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There’s No Place Like Home: Visual Teach and Repeat for Emergency

Return of Multirotor UAVs During GPS Failure

Michael Warren, Melissa Greeff, Bhavit Patel, Jack Collier, Angela P. Schoellig, and Timothy D. Barfoot

Abstract— Redundant navigation systems are critical for
safe operation of UAVs in high-risk environments. Since most
commercial UAVs almost wholly rely on GPS, jamming, in-
terference and multi-pathing are real concerns that usually
limit their operations to low-risk environments and VLOS. This
paper presents a vision-based route-following system for the
autonomous, safe return of UAVs under primary navigation
failure such as GPS jamming. Using a Visual Teach and
Repeat framework to build a visual map of the environment
during an outbound flight, we show the autonomous return
of the UAV by visually localising the live view to this map
when a simulated GPS failure occurs, controlling the vehicle
to follow the safe outbound path back to the launch point.
Using gimbal-stabilised stereo vision alone, without reliance on
external infrastructure or inertial sensing, Visual Odometry
and localisation are achieved at altitudes of 5-25 m and flight
speeds up to 55 km/h. We examine the performance of the visual
localisation algorithm under a variety of conditions and also
demonstrate closed-loop autonomy along a complicated 450 m
path.

I. INTRODUCTION

Safe beyond Visual Line-Of-Sight (VLOS) operations are

critical to enhancing the utility of Unmanned Aerial Vehi-

cles (UAVs) in large-scale, outdoor operations. Typically,

reliance on Global Navigation Satellite Systems (GNSS)

for navigation in most low-cost commercial UAVs mean

the authorisation to do so from government regulators is

rare. Jamming, interference and accuracy concerns mean that

Global Positioning System (GPS) alone cannot be relied on

in cases of close-proximity, safety-critical or high-value oper-

ations. In this paper, we present a complete vision-only route-

following system for the autonomous navigation of UAVs,

and demonstrate its use as a functional backup system for

GPS-only navigation. Using this system allows the vehicle to

navigate home visually in case of primary navigation system

failure, without reliance on any external infrastructure, or

inertial sensing for the vision-based components.

Visual Teach and Repeat (VT&R) is a path-following algo-

rithm capable of autonomously driving a robot by following

a previously traversed route [1]. Using visual feature matches

from a live view to a locally metric map of 3D points allows

the robot to estimate a path offset and send corrections to

a path-following controller [2]. Traditionally, VT&R is used

on wheeled vehicles [5], with applications over constrained

Jack Collier is with Defence Research and Development
Canada: Jack.Collier@drdc-rddc.gc.ca. All other authors are
with the University of Toronto Institute for Aerospace Studies
(UTIAS), University of Toronto, Canada: {michaelwarren,
melissa.greeff, bhavit.patel}@robotics.utias.utoronto.ca, {angela.schoellig,
tim.barfoot}@utoronto.ca. Accompanying video available at:
tiny.cc/noplacelikehome

7
3
c
m

Fig. 1: The experimental setup for Visual Teach & Repeat on our
multirotor UAV: (1) DJI Matrice 600 Pro vehicle platform, (2) DJI
A3 triple-redundant GPS module, (3) DJI Ronin-MX 3-axis gimbal,
(4) NVIDIA Tegra TX2, (5) StereoLabs ZED camera.

paths where external navigation infrastructure is unreliable

or not available, e.g., factory floors, orchards, mines, urban

road networks, and exploratory search-and-return missions.

Using VT&R on aerial platforms has a number of unique

use cases: just-in-time deliveries between warehouses, where

flight paths are generally restricted to a few, high-frequency

routes; monitoring of sensitive assets such as property bor-

ders or high-value infrastructure; and autonomous patrol

in close-proximity environments, where poor sky view and

jamming are notable concerns. Significantly, we want the

vehicle to be able to autonomously and safely return to the

take-off location at any time by using vision to localise to a

map generated during the outbound path, all during a single

flight.

In this paper, we adapt the traditional VT&R methodology

to suit these target use cases and apply our VT&R 2.0

system [5] on-board a multirotor UAV (Fig. 1) to demonstrate

closed-loop operation. We show results of live localisation at

speeds up to 15 m/s (55 km/h) at low altitude (5-25 metres)

in winds up to 8 m/s, and demonstrate vision-based path-

following control for the return segment of a just-taught

outbound path. The novel work of this paper includes 1)

demonstration of the VT&R framework on a new platform,

a UAV with gimballed camera, 2) a thorough analysis of

localisation performance and 3) presentation of a new path-

following controller for multirotor UAVs, all in a wide range

of outdoor test scenarios.

The rest of this paper is outlined as follows: Section II

examines similar work in visual route following for ground

vehicles and UAVs, and explores recent work in autonomous

vision-based navigation of UAVs. Section III describes the
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VT&R methodology for application on our target UAV,

including the VT&R framework, localisation algorithm and

gimbal and vehicle controllers. Section IV describes the

experimental setup to test the airborne VT&R framework,

as well as description of datasets, field tests and results. The

paper is concluded in Section V.

II. PREVIOUS WORK

VT&R and similar route-based navigation algorithms have

a rich history on ground platforms [1]–[4], with the most

recent extension adapted to include multiple experiences,

increasing the autonomous performance time from a few

days to several months [5]. On UAVs, there are now several

demonstrations of teach-and-repeat style algorithms from the

authors of this paper and others [6]–[9].

Our previous work, demonstrating the localisation perfor-

mance of VT&R on fixed-wing UAVs [7] and integration

of a gimballed camera on a ground vehicle [10], is the

lead-up to this work. While there are few examples using a

gimbaled camera on ground vehicles, a number of examples

exist in demonstrations on UAVs [11]–[15]. This discrepency

can most likely be attributed to the larger dynamic motions

of UAVs, where the utility of a gimbal is highly justified

to ensure smooth sensor motion. In all the above cases,

however, only two-axis gimbals are utilised. In our setup, we

use an off-the-shelf three-axis gimbal to attenuate motion in

all three rotational axes.

The approach that is closest conceptually to our work,

with specific application on UAVs, is [9]. Despite not be-

ing framed as a ‘teach-and-repeat’ technique, this system

presents a demonstration of such a method on a UAV using

a visual-inertial framework with weak GPS priors to assist

initialisation of localisation and inform loop closures. Our

work differs in that it requires no offline map building (the

map is built on-board in real time) and does not require

inertial sensors or external infrastructure such as GPS for

the perception component of the system.

Beyond the VT&R paradigm, there is a rich demonstration

of vision-based navigation on UAVs in recent years [16].

While most older demonstrations incorporate stereo cam-

era systems for scale, they suffer from poor (i.e., small)

baseline-to-depth ratios at higher altitudes. Recent advances

in Inertial Measurement Unit (IMU) technology have al-

lowed the use of loosely [17]–[19] and tightly coupled

[20]–[22] visual-inertial systems using both monocular and

stereo cameras [23], and with impressive demonstrations of

dynamic maneuvers at high speed [24] in indoor, small scale

setups. The majority of large scale demonstrations using

these systems, however, often exist as a full Simultaneous

Localisation and Mapping (SLAM) framework [25], [26],

incorporating exploration and globally metric 3D maps as a

method of accurate survey. In contrast, VT&R takes a locally

metric approach for map building, and leverages a human

operator for the initial ‘demonstration’ task, circumventing

the difficult tasks of autonomous exploration and loop-

closures.

III. METHODOLOGY

In this paper, we use our well-established VT&R 2.0

software system as presented in [5], including the extension

of a gimbaled camera [10]. However, we adapt this system

for use on a multirotor UAV specifically for the purposes

of emergency return. Instead of teach and repeat phases, we

implement functionally similar learn and return phases.

During the learn phase, the UAV flies using autonomous

GPS waypoint following or human operator control. During

this phase, the VT&R algorithm performs passive Visual

Odometry (VO), inserting the visual observations from this

privileged experience into a relative map of pose and scene

structure, effectively ‘learning’ the route. Following a pri-

mary navigation systems failure, the UAV should enter

the return phase, and, without reliance on GPS or other

external sensing, autonomously re-follow the route home in

the reverse direction. In addition to performing the same

VO as in learn, it performs a localisation using a local

segment from the learnt path. The vehicle follows the learnt

path by sending high-frequency localisation updates (relative

position and orientation with respect to the map) to a path-

following controller. Once the vehicle returns to the start

point, it hovers until taken over by a human controller. To

be clear, in this paper we only simulate GPS failures, by

manually commanding the vehicle to enter the return phase

during flight.

In the following sections, we describe our VT&R system,

including the architecture of the system, the visual navigation

algorithm, and gimbal and path-following controllers.

A. System Overview

The architecture of the VT&R system for the multirotor

UAV is shown in Fig. 2. All processing, including visual

navigation, localisation, planning and control occurs on-

board the UAV on the primary computer (Fig. 1). This

computer directly interfaces with the on-board camera via

Universal Serial Bus (USB) 3.0, which provides grayscale

stereo images for visual navigation. This computer also

interfaces with the on-board autopilot via a serial Transistor-

Transistor Logic (TTL) connection, which provides vehicle

data (gimbal state, autopilot state, etc.) and the interface

for sending control commands. A long-range, low-bandwidth

900 Mhz wireless link is used to communicate with the pri-

mary on-board computer from a ground station. The ground

station computer is utilized only for status monitoring and

sending of high-level control commands. These commands

consist of manual state transition requests (switching from

learn to return), obtaining flight control authority from the

autopilot, and initiating GPS waypoint missions.

The VT&R software system consists of several interacting

components (Fig. 2): 1) VO, 2) windowed refinement, 3)

visual localisation, 4) a state machine, 5) gimbal and path-

following controllers and 6) a safety monitor. Each system

operates in a separate thread or process, interacting through

the transfer of data caches (a packet of new and derived data,

including images, processed features and estimated trans-

forms) and through the use of a Google Protobuf backend



Fig. 2: The architecture of the VT&R system for multirotor UAVs.

for disk storage. Memory managers ensure that stale data is

written to disk to reduce Random Access Memory (RAM)

utilisation, and is pre-emptively re-loaded during the return

phase to ensure localisation can proceed without waiting for

disk access. The Robot Operating System (ROS) is used to

run the safety monitor and interface to the autopilot and

camera. The adapted VT&R state machine for multirotor

UAVs controls the high-level state that the system is in

(usually learn or return).

A safety monitor runs as an independent process to ensure

safe operation of the vehicle in case of system failure. It

performs a sanity check control and localisation data, in

addition to a watchdog functionality on the control com-

mands and state data both from VT&R and the autopilot.

Any monitored command or state data that is delayed by

more than a preconfigured timeout triggers a safety failure,

forcing the vehicle to release software control and revert to

manual pilot control.

In the following sections, the visual system, path-following

and hover controllers are described in more detail.

B. Visual System

The visual system consists of seperate threads for feature

extraction, pose estimation (VO), refinement and localisation,

using images captured by a stereo camera to estimate both

pose updates and localisation to the path during the return.

1) Visual Odometry: During both the learn and return

phases, image pairs are captured by a calibrated stereo

camera at a frame rate of ∼15 Hz, while the gimbal state

(read as roll-, pitch-, and yaw-axis angular positions) is

captured at 10 Hz. The gimbal state gives the pose of the

camera in the vehicle frame by compounding the captured

gimbal angles through a series of transforms with known

translations extracted from 3D vehicle models. We denote

the vehicle-to-sensor (camera) transform at time τ as Tτ
sv .

For each stereo image pair captured at time t, Speeded-

Up Robust Features (SURF) features are extracted, descrip-

tors generated and landmarks triangulated. Landmarks are

triangulated from both the stereo pair and from motion

to account for both close proximity and extremely large

depths depending on altitude, similar to [22]. Each feature

in this latest frame-pair is matched to the last keyframe via

SURF descriptor matching on the Graphics Processing Unit

(GPU). The raw matches are then passed through a Maxi-

mum Likelihood Estimation SAmple Consensus (MLESAC)

robust estimator to find the relative transform to the last

keyframe. Finally, this transform is optimised using our

Simultaneous Trajectory Estimation And Mapping (STEAM)

bundle adjustment engine [27], keeping landmarks fixed.

After this process, if the number of inliers drops below

a minimum count or the motion (translation or rotation)

exceeds a threshold, the frame is set as a keyframe and the

features, new landmarks, and vehicle-to-sensor transform at

that time are stored in a vertex in a pose graph for future

retrieval. The relative transform is stored as an edge to

the previous vertex. Windowed bundle adjustment (termed

windowed refinement) is then performed on the last 5-10

vertices. This VO plus bundle adjustment process generates

a dead-reckoned set of linked poses that represent the path.

During the learn phase, this set of poses and edges is

marked as ‘privileged’. Naturally, incremental translational

and rotational errors compound during this process, causing

the global map to be distorted. However, VT&R depends on

the graph being only locally metric in the region to which the

vehicle is localized. For a more thorough explanation of this

component, we direct the reader to our previous work [5].

2) Visual Localisation: During the return phase, while

the vehicle flies in reverse, an additional thread performs

visual matching to the local map of 3D points in the graph

to estimate the path-following error (Fig. 3), which is used

by a path-following controller to keep the vehicle on the

path.

To enable this process, the localisation chain is used

to keep track of important vertices in the graph and their

respective transforms. We use a ‘tree’ model to name vertices

in the chain, going from the trunk vertex (defined as the

closest vertex spatially on the privileged path), through

the branch (the closest vertex on the privileged path with

a successfully MLESAC estimated transform), twig (the

corresponding vertex on the current path) and leaf (latest

live vertex) vertices. These can be seen in Fig. 3. We use the

notation t, b,w and l to refer to the trunk, branch, twig and

leaf vertices, respectively.

At every step of VO (i.e., on every successfully estimated

frame, not just keyframes) the localisation chain is updated

with the estimated transform from trunk to leaf, (or Ťlt =
Ťfa = TfeTebTba in Fig. 3). The leaf is updated every step

and, if necessary, the trunk vertex is updated to the closest

estimated privileged vertex to the leaf.

Upon insertion of a new VO keyframe as a vertex in

the graph, the localisation thread attempts to estimate a
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Fig. 3: During the return phase, the vehicle follows the learned route
in reverse. The localisation chain updates the estimated localisation

transform T̃fa at each VO update. Upon creation of a new vertex F ,
visual localisation inserts the new edge Tfa. The gimbal controller

minimises orientation error of T̃fa, which includes vehicle-to-
sensor transform, Tsv , and Ťfa. The uncertainties and some
estimated transforms are omitted here for clarity.

new transform from branch to twig. This process follows

four separate stages: i) landmark migration, ii) landmark

matching, iii) pose estimation, iv) optimisation. First, the

nearest privileged vertex (the trunk) is used as the base vertex

to generate a local window of privileged vertices that contain

potentially matchable landmarks. Using the transforms on

the privileged edges, the landmarks in this window are

transformed to the trunk to generate a locally metric set of

3D points with a common origin1.

Following a similar process to VO, features in the latest

non-privileged vertex (the leaf ) are matched using their

SURF descriptors to all descriptors of the migrated land-

marks, which are then passed through a MLESAC robust

estimator to estimate the relative transform from trunk to

leaf, Tlt (Tfa in Fig. 3). Finally, the transform is optimised

while leaving all landmarks fixed. The localisation chain is

then updated to reflect this fresh transform estimate, and the

new branch to twig is set T∗

wb
← Tfa. The path-following

controller can query the localisation chain at any time to get

the best estimate of Tlt, facilitating control at high speed

even with significant delays from visual localisation.

C. Gimbal Controller

Use of a gimbal decouples the visual perspective from

the roll/pitch-to-move actuation of multirotor UAVs. This

significantly improves the robustness of VT&R in the air

by adding extra degrees of actuation to the visual servoing

problem. During fast, dynamic maneuvers, a gimballed cam-

era system will be able to outperform a static camera system

by decoupling the aircraft motion from the camera view. In

addition, maintaining a consistent roll ensures that generally

unstable point features are tracked more consistently.

1While our previous work incorporates features and points from multiple
experiences (i.e., multiple traverses), the learn-return framework by defini-
tion only uses a single experience: the privileged one.

During the learn phase, gimbal control is not performed

by VT&R, but left open-loop such that the gimbal inter-

nal controller performs stabilisation of roll and pitch, and

smoothes yaw that follows the vehicle yaw. The value of

this sensor-to-vehicle transform Tτ
sv (Fig. 3) is recorded at

each new vertex, corresponding to time τ . During the return,

the gimbal is actively controlled by VT&R for the pitch and

yaw axes. The gimbal is commanded to reduce orientation

error between the current (leaf ) view and nearest privileged

(trunk) view, (T̃fa in Fig. 3), as knowledge of the transform

between the current and the privileged poses is known via

the localisation chain such that:

T̃fa = Tl

svTltT
t

sv
−1

(1)

using the sensor-to-vehicle transforms captured at vertices t

and l. Ťfa is updated in the localisation chain at every frame.

D. Path-Following controller

A path-following controller is implemented for vehicle

control during the return phase to keep the vehicle as close as

possible to the outbound path while mainitaining a suitable

target velocity.

To enhance robustness to environmental disturbances and

system delays, we consider a path-following approach,

which, in contrast to trajectory tracking, prioritizes spatial

error over temporal error [28]. By extending the approach in

[28] to a VT&R framework, we achieve simple multirotor

path-following. This is done by converting a standard P-D

tracking control to select the spatially closest reference point

on the path at each control time step (50 Hz).

Ťtl =

[

Ctl plt
t

0T 1

]

= Ť−1

lt
.

We obtain a translational velocity estimate vlt
t = (ẋ, ẏ, ż) us-

ing STEAM trajectory generation [27], which fits a constant

velocity trajectory through the previous path vertexes.

a) VT&R Path-Following Reference: We generate a

path by connecting a straight-line through successive privi-

leged vertices. To do this, we use the localization chain to

obtain a transform from the next privileged vertex to the

trunk Ttn. From this we can extract the position pnt
t

of the

next privileged vertex with respect to the trunk using

Ttn =

[

Ctn pnt
t

0T 1

]

.

At each time step, we determine the reference position

pref = (xref , yref , zref) by projecting our current multi-rotor

position plt
t onto the straight-line segment connecting the

trunk to the next privileged vertex using:

pref = plt

t
· pnt

t

pnt
t

|pnt
t
|
.

We obtain a reference velocity vref = (ẋref , ẏref , żref ),
where the magnitude is a user-selected parameter vdes, in

the direction of the next privileged vertex using:

vref = vdes
pnt
t

|pnt
t
|
.



b) Control Design: Our path-following control is de-

signed to send commands (żcmd, ψ̇cmd, θcmd, φcmd) where

żcmd is a commanded z-velocity, ψ̇cmd is a command yaw

rate, and θcmd and φcmd are commanded pitch and roll,

respectively. The z-velocity command is designed using a

P-D controller:

żcmd =
2ζz
τz

(zref − z) +
1

τ2z
(żref − ż), (2)

where ζz and τz are tuned damping ratio and time constant.

The current yaw, ψ, with respect to the trunk is determined

from the rotation matrix, Ctl. As seen in (3), a P-controller

(with tuned time constant τψ) is used to correct for any yaw-

mismatch between the leaf and the trunk:

ψ̇cmd = −
1

τψ
ψ. (3)

As in [29], lateral-motion control commands are deter-

mined by first designing translational acceleration commands

using P-D control:

ax =
2ζθ
τθ

(xref − x) +
1

τ2θ
(ẋref − ẋ), (4a)

ay =
2ζθ
τθ

(yref − y) +
1

τ2θ
(ẏref − ẏ), (4b)

where ζθ and τθ are tuned damping ratio and time constant.

Assuming small lateral acceleration (ẍ ≈ ÿ ≈ 0) and using

standard feedback linearization, these linear acceleration

commands are transformed into pitch and roll commands:

θcmd = arcsin(
ax

g
cosψ +

ay

g
sinψ), (5a)

φcmd = − arcsin(−
ax

g
sinψ +

ay

g
cosψ), (5b)

where g is the gravitational constant.

IV. EXPERIMENTS

To evaluate the performance of the airborne VT&R al-

gorithm, a number of outdoor experiments were performed

on-board the target UAV.

In the first experiment, we evaluate the performance of the

localisation algorithm under GPS control using the described

gimbal controller. Specifically, we test the performance of the

localisation algorithm and gimbal controller under deliber-

ately challenging conditions, including high-speed, dynamic

flight and high learn vs return positional error. For this

experiment, we deliberately exclude the vehicle controller

to isolate the performance of the subcomponents of the

algorithm. In the second experiment, we perform closed-loop

control with the aforementioned path-following controller

developed for full 6-DOF vehicle motion. This system is

evaluated over several runs, showing the full system oper-

ating. The experimental setup is described in the following

subsection.

Fig. 4: Overview of the trajectory flown at the DRDC Suffield
Research Centre, shown in magenta. Velocity profile for a target
15 m/s commanded speed overlaid.

A. Experimental Setup

For these experiments, we use a DJI Matrice 600 Pro, with

attached Ronin-MX gimbal (Fig. 1). This system has a take-

off weight of approximately 10kg, and maximum span rotor-

tip-to-tip of 1.64m. Control is provided by a DJI A3 triple

redundant autopilot. On-board this system is an NVIDIA

Tegra TX2 module (6 ARM cores + 256 core Pascal GPU)

and StereoLabs ZED stereo camera connected via USB,

both mounted in the stabilised platform of the Ronin-MX

gimbal. The Matrice 600 Pro provides state information to

VT&R running on-board the TX2, including gimbal encoder

positions and GPS status, while the ZED camera provides

grayscale imagery with resolution 672× 376 at 15 Hz. The

Tegra TX2 runs NVIDIA L4T v28.2, a variant of Ubuntu

16.04 for ARM architectures.

The primary location used for the experiments in this

paper is a simulated village at the Defence Research &

Development Canada (DRDC) Suffield Research Centre in

southern Alberta, Canada. The Suffield location consists of

a number of shipping containers placed to emulate buildings

and narrow alleys in flat grassland, suited to a simulated

patrol scenario.

B. Localization Performance Evaluation

In these experiments, we evaluate the combined perfor-

mance of the localisation algorithm and gimbal controller to

successfully localise the vehicle under increasingly difficult

operational conditons. We test this in two ways: increasing

target velocity of the vehicle, and deliberately offset altitudes

on the outbound and return paths. The first test shows the

performance under increasingly dynamic maneuvers of the

vehicle, inducing rapid perspective change and poor path

tracking, which must be attenuated by the gimbal controller.

The second test shows the performance of the localisation al-

gorithm with intentionally poor perspective. We deliberately

do not use the vehicle controller in these tests to decouple

and isolate the performance of the localisation algorithm and

gimbal controller.
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Fig. 5: Localisation performance is comparable with increasing
target (and average) velocity, where learn and return phases are
conducted at the same speed.

1) Increasing Target Velocity: For this experiment, the

aircraft is autonomously flown at 12m Above Ground Level

(AGL) along the path depicted in Fig. 4 in a clockwise direc-

tion. VT&R is placed into learn mode, before the outbound

route is flown under autonomous control, by uploading a

waypoint mission to the Matrice 600 autopilot. Once the

vehicle reaches the end of the loop, VT&R is switched

to return mode, and the aircraft is again autonomously

commanded to return along the same path by following the

waypoints in reverse. During this return stage, the gimbal

is actively controlled by VT&R to reduce orientation errors

caused by path-following discrepencies generated by the

GPS-based controller.

The route is flown at increasingly fast target speeds, 3, 7,

8, 10, 12 and 15m/s, on both the learn and return stages.

While the vehicle reaches this speed during only parts of

this path, the average speed also increases with each pass.

A typical speed profile for the path at 15m/s target speed is

shown in Fig. 4.

Fig. 5 shows the median and variance of the localisa-

tion inliers recorded along the return path for each of the

target speeds. This figure shows that even at the highest

commanded speed (15m/s), localization performance remains

similar to those examples at lower speeds. At 15m/s some

localisation failures occur, but the majority of these can be

attributed to failures of the hardware gimbal controller during

a segment of the path.

2) Increasing Height Error: For this experiment, the

aircraft is again autonomously flown at 12m AGL during the

learn stage along the path depicted in Fig. 4 in a clockwise

direction at a nominal speed of 7 m/s. The total length of the

path is approx. 450m. Once the vehicle reaches the end of

the loop, VT&R is switched to return mode, and the aircraft

is again autonomously commanded to return along the same

path by following the waypoints in reverse at the same 7 m/s

target speed. In this case, however, we vary the altitude at

which the aircraft returns, to test the robustness of the gimbal

controller and ability of the algorithm with large positional

offsets. In these experiments, we show the localisation inliers

along the path with target return heights of 12, 14, 16 and

18m, respectively (Fig. 6).

In Fig. 6, localisation performance is still high, with an

12m 14m 16m 18m

Target  altitude

0

50

100

150

200

250

300

350

400

N
u

m
b

e
r 

o
f 

lo
c
a

lis
a

ti
o

n
 i
n

lie
rs 12m

14m

16m 18m

Fig. 6: Successful localisation occurs with significantly increasing
altitude difference between learn (12 m) and return phases (tested
at 12, 14, 16 and 18 m, but the average (green) shows decline at
more extreme (50%) differences.
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Fig. 7: While vehicle attitude error increases in both median
and variance with increasing target velocity, the gimbal controller
maintains a consistent camera orientation between learn and return
regardless of target speed.

average of 100 inliers per keyframe, even at altitude differ-

ences of 6m, or 50%. While some of this performance can

be attributed to perspective due to the altitude, a significant

component can be attributed to the gimbal compensating for

the reduced image overlap that would be present on a static

camera. Importantly, however, the average inliers does drop

significantly, and more interestingly, reduces in variance.

This is likely due to the enhanced viewpoint overlap (of

the learnt path) at higher altitudes, meaning positional errors

have less effect on maintaining observability of all landmarks

during localisation.

Finally, Fig. 7 shows the utility of the gimbal in minimis-

ing perspective error caused by differing vehicle attitudes

between learn and return. Due to the pitch-to-move nature

of multirotor systems, accelerations and decelerations cause

the vehicle attitude to differ between these two passes of the

path. For a static camera system, these differences can cause

performance degradation due to poor image overlap. Using

a gimbal with active control to minimise camera orientation

can minimise this effect. Fig. 7 shows the magnitude of

orientation error for two separate localisation transforms at

each speed profile (read as a pair) taken from the estimated

localisation chain as estimated from the visual pipeline:

in the vehicle frame (Tlt, or Tfa in Fig. 3) on the left,

and in the camera frame (T̃fa in Fig. 3) on the right.

As can be seen at all speed profiles, the gimbal succeeds

in minimising the orientation of the localisation transform,



and this performance is relatively consistent with increasing

speed. In this scenario, the target speeds of the learn and

return phases are the same for each speed profile, meaning

there will be some consistency in orientation in both phases.

With differing speed profiles, we would expect the observed

utility of the gimballed camera to increase further.

3) Execution Time: Fig. 8 shows the average execution

time for the seperate processes in the VT&R software on-

board the Tegra TX2. While feature extraction and VO

process every image pair at an approximate speed of 66ms

(∼15 Hz), windowed refinement only runs on generation

of a keyframe, and localisation runs after this process is

complete. Feature extraction and matching are all performed

on the GPU. Using this threaded setup allows VT&R to run

online.

C. Full VT&R Evaluation

In this experiment, we evaluate the performance of the full

closed-loop VT&R system, using GPS navigation during the

learn phase, and switching to the presented path-following

controller for the return phase. Over three separate trials,

each consisting of a single flight, we traverse the path shown

in Fig. 4 in a clockwise direction at an altitude of 12m AGL,

before returning in an anticlockwise direction at the same

altitude (attempting to minimise all positional errors) at a

target speed of 3m/s.

In all three trials, VT&R was able to complete the return

phase of flight under path-following control over an approxi-

mately 2 minute period. Fig. 9 shows the path for one of these

trials. The outbound path under GPS control is shown in

magenta, while the return path under path-following control

is shown in blue. Figs. 10 and 11 show the normalised cross-

track error (in Y and Z, using the vision-based estimate) and

number of inlier matches respectively. Specific segments of

the path are highlighted in the inset figures of Fig. 9 and

annotated with numbers that correlate to those in Figs. 10-

11.

The positional error is less than 1.5m over most of the

path using the path-following controller, and is comparable

to a return trajectory under GPS control, showing the strong

performance of a simple vision-based path-following con-

troller compared to this primary sensor. In specific sections

such as corners, however, cross-track error increases to a

maximum of 3.6 m. This can be attributed to the simplicity

of the controller, as curvature of the path is not accounted

for, and velocity error is weighted higher than cross-track

error.

Additonally, localisation performance is strong over the

full trajectory, with no localisation failures, even at the

highlighted corner points. The average performance over the

trajectory is again comparable to a return phase under GPS

control.

V. CONCLUSIONS

In this paper, a full VT&R system for emergency return of

a multirotor UAV has been presented. Using 15 Hz imagery

from a gimbal-stabilised stereo camera to build a map online

during a commanded learn phase, we have demonstrated

autonomous return of the vehicle by matching landmarks

back to a live view for autonomous path-following control

with equivalent path-following errors to the on-board GPS

system. In addition, we have demonstrated the robustness

of the gimbal-stabilised system to high-speeds and large

positional errors.

Future work will include the development of a more

advanced path-tracking controller that uses path curvature to

minimise cross-track errors, and testing in a multi-experience

framework over a long-term experiment.
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