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Getting Robots Unfrozen and Unlost in Dense Pedestrian Crowds

Tingxiang Fan*, Xinjing Cheng*, Jia Pan', Pinxin Long, Wenxi Liu, Ruigang Yang and Dinesh Manocha

Abstract— We aim to enable a mobile robot to navigate
through environments with dense crowds, e.g., shopping malls,
canteens, train stations, or airport terminals. In these challeng-
ing environments, existing approaches suffer from two common
problems: the robot may get frozen and cannot make any
progress toward its goal, or it may get lost due to severe
occlusions inside a crowd. Here we propose a navigation frame-
work that handles the robot freezing and the navigation lost
problems simultaneously. First, we enhance the robot’s mobility
and unfreeze the robot in the crowd using a reinforcement
learning based local navigation policy developed in our previous
work [1], which naturally takes into account the coordination
between the robot and the human. Secondly, the robot takes
advantage of its excellent local mobility to recover from its
localization failure. In particular, it dynamically chooses to
approach a set of recovery positions with rich features. To the
best of our knowledge, our method is the first approach that
simultaneously solves the freezing problem and the navigation
lost problem in dense crowds. We evaluate our method in
both simulated and real-world environments and demonstrate
that it outperforms the state-of-the-art approaches. Videos are
available at https://sites.google.com/view/rlslam.

I. INTRODUCTION

Navigating a mobile robot in complex, cluttered, and dy-
namic environments has a wide variety of important applica-
tions. For instance, assistive robots working in malls, cafete-
rias, and hospitals can benefit from a robust navigation policy
that allows for efficient and safe movement in unstructured
environments with dense crowds. Such navigation algorithm
is also desperately needed by social devices such as Alexia !
and Jibo 2. Due to the lack of mobility, they rely on far-field
speech recognition and speech synthesis to communicate
with users at a very low information rate. If being mounted
on a mobile base with sophisticated navigation skills, they
could move into the users close-proximity and interact with
users via visual interfaces at a much higher information
rate. In addition, the high mobility is beneficial for an
automated warehouse, where a large number of robots need
to coordinate with each other for efficient transportation. For
accomplishing a high delivery throughput, every robot needs
to continuously make progress toward its goal by passing
through the cluttered and dynamic environment made by its
fellow robots.
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Unfortunately, classical algorithms for navigation in dy-
namic environments suffer from two major impediments:
the robot freezing problem and the navigation lost problem.
The robot freezing problem arises when the environment
surpasses a certain level of dynamic complexity. Specifically,
the motion planner decides that all forward paths are unsafe
and thus forces the robot to come to a complete stop or
to perform unnecessary maneuvers like oscillating between
two directions to avoid collisions. Previous works attempt
to unfreeze the robot in dense crowds by increasing the
prediction accuracy of the moving agents, which unfor-
tunately has shown to be insufficient due to the lack of
coordination among agents [2]-[5]. This conclusion is also
supported by the investigation of human behaviors in dense
crowds [6], [7]. The navigation lost problem arises when
the robot fails to accurately localize itself in a given map
due to the large localization uncertainty or error [8]. Most
previous solutions to the navigation lost problem are passive
methods. They assume that the robot motion and the pointing
direction of the sensors cannot be controlled, and focus
on selectively utilizing the sensor stream to minimize the
localization uncertainty or error [9]-[11]. However, in highly
dynamic scenarios with dense human crowds, the salient
features necessary for localization may all be occluded and
thus the robot must actively determine “where to move” to
resolve occlusion and “where to look™ to recover from the
localization lost [12], [13].

In addition, the robot freezing problem and the navigation
lost problem are tightly coupled in a dense crowd, which
usually is not considered in prior works. On the one hand,
given a plan about “where to move” and “where to look”
for resolving the navigation lost problem, the robot needs
to accomplish the actual movement in the physical world.
To make such movement safe and collision-free, the robot
must have high mobility in the dense crowds, which requires
solving the robot freezing problem as a prerequisite. On
the other hand, before executing the actions toward the
goal for “moving” or “looking”, the navigation algorithm
needs to understand the routes between the robot’s current
position and the target location, which requires an accurate
localization of the robot in the map, i.e., we need to solve
the navigation lost problem first.

In this paper, we solve the challenging problem of robotic
global navigation in crowd scenarios. In particular, given a
map and a goal, the robot needs to navigate through the dense
crowds and complex static obstacles and eventually reach
the goal safely, accurately, and efficiently without getting
frozen or lost. This task can be applied in many real-world
scenarios. We present a novel framework to handle the robot
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Fig. 1: The architecture of our navigation system for getting a robot unfrozen and unlost in a complex scenario with both static obstacles
and moving pedestrians. The navigation policy is mainly composed of two parts: a normal navigation policy that can effectively avoid
obstacles and a localization recovery policy that can help the robot to accurately localize itself in the global map.

freezing and the navigation lost problems simultaneously. As
illustrated in Figure 1, our framework consists of two modes:
the normal mode and the recovery mode. In the normal mode,
our robot is driven by a LiDAR-based localization algorithm
and a reinforcement learning based local planner, which work
together to endow the robot with the goal-approach ability
as well as excellent collision-avoidance mobility. However,
the normal navigation policy can hardly tackle the navigation
lost problem that is ubiquitous in situations with extremely
high-density. More specifically, as the robot navigates with
the dense crowds, the LiDAR-based localization will easily
fail and then the robot will lose the knowledge about where it
is. In this situation, the robot will switch into the localization
recovery mode. In particular, we sample a set of locations
with rich landmark features, called recovery points, from a
given 2D map. The robot will dynamically select one of these
discriminative points and then approach the selected point to
re-localize itself in the map. The optimal recovery point is
determined using a reinforcement learning-based optimiza-
tion that maximizes the accessibility of the recovery point,
in order to optimally balance the benefit and overhead of the
recovery action. During the navigation, the robot will actively
switch between the normal mode and the recovery mode,
according to the instantaneous situation in the scenario. To
assess the performance of our proposed algorithm in such
a challenging navigation task, we set up a set of complex
simulated environments as the testing benchmark, which will
be released upon the publication of this paper. We also design
a set of metrics for performance evaluation. The experimental
results verify the excellent mobility and reliability of our
method in challenging navigation scenarios.

Our contributions can be summarized as follows:

o We address for the first time the challenging problem of
the robot navigation in complex environments through
dense crowds without suffering from getting frozen or
getting lost.

o we formulate a novel framework to handle the naviga-
tion lost and the robot freezing problem simultaneously,
by switching between the normal mode and the recovery
mode during navigation.

o We propose a reinforcement learning based recovery al-
gorithm that enables the robot to regain the localization
by approaching recovery points adaptively.

e We provide a benchmark including simulated and real-
world scenarios to evaluate navigation algorithms and
to demonstrate our proposed method’s superior perfor-
mance.

II. RELATED WORK

The robot freezing problem has been widely studied for
mobile robot navigation. One ad-hoc solution to resolve the
suboptimal frozen state is to follow an essentially arbitrary
path through the crowd, but such highly evasive paths often
are dangerous and thus are not desirable for service robot
applications. One culprit behind the freezing robot problem
is the uncertainty explosion, i.e., the union of the overly
conservative predictions about the trajectories of nearby
moving obstacles blocks all the possible movements of
the robot and makes the robot fail to find a clear path
passing through the dense crowd. Some previous research
thus focused on controlling the predictive covariance, for
instance, by repetitive re-planning [14], [15], belief space



feedback planning [16], or developing high-fidelity indepen-
dent human movement models [17]-[20]. However, as argued
in [2]-[4], even perfect individual prediction (i.e., when the
robot is aware of all other agents accurate trajectories) cannot
get rid of the freezing robot problem when the navigation
algorithm is lack of the mathematical models of cooperation
between the robot and humans. This is because when the
robot is not anticipating cooperation, it will still choose a
highly evasive maneuver rather than adapting its trajectory
to the humans to make room for navigation. As a result, it is
concluded that a model for joint collision avoidance among
nearby agents is a prerequisite for effective navigation in the
dense crowd, which unfortunately is not available in most of
the previous navigation algorithms.

The navigation lost problem arises when the robot’s
localization uncertainty accumulated during the navigation
becomes so large that the robot cannot accurately locate itself
in a given map [8]. The robot may also get lost due to the
localization error, e.g., in a dynamic environment, the robot
may mix up known static obstacles with unknown dynamic
obstacles [9]. Most previous solutions to the navigation lost
problem are passive methods. They assume that the robot
motion and the pointing direction of the sensors cannot
be controlled, and focus on selectively utilizing the sensor
stream to minimize the localization uncertainty or error,
e.g., by using different filters [9] or more sophisticated
modeling about the dynamic scenes [10], [11]. However,
for highly dynamic scenarios with dense human crowds, the
pedestrians may block all the landmark features necessary for
localization, and thus the robot must choose sophisticated
policies for determining the robot’s motion direction and
the camera’s pointing direction. Some methods recover the
localization by asking the robot to look at places with special
properties, e.g., with high saliency [21], road tracks [22].
Some other approaches try find optimal actions that can
minimize metrics with respect to the localization quality,
including the entropy [12] or number of hypotheses about
the robot’s current location [13]. The localization recovery
problem can also be formulated and solved under the more
general POMDP (Partial Observable Markov Decision Mak-
ing) framework, which can be solved in a tractable manner
by using Gaussian belief space approximations [16], [23].

III. PROPOSED FRAMEWORK

To tackle the robot freezing problem and the navigation
lost problem simultaneously, as illustrated in Figure 1, we
present a novel navigation framework that controls the
robot’s behavior in two modes: the normal navigation mode
and the localization recovery mode. During navigation in
challenging scenarios, the robot will actively switch between
these two modes in an online manner to accomplish the
navigation task.

A. Normal navigation policy

In the normal mode, the robot utilizes the SLAM algo-
rithm to accomplish the normal navigation mission, e.g.,
approaching its goal in (un)structured static environments.

In particular, we use the state-of-the-art LiDAR SLAM
algorithm, Cartographer [24], as our basic localization mod-
ule. In general, Cartographer can handle the low-density
dynamic obstacles based on the map information updated
in real-time. However, as the density of dynamic obstacles
(such as human crowds) increases, its performance can be
degraded significantly. Therefore we first incorporate a rein-
forcement learning based collision avoidance method, which
can significantly improve the robot’s mobility to approach
the goals compared with the traditional local planner when
avoiding collisions in the dense crowds. In particular, as in
our previous work [1], we used an Actor-Critic based PPO
algorithm [25] to train a local planner for crowd avoidance.
The Actor-Critic framework [26] has been widely used in
the reinforcement learning scheme. Commonly, the Actor
module serves as the controller, while the Critic module is
used to guide the gradient update of the Actor module by
minimizing the surrogate loss
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In this paper, we train the Actor and Critic in a way similar
to our previous paper [1]. The Actor and Critic’s inputs are
the robot’s laser scan Sg.,, the velocity of robot itself sy,
and goal information Sy, While the output is a collision-
free velocity command fed to the robot. It is worth noting
that here the RL-based collision avoidance policy plays a
different but more important role than the one as a local
motion planner in our previous work [1]. Inspired by the
work [27], here the RL-based collision avoidance is used to
accomplish a global planner by combining with traditional
grid-based global planners. In particular, the goal information
Sgoal NOW is the sub-goal assigned by the grid-based global
planner rather than the final goal of the agent.

B. Localization recovery policy

The localization could get lost during navigation in a set
of challenging situations, such as in featureless places, when
sensor views being blocked, or when the robot is getting
stuck in the middle of a dynamic crowd. To deal with these
cases, we present a recovery mechanism so that the robot
can adaptively switch to the recovery mode and regain the
localization certainty. We first precompute a set of candidate
recovery points in the global map, which can facilitate the
localization recovery. Then, we use a reinforcement learning



Fig. 2: System inputs and outputs of our navigation system, visualized by Rviz .

based recovery policy to determine to approach which re-
covery point for localization recovery. Note that this policy
will continuously select a suitable recovery point during the
navigation and it may switch to another recovery point before
reaching the recovery point chosen last time, to optimally
balance navigation efficiency and localization uncertainty.

1) Candidate recovery points: Given the 2D grid map
obtained offline from Cartographer [24], we need to recog-
nize locations that are more helpful for re-localization. One
straightforward solution is to step back to the starting point
and then find another way to achieve the destination. This
policy, even though sometimes adopted by humans, however,
is not efficient and will suffer from the freezing problem
when the scenario is crowded. Here, similar to the visual
tracking and visual SLAM, we choose the recovery points
from regions with sharp corners or fine structures, whose
spatial invariance and stability of matching are beneficial
for re-localizing the robot in the global map. In particular,
we use the Harris corner detector [28] to extract corners
from the 2D map. Next, we use K-Means to cluster the
extracted corners. To refine the clustering, if any corner
is found far from its cluster centroid, a new cluster will
be created, which naturally prevents corners far away from
being clustered together. Since the cluster centroids may
not locate in the passage-ways of the map (e.g., it may
be close to the boundaries of the environment), we offset
the centroids towards the map center into the passage-ways
and the corresponding final positions are treated as candidate
recovery points, as shown in the bottom-right in Figure 1.
To facilitate the recovery point selection, we assign each of
them a preference weight "uip

, N,
Vep = =i Nk @
2kt N
where N, is the number of corners in the i-th cluster.

Thus v};p is proportional to the number of detected corners
belonging to the same cluster. In this way, the recover

cluster with more corner points will be preferred. This is
desirable for the robustness of the recovery. In particular,
the robot’s localization uncertainty will continue increasing
when approaching the recovery region and thus it cannot
reach the recovery point exactly. If the recovery region has
only a few corners, the robot may miss all of them due to
the localization error and the localization recovery will fail.
If the region has many corners, the robot’s recovery task has
a higher probability to succeed.

2) Actor-Critic based recovery: After we compute the
candidate recovery points, we hope that the recovery algo-
rithm can automatically choose a near-optimal recovery point
by combining the knowledge about the number of features
near the recovery points, the flow of surrounding dynamic
obstacles (e.g., pedestrians), and the distance between the
recovery points and the eventual destination.
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Fig. 3: Actor-Critic based localization recovery policy.

In order to estimate the chance of the robot reaching
one candidate recovery point under the surrounding dynamic

3http://wiki.ros.org/rviz



environment, we adopt the Actor-Critic framework. Different
with the Actor-Critic for normal navigation in Section III-
A, here the Critic no longer guides the gradient update
of the Actor, but guides the Actor to the most accessible
recovery point under current dynamic situation. In other
words, we utilize the Critic module as a high-level guidance
for recovery point selection, while the Actor module is
implemented using our collision avoidance method for the
low-level planning policy. Although the Critic is used for
different purposes compared to that in Section III-A, we
do not retrain a Critic for the recovery policy, but instead
using the value function in Equation 3 as a Critic. This is
a reasonable solution because when we used reinforcement
learning algorithm to train Actor and Critic, the reward
function is designed in such a way that the robot will obtain
a high reward when it reaches the goal assigned by the user.
Thus, according to Equation 3, Critic will learn to give
higher scores to those world states in which the robot is more
likely to reach a given target. In this way, the Critic can use
the laser scan data to evaluate the chance of passing through
the surrounding dynamic obstacles to reach each destination.
Similarly, in the recovery policy, we can use Critic to evaluate
the accessibility of a recovery point according to the current
observation of the pedestrian flow, formally implemented as

Uy (pzecovery) = Vi (Sscan Svel, pzecovery) ) 4)

where V' is the value function of the Critic, and péoal is the
position of the i-th recovery point. In other words, the higher
the value the Critic given, the easier for the robot to reach
the recovery point, and vice versa.

In addition, we also prefer a recovery point that is on the
robot’s way toward the final destination, because the recovery
points that are off the way would suffer the navigation
efficiency. Thus, we define another evaluation function v’(-)
for the recovery points as:

B ‘ ‘ Pgoal — pfecovery | | 2

vi(p! ) = : (6)
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where pgoa is the position of the final goal, and pfmvery
again is the position of the ¢-th recovery point.

Finally, to select the most suitable point for recovery, we
consider a set of different factors, including the preference
weight of a candidate recovery points, the distance from each
candidate to the goal, and the information about the dynamic
environment, i.e., the pedestrian flow in the scenario. For-
mally, the optimal k*-th recovery point is determined as

k™ = arg mliix (wrl . Ufl + Wep vfp + wy - ’US), @)

where w,, wep, and wy are hyperparameters.

After deciding which recovery point to approach, the
chosen recover point is treated as an intermediate goal and
is fed to the global planner as a waypoint. Then the global
planners passes the generated sub-goal to the reinforcement
learning based local planner that we developed in [1] for
local navigation. The entire localization recovery process is
shown in Figure 3.

C. Switch strategy

In previous sections, we have described two modes of
our navigation policy in detail. Here we will explain how to
switch between these two modes automatically. We propose
two simple yet efficient trigger conditions for switching,
specifically, the deviation between odometry and SLAM
localization and the covariance for SLAM localization. We
believe that the odometry position system may be not ac-
curate enough due to the slipping and cumulative error,
but it will not drift a large distance in an instant. To the
contrary, the SLAM positioning system is generally accurate
but may have a significant drift if the mistake happens during
the feature matching between the laser data and the global
map. Thus the difference between the outputs of these two
localization systems can be used as the signal for the mode
switch. We also the covariance for SLAM localization output
to track the uncertainty of SLAM system. If any of these two
values is larger than a given threshold, the system will step
into the recovery mode automatically. As shown in Figure 1,
while entering the recovery mode, the robot will first start
recovering from the last odometry output. Next, it will move
to the selected recovery point in an adaptive manner. The
robot will get back to the normal mode when the recovery
procedure succeeds, i.e., when the covariance of the robotic
localization is smaller than a given threshold.

1V. EXPERIMENTS AND RESULTS

In this section, we first briefly introduce our simulation
platform and define the evaluation metrics. Then we intro-
duce the details of the entire simulation experiment. Finally,
we analyze our experimental results and run the algorithm
successfully in a real robot.

A. Experiment setup and metrics

To build a simulation environment for quantitatively mea-
suring the navigation effectiveness in a complex dynamic
environment, we combine two simulators, Gazebo* and
Menge [29]. The Gazebo simulator is responsible for the
simulation of the robot system, while Menge serves as
the driver for simulating the crowd movement within the
Gazebo environment. Then, we build three typical scenarios
including the corridor, the supermarket, and the airport, all
with crowds as shown in Figure 5. We use the Turtlebot2 as
our mobile robot platform. According to the actual hardware
parameters of the Rplidar A2 sensor mounted on the real
robot, for the 2D LiDAR sensor in the simulation we set its
sweep range to 360°, the maximum sweep radius to 6m,
and the angular resolution to 1° per range, which is further
added up with the Gaussian white noise with 0.05 standard
deviation.

As described in Figure 2, we can estimate the position
of the robot in two ways, either from odometer or from the
Cartographer localization algorithm. And from the simulator,
we have access to the ground truth of the robot position, also
shown in Figure 2. Given the mesh model of a simulation

4http://gazebosim.org/



Start recovery from
\
v _ odom based pose

e e e e e s En Em e e e s Em e e Em Em Em Em Em m E e e Em e =

Go to the recovery point

Change recovery point

adaptively X Recover Successfully

Fig. 4: The demonstration about how the reinforcement learning based localization recovery policy helps the robot to re-localize itself

from a SLAM failure in a step-by-step manner.

(a) corridor environment

(b) supermarket environment

(c) airport environment

Fig. 5: The three simulation scenarios used as the benchmark for testing navigation performance.

scenario, we can also compute the set of candidate recovery
points, which are colorized according to the preference
weights calculated by Equation 4, where the lighter the color,
the greater the weight.

To verify that our algorithm can effectively reduce the
probability of robots getting lost or frozen in the crowd, we
propose three metrics to evaluate the navigation performance,
i.e., the lost rate, the frozen rate, and the success rate. We
define a robot to be lost if the distance between the SLAM
estimation of the robot position Pegtimate and the ground truth
position of the robot propor from the simulator is always
greater than a given lost threshold d,. in a period of Atyg.
More formally, the robot is

lost
unlost
®)
Because a robot with the frozen issue will stop moving
forward and just turn around in place, we determine whether

a robot is frozen or not based on whether its linear speed
along the robot’s forward direction v, is always no less

if ||pr0bot - pestimate”t > dlosth S [07 Atlost]
otherwise.

than a given threshold speed vfrozen during the time period
Atfrozen. More formally, the robot is

{frozen if v < Vtrozen, ¥t € [0, Atfrogen)

otherwise.

robot (9)

unfrozen

We determine whether a robot succeeds in the navigation
task by checking the robot’s arrival at the target position, i.e.,
whether the robot has

arrived

not arrived
where pgoal is the goal position and 7yqive is the threshold
for arriving.

Based on Equation 8, Equation 9, and Equation 10, we
can compute the lost rate, the frozen rate, and the success
rate of the navigation algorithm.

In addition, we also want to investigate whether our
algorithm will have an impact on the navigation efficiency

of the robot in terms of the time cost reaching the target
point. Thus, we further evaluate the mean robot speed for

if ||probot - pgoal” < Tarrive

10
otherwise, (19)



the navigation trials in which the robot successfully reaches
the destination.

B. Implementation details

In this part, we first summarize in Table I the hyperpa-
rameters used in our algorithm.

TABLE I: Hyperparameters used in our system

Parameter Value Parameter Value

wy in Equation7 0.5
wep in Equation 7 0.2
wep in Equation7 1.0

djos in Equation 8 3.0
Atjos in Equation 8 10
Vfrozen 1N Equation 9 0.2

7 in Figure 1 3.0 Atfrozen in Equation 9 10
nre in Figure 1 0.08 Tarrive 1N Equation 10 0.5
ne in Figure 1 0.2

Then we make a comprehensive comparison among three
different approaches (baseline, RL, and (RL)?) in all the
three testing scenarios as shown in Figure 5. The baseline
method combines the ROS movebase navigator with the Car-
tographer localization [24], where the movebase navigator
uses the dynamic window approach [30] for local planning
and Dijkstra algorithm for global planning. The RL method
replaces the local planner in the baseline method with the
deep reinforcement learning based local planner [1]. The
(RL)? method is the approach that we proposed in this work,
which uses the reinforcement learning for both the local
collision avoidance and localization recovery.

C. Result analysis

Table II shows the comparison results on three different
scenarios in our benchmark. When using the baseline naviga-
tion policy, the robot is almost impossible to reach the goal
due to the high density and few features in the dense crowd
scenario. When using the RL navigation policy, the frozen
rate declines significantly and the robot gets some chance to
reach the goal, thanks to the high mobility of the RL-based
local planner. However, this method does not deal with the
lost problem and thus the robot can get lost in the scenario.
The (RL)? policy can significantly increase the success rate
of the navigation task because it considers the lost and frozen
issues simultaneously. One interesting phenomenon is that
the frozen rate of (RL)? is higher than that of the RL in
the supermarket and the airport scenarios. This is because
the RL policy focuses on the local collision avoidance and
does not pay attention to the re-localization. Thus its risk of
getting stuck is lower. However, it has a much higher risk in
getting lost in the large scenarios like the supermarket and
the airport, which is supported by RL’s much larger lost rate
than that of (RL)2.

The superiority of (RL)? in performance is due to our
novel recovery policy. In particular, when the robot realizes
that it may get lost, the response of the baseline policy is to
turn around in place for safety and look for nearby features
to rescue the robot from the lost, which can be an efficient
solution in a static or moderately dynamic scene. However,
in a highly dynamic scenario, even though its lost level will

not get worse, the robot will get frozen and thus still cannot
reach the goal successfully. While using our recovery policy,
rather than simply turning around in place, the robot will first
find a path to break free of the crowded neighborhood and
then move toward an accessible recovery point to re-localize
itself. Once the robot re-localizes successfully, it will switch
back to the normal navigation mode. Figure 4 provides a
step-by-step illustration of this procedure.

Note that rather than choosing one recovery point and then
moving toward it until it is reached, (RL)? will determine
the best recovery point in a dynamic and adaptive manner
during its navigation. In particular, it may switch between
recovery points according to its current observation about the
pedestrian flow. For instance, in Figure 6a and Figure 6b, we
can see that the bottom-right region has more free space to
pass, and thus the robot will choose the recovery point in
the bottom-right as the temporary goal. However, during the
movement toward the goal, the bottom-right region is filling
with more pedestrians, and thus the robot will adaptively
switch to another recovery point that is more accessible, as
shown in Figure 6¢ and Figure 6d.
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Fig. 6: Demonstration of the adaptive recovery point selection in a
highly dynamic environment.

In Figure 7, we show how the lost rate, the frozen rate,
the success rate, and the mean velocity change when the
pedestrian density in the scenario varies. In these three
simulation scenarios, we gradually increase the number of
pedestrians from 100 to 250. Then we can observe that, with
the increase of pedestrian density, the mean velocity and the
success rate of (RL)? navigation policy decrease. The frozen
rate is always very small, thanks to our RL-based collision
avoidance. The lost rate increases due to the increasing
difficulty to have access to the recovery point. It is worth
noting that narrow aisles we set in the airport environment
make the robot’s workspace too congested, which leads to
the frozen rate higher than the lost rate .

D. Real-world experiment

In this part, we verify that our (RL)? framework can
enable a physical mobile robot to pass through heavy crowds
and arrive at the goal accurately in the real-world crowded



TABLE II: Comparison of the navigation performance of different navigation policies in three scenarios.

Corridor Scenario

SuperMarket Scenario

Airport Scenario

Method:
ethods Lost Frozen Success Velocity  Lost Frozen Success Velocity  Lost Frozen Success Velocity
baseline  32% 65% 3% 0.52 18% 82% 0% 0 16% 84% 0% 0
RL 63% 17% 20% 0.76 86% 10% 4% 0.81 1% 5% 24% 0.68
(RL)? 36% 3% 61% 0.73 20% 12% 68 % 0.78 10% 28% 62% 0.60
o o] | map. The (RL)? navigation algorithm is then executed to test
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Fig. 7: The three simulation scenarios used as the benchmark for
testing navigation performance.

environment. Consistent with previous simulations, we use
Turtlebot2 as the robot platform and Rplidar A2 as the
sensor. We choose the canteen as our real world experimental
scenario, as shown in Figure 8a. The robot is given a pre-
built map as shown in Figure 8b and goal position in the

whether the robot can maintain unlost and unfrozen, and can
eventually arrive at the goal successfully.

The experimental results in Figure 9 show that the Actor
from our Actor-Critic based navigation framework can ac-
complish a powerful local planner responding quickly to the
dynamic crowd, so that the robot does not get frozen in the
crowded scene. In addition, thanks to the excellent mobility
of the robot, the Critic of Actor-Critic framework is used as
a high-level strategy to guide the robot toward the recovery
points for active re-localization, so that the robot can achieve
robust localization in the crowded environment. Please refer
to https://sites.google.com/view/rlslam for
more results.

V. CONCLUSION

In this paper, we propose a novel reinforcement learning
based navigation framework to get a robot unlost and un-
frozen in dense pedestrian crowds. In addition, we provide
a benchmark including three typical scenarios with dense
pedestrians. For future work, we plan to include camera
resources including the depth, semantic labels, optical flows
into our system to resolve our current limitation of only using
2D LiDAR information.
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