertices is chosen for expansion. We seek to find the parent
vertex that will expand vertices towards the given goal with
the lowest energy (highest smoothness).

BestVertices: when no near vertices are found in ‘5,., this
function finds the vertex s in graph G; with lowest cost
h(s, sn) and analogously for Go with h(s, sg).

ExtendVertex: propagates a motion primitive from a given
parent vertex. This function includes the belief state propaga-
tion with the Kalman filter and collision and feasibility tests.

InsertVertices: valid vertices/edges are added to the graph
and marked as children from their parent vertex.

InsertVertex: this function inserts a single vertex/edge pair.

ConnectG: this procedure is triggered whenever vertices
from both graphs are found in the procedure NearVertices
within a second ball region of constant radius ~. centered on
Srand- Indeed, we seek pairs of vertices in a vicinity region to
perform connection tests (see Algorithm 2) using the function
solveQP presented in Sect. VI. Note that «y. can for instance,
be chosen as the ‘“spatial resolution” of motion primitives or
larger to find more connections.

BackProp: given a vertex sy with a covariance matrix Py
from graph G, once a connection is found we back-propagate
the state uncertainty through G, by considering the sampled
states between sg and the goal sy (see Fig. 5).

Algorithm 1 aims at finding the most direct trajectory to-
wards the goal, especially in case of low process noise and tries
to mimic a couple of nice properties of classic graph-search
planners, namely: i) expansion towards unexplored regions; ii)
probabilistic completeness due to a uniform random walk; iii)
asymptotic optimality.

Algorithm 2 ConnectG
Input: X}, X?
1: success = false
2: for 51 in X! do
3. for sy in X2 do
4 if h(s1,s2) < h then
5: success «— solve@QP(s1, 82)
6: if success = true then
7
8:

return (si, S2)
return (

Algorithm 2 performs connection trials on the vertices in
X!, X2 if their heuristic cost is lower than a given value h.
This value can be chosen off-line to skip connections that may
require “too much” energy. Usually, graph-search planners for
dynamic systems involve two steps. First, an optimal path is
found ignoring the system dynamics. Then a refining step is
performed by optimizing over a selection of state keyframes
along the path. The resulting trajectory is smoothed and more
adapted to dynamic systems (see e.g., [10], [19]). However, the
shape of this trajectory may strongly differ from the original
path (e.g., in [19]). In our context, visual perception cannot
be guaranteed with such a technique and it does not take
into account the uncertainty in collision avoidance. A key
role of the bi-directional planner used in this work is that
if a connection is made, the initial and final states are exactly
connected, which is generally not the case in the graph-search
planners literature. For instance, [10] stops the search when
a vertex becomes close enough to the goal state Sgoq1, @
condition that may not be met if not properly tuned. In this
work we aim instead at finding the optimal trajectory that
will be directly tracked by the real system without additional
refining steps.
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Fig. 5: 2D case: Inside a ball of radius p centered at S,qnd
(black dot), picture 1 shows how the vertex with lowest cost h
is chosen for expansion (in cyan). The black arrows represent
the vertex velocity vector. If vertices from graph G; (in green)
and from graph G- (in yellow) are found inside a ball region
of fixed radius 7., connections trials are performed except
for connections with a high h cost (orange lines). Note that
we consider the opposite velocity (and higher derivatives)
vectors for vertices coming from graph Go. If a candidate
connection is found (blue line) the uncertainty is propagated
along G, starting from s}, (picture 3). If no collisions are
found between the obstacles (blue box) and the uncertain robot
occupancy (turquoise ellipses) and if the final constraint (8c)
is satisfied on P, a solution trajectory is reconstructed from
the initial vertex sy (green dot) to the goal vertex sy (yellow
dot) and its total cost is evaluated.

Next section details how the connection between the two
graphs is performed in an optimal and efficient way.

VI. CONNECTING THE GRAPHS

Connecting the two graphs is a critical step. One has to
ensure state continuity between two candidate vertices s; € V
and sy € V5 in a given time 7. This problem is known as
the Boundary Value Problem (BVP). Moreover, one wants to
ensure feasibility as well and connections have to be evaluated
quickly since the process may be called many times. We
propose an optimal formulation to the BVP that can be solved
as a single convex quadratic program. We exploit the convex-
hull property of B-splines in order to impose constraints
directly on the curve control points to alleviate the solver.

A. Solving the constrained BVP

The problem we want to solve is the following

Problem 3. Find s, v such that:

(13a)

s(T.) = s, (13b)
e (1)) € X Yre[0,T.] (13c)

We penalize the input norm to obtain a smooth connection
trajectory. For the quadrotor one minimizes the jerk norm (i.e.,
r = 3). Now, we parameterize the flat state s as B-splines to
turn the infinite dimensional problem to a finite one with a
limited number of coefficients that can be solved numerically.
A trajectory s is parameterized as

i=n
s(t) = Y Bip(r)P, V7 e[0,T] (14)
i=0
where B, is a polynomial basis of degree p (of order k = p+1)
and P € R"*! represents the set of coefficients.

B. A linear quadratic program based on B-splines

The reason we use B-splines is for their convex-hull property
that will allow us to write linear inequality constraints directly
on the B-spline control points. A similar approach has been
used in [20] for manipulators. This strategy avoids discretizing
the flat outputs and the constraints that may lead to a great
number of constraints. In short, since on its knot vector the
basis functions are non-zero and sum to 1, a point on the
curve will lie in the convex-hull of the control points. By
constraining the control points, we are ensured that the B-
spline curve will satisfy the same constraints. However, the
distance between the control points and the actual curve is
positive but we will show that the conservatism introduced
is very reasonable with the considered basis functions. Con-
straints (13c) can be mapped in the space of the control
points. Let us differentiate the B-spline of degree p defined
on the clamped knot vector of size n + k + 1 such that
U; <UH_1,’L':O7...,717]€

U= (0,...70,up+1,..
;_V__J
p+1

SU—po1y Lo, 1) (15)
e

The first derivative can be expressed as a function of the
control points P with

i=n—1
, P, - P;
s(u)=p Bit1p-1(t (16)
) Z-;O Lo )T(ui+p+1 — Uit1)
Let us define the vector of new coefficients
P 1 —P; .
Q, = , Vie[0,n—1] (17)
T(Wigpr1 — Uir1)
For the second derivative one has
1=n—2
(18)

SN(U)Z 2 Bi+2,p,2(t)Ri
=0

where R; are the control points of the second derivative. One
has

Qiy1 — Qs )
R,=(p—1 , Vie|[O,n—2] (19)
(p )T(quH —— [ I
Now we can express @ and R as functions of P with
Q=AqgP, R=ARrQ=AgrAqgP (20)

where matrix Ag € R"*("*+1) and Ap € R(~D*"_ Similarly,
control points of the third derivative are given by

Si—(p—2) Ri1 —R;
T T i ey — i)

, Vie[o,n—3] (1)
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Now, one can easily set semi-infinite bounds on the derivatives
coefficients Q, R and S that are linear in P. All the
constraints can be rewritten as functions of the control points
P. One wants to solve the following problem on each axis.

Problem 4. Find P such that:

min PT"(B'B,)P (22a)
st<PB(O)> n\Y. (i, ) e [0,r — 1]? (22b)
(P,By(T.)) =n} VG el 1 @)
—-09<Q,; <0, Vie[o,n—1] (22d)
—a<R;<a, Vie[0,n—2] (22e)
—-j<8;<j Vie[o,n—3] (22f)

where B, is the r-th derivative of the B-spline basis function.
We recall that » = 3 for the case of a quadrotor and we

minimize the jerk. Problem 4 will be solved using qpOASES
[21] that implements an online active set strategy. Note that the
connection time 7 is fixed and we found that choosing T, = 7
generates a reasonable amount of successful connections.

VII. SIMULATION AND EXPERIMENTAL RESULTS

In this section we show some results from different sce-
narios for the 3D quadrotor. Figure 6 shows two optimal
trajectories and Fig. 7 shows the constrained derivatives along
a connection considering B-splines of order 4. With the
given degree we can see that the curves (e.g., the jerks)
are not penalized by conservatism. Finally, Fig. 8 shows the
tracking performance for a simulated quadrotor in V-Rep using
controller [22]. We can see that despite considering the third-
integrator model approximation we can follow the optimal
trajectory quite accurately regarding the attitude tracking.

For the experiment illustrated in this section we used a
MK-Quadro from MiKroKopter equipped with a front-looking
camera with a field of view of 45° tracking the AprilTags
with ViSP [23]. The setup includs an on-board ODROID-XU4
Linux computer running ROS and the TeleKyb framework [24]
for controlling the quadrotor. An optlmal trajectory computed
off-line using a jerk input j = 4m.s~3 is tracked by the system
(see Fig. 9) in presence of two obstacles (blue boxes) and four
landmarks. We invite the reader to refer to the attached video
for more simulation and experimental results.

Finally, Problem 4 is solved within 5 ms for the 3D
quadrotor after about 90 SQP iterations and the planner is
able to find an optimal trajectory in 5 to 10 seconds. The
presented algorithm has been also applied to the unicycle case
by considering constraints on the real system inputs. Details
and results are reported in [25].

VIII. CONCLUSION AND FUTURE DIRECTIONS

In this work we proposed to incorporate perception con-
straints in a graph-search planner for planning minimum-
time and feasible trajectories for flat dynamic systems. The
optimization framework allows exact connection between a
given initial and final states while ensuring collision avoidance
and bounded final uncertainty at the goal by accounting for
the state uncertainty at the planning stage. In this paper

(a) An optimal trajectory providing robust collision avoid-
ance and guaranteed visual perception.

Lo

(b) In this case the quadrotor is able to increase its height
to compensate for the rotation of the camera and to enlarge
its field of view.

Fig. 6: Two optimal trajectories for the quadrotor with 7 =
0.35s and j = 10m.s~3 in a 12x8x5m? operating region
considering four visual landmarks (red dots). The initial and
final states are chosen such that no landmark is visible so the
quadrotor starts with some uncertainty and is able to reach the
goal with a bounded uncertainty by observing the landmarks
during its motion. Note that the motion primitives are not
represented.

linear velocities linear accelerations
1 e -
o —VX
| R ¥
0.5 vz
[0
-1
0 0.2 0.4 0.6 0 0.2 0.4 0.6
time(s) time(s)

time(s)

Fig. 7: Constrained velocities, accelerations and jerks along the
connection trajectory with bounds ¥ = 2m.s~!, @ = 4m.s ™2
and j = 10m.s—3. The small squares represent the B-spline
control points.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2018

angles (°)

time (s)
Fig. 8: Plots of the attitude tracking. The dashed lines are the

command values while the solid lines show the actual robot
attitude in V-Rep.

Fig. 9: Snapshots of the quadrotor during the experiment.
The quadrotor is tracked with a Vicon system and follows
an optimal trajectory (in green) along which landmarks (the
AprilTags in orange) are visible on some portions. The lower
right figure shows an Apriltag tracked using ViSP when the
quadrotor is at the configuration circled in red. The evolution
of the uncertainty is shown below after running the Kalman
filter on the recorded data and using the AprilTags detection.
The landmark at the goal is not taken into account in the
planning and is was used to check that the quadrotor reaches
its goal within the expected confidence region.

we consider visual measurements that are function of the
attitude and propose an efficient optimal graph rewiring by
exploiting the convex-hull property of B-splines. Of course,
other exteroceptive sensors could be considered. The planner
success rate depends on the motion primitives parameters, the
ball regions radius and the maximal number of iterations. It
could be possible to replan optimal trajectories during motion
and even consider dynamic obstacles for the unicycle case
(see [25]). Note that the derivative-free Kalman filter in the
flat space drastically reduces the computation load for the
state estimation compared to an EKF with the real nonlinear
quadrotor dynamics. Then, we assumed the landmarks position
is known but it would possible to incorporate their position
uncertainty in the planner. Finally, we believe the triple-
integrator approximation of the quadrotor could be modelled
as an additional noise on the model. This would allow a more
adequate representation of the real model.
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