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Unified Representation and Registration of
Heterogeneous Sets of Geometric Primitives

Federico Nardi∗, Bartolomeo Della Corte∗, and Giorgio Grisetti,

Abstract—Registering models is an essential building block
of many robotic applications. In case of 3D data, the models
to be aligned usually consist of point clouds. In this work we
propose a formalism to represent in a uniform manner scenes
consisting of high-level geometric primitives, including lines and
planes. Additionally, we derive both an iterative and a direct
method to determine the transformation between heterogeneous
scenes (solver). We analyzed the convergence behavior of this
solver on synthetic data. Furthermore, we conducted comparative
experiments on a full registration pipeline that operates on raw
data, implemented on top of our solver. To this extent we used
public benchmark datasets and we compared against state-of-
the-art approaches. Finally, we provide an implementation of
our solver together with scripts to ease the reproduction of the
results presented in this work.

Index Terms—SLAM, Localization.

I. INTRODUCTION

THE majority of simultaneous localization and mapping
(SLAM) algorithms consider simple (or low-level) ge-

ometric primitives in their formulation, i.e. points, and go
under the name of landmark-based methods [1]. The spread
of these methods is mainly due to the existence of well-
known techniques for detecting [2]–[4], matching [5] and
registering [6]–[9] such primitives. Despite their efficiency,
these techniques have known drawbacks: detection may fail in
textureless scenes, matching is hindered by the features low
descriptiveness and registration may be unable to recover large
rotations. In all the above mentioned situations, camera pose
tracking is likely to yield poor results.

Man made environments are rich in structure, embedding
higher-level features usually not exploited in standard tech-
niques. Planar items such as walls, floors and tables cover a
great portion of the environment. Similarly, the edges of these
planar structures often form lines. In this paper we propose a
unified representation for different types of primitives such as
points, lines and planes. In this way, it is possible to devise
a registration algorithm for aligning hybrid scenes in a single
formulation. Moreover, we can define correspondences among
items in the scenes that belong to different classes: besides
enforcing that two planes or two points in the scenes are the
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Fig. 1: Example reconstruction obtained by our approach from
RGB-D raw data of TUM dataset (fr2/desk). This image shows
how our approach is able to describe a complete indoor scene
with a limited number of primitives.

same, we can also express constraints such as “a point lies on
a line”, or “a line lies on a plane”.

Exploiting structure to describe a scene has clear advantages
on the storage: describing a room as a set of walls and a floor
requires far less memory than storing the corresponding point
cloud. In turn, registration algorithms might gain in efficiency
and display larger alignment capability coming from the higher
descriptiveness of the primitives.

The major contributions of this work are summarized as
follows:

• we propose a unified representation for a 3D scene
consisting of the following geometric primitives: points,
lines and planes. We refer to them as “matchables”.

• we develop an algorithm to compute the most likely
transformation between two scenes given a set of cor-
respondences between matchables.

The derivations proposed in this paper capture in a uniform
manner several Iterative Closest Point (ICP) variants [6], [8],
[9]. Our system benefits from the structure when present, while
it degrades to regular ICP in absence of structure. Furthermore,
it provides compact models that can be used to reproduce
the geometry of the scene. These results are confirmed by
comparative experiments we conducted on publicly available
benchmark datasets. Fig. 1 shows an example of a scene
reconstructed with our method from real data. An open source
implementation of our approach, along with the supplementary
material, is available online1.

1Repository: http://srrg.gitlab.io/sa-sha.html



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2018

Fig. 2: A typical scenario addressable with the proposed repre-
sentation: we want to register a moving scene (red) onto a fixed
scene (black). The scenes are composed by points (pt), lines (l)
and planes (pl). Green lines indicate the constraints between
two geometric entities. The proposed representation allows to
model both homogeneous (e.g. line-line) and heterogeneous
(e.g., point-plane) constraints.

II. RELATED WORK

Point cloud registration is a core component of many robotic
applications and several approaches to address it have been
proposed. Among them, the most common and well known
is the Iterative Closest Point (ICP) algorithm [6]. ICP works
by iteratively searching for correspondences between points
and minimizing the cumulative sum of distance between these
pairs. One of the main drawback of the vanilla ICP approach is
that, being point-based, it discards valuable information about
the local surface shape.

Leveraging on this observation, Segal et al. [8] proposed
Generalized ICP (GICP). This approach relies on the assump-
tion that most range data is sampled from locally planar
surfaces [7] and proposed a probabilistic variant of ICP by
explicitly modeling the sensor noise. Despite their versatility,
low level primitives lack of descriptiveness and do not support
well robotic tasks. To overcome this limitation, Salas-Moreno
et al. [10] proposed an object-based SLAM paradigm that
offers both descriptive power and representation compression.
The main drawback of this method is that it requires a prior
knowledge about the models (chairs, tables, etc.) of objects
that can be found in the scene. Olsson et al. [11] described
a method to obtain a globally optimal solution from point-to-
point, point-to-line, and point-to-plane correspondences using
branch-and-bound. In contrast to this method our approach
supports arbitrary constraints between primitives.

The straightforward benefit of using high-level features
has been extensively exploited to improve the robustness of
landmark-based registration approaches. Early works aim at
improving the accuracy of camera tracking with edges [12],
[13] and lines [14], [15]. These works propose different types
of primitive representation: a point and a direction [12], [13];
Plücker coordinates [14] and endpoints [15].

Since the advent of RGB-D cameras, that provide per-pixel
depth information, the interest on such high-level features
increased. Choi et al. [16] made use of different types of edges,

while line features combined with points are investigated in
the works of Lu and Song [17] and Pumarola et al. [18].
Additionally, organized (and colored) point clouds returned by
these sensors are particularly suited for 3D segmentation and
structure detection [19], [20] and raised interest in registration
methods that consider planes as higher-level features [21]–
[24].

The methods presented so far use a different representation
for each type of primitive, resulting in a distinct registration
strategy for each of them. In fact, most of these methods have
been designed as an extension of standard point-based ICP
rather than being a holistic redesign that includes the original
problem.

Our work is similar to Castellanos et al. [25], where
the authors propose the symmetries and perturbation map
(SPmap). In this model, a geometric feature is represented by
combining a perturbation vector that expresses the uncertainty
about its location and a binding matrix that accounts for its
shape. Despite providing a powerful tool to represent any type
of geometric entity, in [25] the authors limit themselves to line
segments, while we explicitly implemented different primitives
within our representation.

The unified representation presented in this paper has the
common advantages of high-level feature approaches, such
as compactness and robustness and it encapsulates different
types of geometric primitives in a single type of data structure,
namely a matchable (see Sec. III-A).

III. GENERALIZED SCENE REGISTRATION

Registration consists in finding the transform that better
aligns two scenes through non-linear optimization of an ob-
jective function. As a consequence, the choice of this function
has a strong impact on the final solution. In general, smooth
objective functions are preferred, since they lead to an easier
convergence.

In this work, we propose a formulation of the registration
problem that includes not only point-point correspondences
but any of the nine possible pairings between points, lines
and planes (see Fig 2). This allows to exploit the higher
descriptiveness of geometric primitives such as lines and
planes for widening the objective function convergence basin
and, consequently, having a more robust registration.

Of course, a straightforward approach is to define an ad-hoc
error function for each type of correspondence (e.g., point-
point, point-line, line-plane and so on). Then, for each of them,
a different optimization has to be formulated. Our approach
is to define a single parametrization for different geometric
primitives. Therefore, once a primitive is represented as a
unified entity, all the other computation modules are agnostic
of the primitive’s type.

In the remainder of this section, we first introduce our
representation of matchables. Subsequently, we define how
to apply an isometry to a scene. With this basic operation
defined, we show how to define an error function between
two matchables that are connected by a constraint. Finally,
we propose both an iterative and a direct implementation of a
solver capable of finding the optimal transformation between
two scenes, given a set of known correspondences.
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type pm Rm Ωm Shape of Ωm

point p R diag(1, 1, 1)

line pl Rl diag(0, 1, 1)

plane pπ Rπ diag(1, 0, 0)

TABLE I: Matchables table. The shape of Ωm discriminates
the type of primitive represented by the matchable. The
confidence ellipsoid obtained from Ωm is a sphere if the
matchable is a point. If the primitive is a line or a plane the
confidence ellipsoid degenerates respectively to a cylinder or
to two parallel planes.

A. Representation

Our representation stems from the fact that points, lines
and planes can be defined in terms of degenerate quadrics. In
general, a quadric can be described by the following equation:

(x− p)>A(x− p) = 0. (1)

Here, p ∈ <3 is the origin of the quadric and A a symmetric
matrix. A point x ∈ <3 lies on the quadric if it satisfies Eq. (1).
A can be factorized as A = RΩR>, where the columns of
R are the axes of the quadric, and Ω is a diagonal matrix
containing the eigenvalues of A. The shape of the quadric is
entirely determined by its eigenvalues. In the remainder, we
refer to the first column of R as the direction d of a primitive.

Points can be represented as spheres with a null radius,
thus all eigenvalues should be equal and positive: Ω =
diag(1, 1, 1). Lines can be represented as cylinders having
null radius, thus, assuming the cylinder axis is parallel to the
direction d, the corresponding omega is Ω = diag(0, 1, 1).
Finally, planes can be represented through quadric as two
matching planes. In this case, being the plane normal parallel
to d, Ω = diag(1, 0, 0).

The reader might notice that the Ω used to represent the
above primitives can be scaled arbitrarily by any positive
number. Setting the non-null eigenvalues to 1 has however
the effect of turning the value of the left hand side ‖x− p‖2A
of Eq. (1) to the squared euclidean distance between x and the
closest point on the quadric. Tab. I summarizes the parameters
used for each type of primitive. In our system we call such
quadrics matchables. For a matchable m we store: the origin
pm, the rotation matrix Rm and the eigenvalues matrix Ωm:

m :
〈
pm, Rm, Ωm

〉
. (2)

Notice that the proposed representation is not unique as, for
example, in 3D space a plane has 3 degrees of freedom and
a line has 4. For lines and planes the matchable origin pm is
computed from their support (line segments and plane patches)
and can be chosen arbitrarily. We provide implementation
details for this operation in Sec. IV-A.

m′

point line plane

m

po
in

t Ωp = I
Ωd = 0
Ωo = 0

Ωp = Ωm′

Ωd = 0
Ωo = 0

Ωp = Ωm′

Ωd = 0
Ωo = 0

lin
e Ωp = Ωm

Ωd = 0
Ωo = 0

Ωp = Ωm′

Ωd = I
Ωo = 0

Ωp = Ωm′

Ωd = 0
Ωo = 1

pl
an

e Ωp = Ωm

Ωd = 0
Ωo = 0

Ωp = Ωm

Ωd = 0
Ωo = 1

Ωp = Ωm′

Ωd = I
Ωo = 0

TABLE II: Information Matrix Ω(m,m′) for each possible
pair of matchables.

B. Transformation

Let X = [Rx|tx] ∈ SE(3) be a transformation. The
operation of applying a transformation to a matchable m
results in a new matchable m′ = X ·m with the following
parameters:

m′ =

 Rxpm + tx

RxRm

Ωm

 . (3)

Here we parametrized X as a rotation matrix Rx ∈ SO(3) and
a translation vector tx ∈ <3. Intuitively, applying an isometry
to a matchable results in a transformation of the Euclidean
component pm and in a rotation of the matrix Rm, leaving
unchanged Ωm.

C. Distance

In this section we present a metric to evaluate a distance
e(m,m′) between a pair of matchables m and m′. If m is
a point and m′ is any primitive Eq. (1) allows us to compute
the squared distance between a point and the quadric in m′

as:
e(m,m′) = (pm − pm′)>Am′(pm − pm′) (4)

To compute the distance between two planes (or, equiva-
lently, two lines) we need to consider in the difference their
directions dm and dm′ . Adding to Eq. (4) a quadratic term
‖dm − dm′‖2 that captures the difference in directions results
in a metric that is zero when the two planes or lines are the
same:

e(m,m′) = ‖pm − pm′‖2Am′ + ‖dm − dm′‖2 (5)

While, for the distance between a line and a plane, we
consider that a line lies on a plane if:
• the point of the line lies on the plane;
• their direction vectors are orthogonal.

The first requirement is satisfied when Eq. (4) is 0. To
capture the orthogonality constraint expressed by the second
requirement we add to the metric an additional semi-positive
term that is zero when the two directions are orthogonal:

e(m,m′) = ‖pm − pm′‖2Am′ +
∥∥d>mdm′

∥∥2
= 0 (6)

Having considered how to measure the distance between all
possible combinations of matchables, we want to have a



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2018

unique formulation for all of them. This will be useful in
the remainder of this paper, as we will derive the registration
procedure only once for all possible types of constraint. To
this end, we rewrite the difference between two matchables as
the following 7D vector:

e(m,m′) =

 ep

ed

eo

 =

 R>m′ (pm − pm′)
dm − dm′

d>mdm′

 (7)

A distance e(m,m′) between matchables is a non-negative
scalar computed from the difference vector. If the distance is
zero, the constraint between the two matchables is satisfied.
To compute the distance, we employ adapted Ω-norm (i.e.,
‖v‖Ω = v>Ωv) to the difference vector:

e(m,m′) = ‖e(m,m′)‖2Ω(m,m′)

= e(m,m′)>Ω(m,m′)e(m,m′). (8)

The information matrix Ω(m,m′) ∈ <7×7 activates the
appropriate components of the difference vector during the
minimization, based on the type of constraint, according to
Tab. II. In particular, we enforce the following block diagonal
structure for Ω(m,m′):

Ω(m,m′) =

 Ωp 0 0
0 Ωd 0
0 0 Ωo

 (9)

With this formulation, the generic distance between two
matchables is computed as

e(m,m′) = ‖e(m,m′)‖2Ω(m,m′) (10)

= ‖ep‖2Ωp
+ ‖ed‖2Ωd

+ ‖eo‖2Ωo

Consequently, the lower e(m,m′) is, the “closer” the two
primitives are.

It follows from its definition that, in general, this distance
does not satisfy the symmetry property. In Sec. III of the
supplementary material we report experimental results to an-
alyze its symmetric version. Additionally, since the value of
e(m,m′) depends on the matchable origins in Sec. II of the
supplementary material we evaluate the impact of this choice
on the estimation accuracy.

D. Registration

Having defined how to transform the matchables, and a way
to compute how “far” is a constraint from being satisfied, we
seek for the optimal transformation X∗ that better alignes two
scenes:

X∗ = argmin
X

∑
k

e(Xmk,m
′
k)

= argmin
X

∑
k

∥∥e(Xmk,m
′
k)>
∥∥2

Ω(mk,m′
k)

(11)

for each pair of matchables 〈mk,m
′
k〉1:K between the “mov-

ing” and the “fixed” scene.
A standard way to minimize the above equation is through

Gauss-Newton iterative optimization. In this paper, we propose

two different schemes for the minimization problem: a non-
linear iterative solver and a direct solver. The non-linear
solution is obtained by iteratively performing the optimization
on a local parameterization of the perturbations. The direct
solution does not require an initial guess of the transform,
and finds the minimum in just one iteration. It is obtained by
relaxing the constraint on the rotation matrix of the transform,
and then recovering the orthonormality of the solution through
Singular Value Decomposition (SVD).

In the remainder we shortly overview the Gauss-Newton
algorithm for state spaces that live in SE(3). Subsequently,
we specialize our solution to derive an iterative and a direct
solver.

1) Gauss-Newton Algorithm: We define our state space as a
transformation matrix X. We seek for the best X∗ that satisfies
all the matchable constraints. Let ∆x ∈ <n be a perturbation
vector for a transform, and let � be an operator that applies
the perturbation to a transform as:

X′ = X � ∆x, (12)

where X′ is the transformation obtained from X applying the
perturbation ∆x. We report in Alg. 1 the standard Gauss-
Newton minimization procedure for Eq. (11). The error func-

Algorithm 1: Gauss-Newton Algorithm.

Data: current configuration X̆.
Result: best configuration X̆∗.

1 H← 0,b← 0
2 foreach ek do
3 ek ← e(X̆mk,m

′
k) /* evaluate error */

4 Jk ←


∂e((X̆�∆x)mk,m

′
k)

∂∆x

∣∣∣∣
∆x=0

if iterative

∂e(Xmk,m
′
k)

∂X

∣∣∣∣
X=X̆

if direct

5 H+ = J>k ΩkJk

6 b+ = J>k Ωkek

7 end
8 ∆x← −H−1b

9 X̆← X̆ � ∆x

tion e(Xmk,m
′
k) is defined as the vector difference between

mk, which is a primitive in the moving scene to which we
apply the current transformation and the fixed item m′k. The
Ωk = Ω(mk,m

′
k) computed to evaluate the scalar error term

is defined according to Tab. II.
In the next, we specify for both cases, iterative and direct,

the specific representation of the state space X, the perturba-
tion vector ∆x and the � operator to perform the update.

2) Iterative Solver: We represent the perturbation vector
∆x ∈ <6 as the following vector:

∆x := (∆x ∆y ∆z︸ ︷︷ ︸
∆t

∆αx ∆αy ∆αz︸ ︷︷ ︸
∆α

)>. (13)

Here ∆t is the translational part, while ∆α embeds the rota-
tions around the x, y and z axes. To apply this perturbation to
X we first convert ∆x into a rotation matrix and a translation
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Fig. 3: Front-end. When a new pair of images is available, we extract a set of matchables from raw data using the strategy
outlined in Sec. IV-A, here we show only planes for more clarity. Subsequently, we find corresponding matchables (here,
linked by a red line) between the newly generated scene and the “fixed” scene with the methodology in Sec. IV-B. Finally, a
minimization is conducted to find the transform that best aligns the two scenes according to Sec. III-D.

vector through the v2t function, and then we multiply the
homogeneous transforms as follows:

∆X = v2t(∆x) (14)

=

(
Rx(∆αx)Ry(∆αy)Rz(∆αz) ∆t

0 1

)
X � ∆x := ∆X ·X (15)

We report the derivation of the Jacobian matrix Jk in Sec.
I-A of the supplementary material.

3) Direct Solver: For the direct solution of the Gauss-
Newton algorithm, we consider a perturbation ∆x ∈ <12

composed as follows:

∆x =
(
∆t> ∆r>1 ∆r>2 ∆r>3

)>
(16)

where ∆ri stands for the ith column of a rotation matrix ∆R:

∆R = (∆r1 ∆r2 ∆r3) . (17)

We define the � operator as:

X � ∆x :=

(
R + ∆R t + ∆t

0 1

)
. (18)

Notice that during the solution we do not enforce the or-
thonormality of the rotation matrices involved. To lessen this
problem, after applying the perturbation, we recondition the
rotation matrix of X through SVD decomposition as follows:

USV = R (19)
R′ = UV. (20)

The above procedure provides us with the “closest” rotation
matrix to the original R. If S is close to the identity, the SVD
approximation is good, otherwise the direct solver provides
a suboptimal solution. This typically occurs when several
outliers are present in the constraints. The derivation of the
Jacobian matrix Jk is reported in Sec. I-B of the supplemen-
tary material.

The direct version of the solver can be used to retrieve
a candidate transformation when used within a RANSAC
registration schema that does not require an initial guess. An
alternative is to consider a minimal set of correspondences
and use polynomial solvers based on Gröbner basis [26] or
EPnP-style distance constraints formulation [27].

IV. FRONT-END

To validate the representation and the solver proposed in
Sec. III on real data we developed a front-end based on RGB-
D data. The processing pipeline, as shown in Fig. 3, is divided
in three steps: detection, data association and registration.

A. Detecting Matchables from RGB-D data

Detection consists in extracting patterns from sensor output
that correspond to distinguishable elements of the environ-
ment. Arguably, the most common technique is to extract
corners from intensity images to obtain interest points. At the
same time, most man-made objects are made of flat surfaces,
this results in edges in the image that form straight lines. In
a textureless scene, where a point feature detector is likely to
fail, there are still good chances to detect lines.

Image based feature detectors do not account for the ge-
ometry of the scene and rely solely on the intensity channel.
For this reason, their main limitation is a performance drop
in detection under varying or severe lighting conditions. On
the other hand, plane detection from range data depends
on the 3D structure of the scene and is immune to light
changes. However, plane detection depends on the estimation
of geometric features (i.e., surface normals and curvature)
which may be severely limited by noisy and non-uniform data
returned by range sensors.

Since our representation comprehends all these geometric
entities, we can combine different detection techniques to
compensate for their singular shortcomings. In the remainder
we present the details on the detection of these primitives in
our system.

1) Points and Lines: Points and lines are extracted in image
coordinates using the intensity channel. In particular we use
the FAST detector [28] to find salient pixels in the image,
and we add to the scene the corresponding 3D point retrieved
from the depth channel. Similarly, we use the Line Segment
Detector [29] to find lines in the intensity image. For each
line we consider the 3D points at the extrema to back-project
it and we set the origin pm as their centroid. To lessen the
effect of spurious detections, we reject all lines that are too
short or do not have sufficient support from the depth data. As
an additional cue for points and lines matching, we label each
point with a BRIEF descriptor [30] computed at the keypoint
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(a) (b)

(c) (d)
Fig. 4: Planes extraction. From left to right and top to bottom:
(a) input depth image, (b) estimated surface normals, (c)
connected regions (in black), (d) detected planes (in red).

location. Similarly we add to each line matchable a descriptor
computed according to [31].

2) Planes: We first generate an organized 3D point cloud
from the depth image and compute the surface normals for
each point according to [32]. Subsequently, we mark each
point characterized by a significant local variation of depth
or normal. After this procedure, each pixel is classified as
belonging to a continuous region or not and we recover the
connected regions by visiting the image according to an 8-
neighbor connectivity (see Fig. 4). For each of these regions
that has a minimum number of points, we fit a plane. If the
residual error of the fitted plane is below a threshold, we add
a new plane to the scene. We repeat this procedure until no
planes can be generated. The plane origin pm is set as the
centroid of the detected planar patch.

B. Data Association
The set of matchables detected in the current RGB-D frame

constitutes the moving scene S = {m1:N}. While, the set
of matchables previously detected and registered in a global
reference frame forms the fixed scene S ′ = {m′1:N ′}. The
goal of the data association module is to find corresponding
elements between the two sets. Then, each correspondence
will result in a constraint for the solver.

Given the formalism presented in Sec. III-A, we are able
to find two types of constraints: homogeneous and heteroge-
neous. A homogeneous constraint arises when we re-observe
the same matchable, e.g., a point in the moving scene matches
a point in the fixed scene. While, a heterogeneous constraint
derives from a correspondence between primitives of different
types, such as a line in the moving scene lies on a plane in the
fixed scene. We perform the constraints search in two steps,
i.e. we first look for matchables of the same type and then we
perform a hybrid match search.

1) Homogeneous Constraints: We designed a data associ-
ation schema based on a Nearest Neighbor Search. Given the
fixed scene S ′, the moving scene S, and the current estimate
X, for each matchable mn we want to find the matchable m′∗

such that the error in Eq. (10) is minimized:

m′∗ = argmin
m′∈S

e(Xm,m′). (21)

To this end, we perform an approximate search based only
on geometric information. We organize the matchables of the
fixed scene S′ in three KD-trees, one for each primitive, using
their parameters, see Eq. (2). Subsequently, we perform an
additional appearance-based culling to remove bad associa-
tions. That is, for points and lines we reject those associations
whose descriptors are not similar. While, matched planes are
discarded if their distance is bigger than a certain threshold.

2) Heterogeneous Constraints: Once performed the homo-
geneous search, we use the unassociated matchables of the
moving scene mn to perform a brute force search with the
matchables of different type in the fixed scene. We evaluate
the hybrid matchables distance as in Eq. (10), and we discard
the constraints with error higher than a specified threshold
tcross.

V. EXPERIMENTAL EVALUATION

In this section we present a set of experiments aiming
at evaluating the performance of both the iterative and the
direct version of the solver proposed in Section III. To
this extent, we used a synthetically generated scene with
known correspondences under different levels of noise and
we analyzed the convergence behavior of the solver under
different constraints. Section V-A reports the outcome of this
set of experiments. Subsequently, in Section V-B we report
the results of a comparative evaluation that involves a full
registration pipeline built on top of our solver and other state-
of-the-art approaches.

A. Synthetic Data

We designed a first experiment with synthetic data to
validate our framework presented in Sec. III. We isolate the
effects of the front-end and analyze the behavior of each type
of constraint on both iterative and direct solver. To this end,
we randomly spawn matchables in the scene according to its
size ws. The matchable origin is computed by sampling the
x, y and z components from a uniform distribution in the
interval (−1, 1) and scaling them by ws. For lines and planes
the direction is again sampled from a 3D uniform distribution
and subsequently normalized. This procedure allows to obtain
the fixed scene. We set an arbitrary transform X and we
apply its inverse to each generated matchable to obtain the
moving scene. This allows to keep the correspondence between
matchables in the two scenes (known data association).

In Fig. 5 we report the error evolution of the iterative
solver for 10 iterations, while for the direct solver we present
the result after one iteration. To estimate the effect of noise
in the measurements we repeated the previous experiment
by adding varying levels of noise to the matchables in the
moving scene. The corresponding curves are marked as N:
no-noise, L: low-noise [σ2

t ∼ 0.02, σ2
r ∼ 0.05] and H: high-

noise [σ2
t ∼ 0.5, σ2

r ∼ 0.5]. For the same type of constraint
and level of noise both solvers operate on the same data and
start from the same initial guess [tx = 0.3, ty = −0.8, tz =
0.6, qx = 0.5, qy = −0.5, qz = 0.5]. As evident from Fig. 5
both iterative and direct variants of our solver converge close
to the optimum. The iterative solver is less sensitive to the
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Fig. 5: Synthetic Experiments - Error Evolution is reported for all possible combination of moving-fixed matchables. In solid
blue is shown the evolution of the error without noise, while in dashed red is reported the low-noise case and in point-dashed
yellow the high-noise case. For each constraint, the left plot reports the Iterative Solver evolution, while the right plot shows
the error after one Direct Solver iteration.

measurement noise, at a cost of multiple iterations. Conversely
the direct solver should be preferred in low noise situations
since it finds the optimum in just one step.

B. Simulated and Real Data

We compared the position tracking performances of our
approach and three other state-of-the-art methods, namely:
Normal ICP (NICP) [9], Dense Visual Odometry (DVO) [33]
and Multi-Cue Photometric Registration (MPR) [32]. We used
the author’s open source implementations. The comparison has
been conducted on the following publicly available datasets
with ground truth:
• ICL-NUIM dataset [34], simulated RGB-D measurements

in indoor scenarios.
• TUM benchmark suite [35], acquired with a Kinect v1

sensor in office-like environments.
For all the presented experiments we provide the achieved
accuracy in terms of relative pose error (RPE), computed
with the evaluation script provided by the TUM benchmark
suite. For both datasets, we set tcross = 0.01 as threshold to
discard heterogeneous associations, as described in Sec. IV-B2.
In Tab. III we report the results of each approach in terms of
relative translational and rotational pose error per second on
the ICL-NUIM sequences. The presented results show that our
approach achieves accuracy comparable with state-of-the-art
methods. To highlight the effects of using high-level primitives
we present two variants of our approach, denoted as SA-PT
and SA-SHA. SA-PT considers only points, while SA-SHA uses
all primitives generated by the front end. SA-PT and SA-SHA
does not present significant differences except in the first two
sequences, where the camera is repeatetly pointed towards
textureless walls, and salient features are poorly detected,
causing an observable weakness in the SA-PT performances.

On the other hand, the SA-SHA version takes advantage of the
high-level geometric primitives. To provide the reader with an
estimate of the memory occupancy of our method, we also
report the number of matchables for our approach and the
point cloud size of [9] in the final reconstructed scenes. We
repeated the same procedure on eight sequences of the TUM
benchmark suite. The data have been acquired with a Kinect
v1 in office-like environments. Despite the simplistic front-
end procedure we used in this work to extract matchables, our
approach performs well on real data, as reported in Tab. IV.
SA-SHA outperforms SA-PT in all the sequences, except when
no structure is present (fr3/nostr-text-near-loop), where the two
versions perform similarly. This encourages to further improve
the front-end to perform a more robust registration.

VI. CONCLUSIONS

In this paper, we presented a unified and compact repre-
sentation for scenes consisting of heterogeneous geometric
primitives. Our representation allows to derive both itera-
tive and direct registration methods. We conducted synthetic
experiments to characterize the behavior of our solver. We
furthermore validated our approach on real and simulated
benchmark datasets. The experimental evaluation supports the
claims that our approach yields compact models and that it is
capable of exploiting the structure of the scene when present,
while providing an accuracy comparable to other state-of-the-
art methods. The focus of this work is on the representation
of heterogeneous scenes and on an algorithm to register these
scenes. By using a relatively simplistic registration front-
end in conjunction with our solver, however we obtained
performances close to those of other state-of-the-art system.
The simplicity of the solver was compensated by the more
descriptive representation and the use of multiple types of
constraints between primitives.
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TABLE III: ICL-NUIM - Relative Pose Error.
Approach lr/tr0 lr/tr1 lr/tr2 lr/tr3 tr0 tr1 tr2 tr3

[m/s] [deg/s] [m/s] [deg/s] [m/s] [deg/s] [m/s] [deg/s] [m/s] [deg/s] [m/s] [deg/s] [m/s] [deg/s] [m/s] [deg/s]
MPR 0.0182 0.7055 0.0216 0.6307 0.0193 0.6366 0.0218 0.6351 0.0243 0.6464 0.0272 0.7173 0.0309 0.7469 0.0223 0.5733
DVO 0.0063 0.5347 0.0019 0.4773 0.0046 0.4983 0.0055 0.3607 0.0064 0.4967 0.0045 0.4834 0.0053 0.5068 0.0037 0.3567
NICP 0.0063 0.5403 0.0014 0.4751 0.0047 0.4948 0.0065 0.3907 0.0068 0.4988 0.0043 0.4783 0.0052 0.5078 0.0039 0.3533
{cloud size} {2041773} {1357503} {1865157} {2997922} {2140708} {1654631} {1895441} {2300953}
SA-PT 0.0121 0.6466 0.0134 0.5802 0.0071 0.5667 0.0096 0.6553 0.0104 0.5254 0.0069 0.5223 0.0094 0.5472 0.0056 0.3685
SA-SHA 0.0077 0.5499 0.0042 0.4857 0.0053 0.3843 0.0059 0.3512 0.0094 0.5159 0.0057 0.4918 0.0071 0.5146 0.0052 0.3639
{pt / ln / pl} {956 / 82 / 14} {608 / 75 / 16} {1180 / 69 / 13} {981 / 65 / 10} {1149 / 85 / 13} {999 / 105 / 17} {890 / 68 / 15} {1257 / 145 / 16}

TABLE IV: TUM - Relative Pose Error.
Approach fr1/desk fr1/desk2 fr2/desk fr2/person fr3/long-household fr3/nostr-text-near-loop fr3/str-text-far fr3/str-text-near

[m/s] [deg/s] [m/s] [deg/s] [m/s] [deg/s] [m/s] [deg/s] [m/s] [deg/s] [m/s] [deg/s] [m/s] [deg/s] [m/s] [deg/s]
MPR 0.0617 3.3369 0.0921 5.1575 0.0364 1.6511 0.0478 1.4512 0.0262 1.2773 0.2505 7.6629 0.0413 1.2862 0.0451 2.1518
DVO 0.0487 2.8261 0.0752 4.4137 0.0377 1.5691 0.0332 0.9791 0.0441 1.4096 0.0249 1.0935 0.0943 2.4563 0.0364 1.9501
NICP 0.1123 8.6928 0.1989 9.9035 0.1032 2.8895 0.3479 13.8372 0.1412 4.8721 0.3179 8.9081 0.1002 1.4571 0.0736 2.3584
{cloud size} {15488164} {18325912} {17430749} {20887437} {24204397} {893384} {3133948} {4480124}
SA-PT 0.0919 5.0505 0.1565 6.1042 0.0236 0.9921 0.0245 0.8820 0.0354 1.4398 0.0211 0.9506 0.0240 0.6646 0.0376 1.6553
SA-SHA 0.0888 2.6464 0.0974 5.9066 0.0206 0.8661 0.0224 0.7693 0.0274 1.1352 0.0227 1.0219 0.0228 0.6546 0.0282 1.2725
{pt / ln / pl} {282 / 29 / 2} {295 / 33 / 1} {7934 / 59 / 2} {10146 / 45 / 4} {3849 / 93 / 10} {2058 / 154 / 1} {713 / 107 / 5} {1223 / 26 / 2}
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