1809.04280v1 [cs.RO] 12 Sep 2018

arxXiv

Safe Navigation with Human Instructions in Complex Scenes

Zhe Hu, Jia Panf, Tingxiang Fan, Ruigang Yang and Dinesh Manocha

Abstract—In this paper, we present a robotic navigation
algorithm with natural language interfaces, which enables a
robot to safely walk through a changing environment with
moving persons by following human instructions such as “go to
the restaurant and keep away from people”. We first classify
human instructions into three types: the goal, the constraints,
and uninformative phrases. Next, we provide grounding for
the extracted goal and constraint items in a dynamic manner
along with the navigation process, to deal with the target
objects that are too far away for sensor observation and the
appearance of moving obstacles like humans. In particular, for
a goal phrase (e.g., “go to the restaurant”), we ground it to
a location in a predefined semantic map and treat it as a
goal for a global motion planner, which plans a collision-free
path in the workspace for the robot to follow. For a constraint
phrase (e.g., “keep away from people”’), we dynamically add
the corresponding constraint into a local planner by adjusting
the values of a local costmap according to the results returned
by the object detection module. The updated costmap is then
used to compute a local collision avoidance control for the safe
navigation of the robot. By combining natural language pro-
cessing, motion planning and computer vision, our developed
system is demonstrated to be able to successfully follow natural
language navigation instructions to achieve navigation tasks in
both simulated and real-world scenarios. Videos are available
at https://sites.google.com/view/snhi.

I. INTRODUCTION

In the human-robot interaction (HRI) field, natural lan-
guage has become an important communication interface
between humans and robots [1]-[4]. Many previous works
endow robots with the ability to understand human instruc-
tions by using probabilistic models to ground a human
instruction to a robot action [5]-[9]. However, even though
demonstrated to be successful in manipulation tasks, these
methods may not be appropriate for navigation tasks. This
is because compared to a manipulation task, a navigation
task would have a much larger configuration space, which
will result in the training and inference difficulty of these
direct grounding approaches. To deal with such difficulty,
one feasible solution is using the motion planning as an
intermediate layer bridging the natural language processing
(NLP) module and the action generation module. Similar
ideas have been proposed before in [10] for manipulation
tasks. In particular, we will use NLP techniques to extract
semantic information such as goals and constraints of the
navigation task from human instructions. Such knowledge
is then fed into a costmap motion planner to compute an

Z. Hu and J. Pan are with the Department of Mechanical and Biomedical
Engineering, the City University of Hong Kong, Hong Kong. T.X. Fan
and R. Yang are with the Robotics and Autonomous Driving Lab, Baidu
Research. D. Manocha is with the Degartment of Computer Science, the
University of Maryland, College Park. T denotes the corresponding author.
Email: jiapan@cityu.edu.hk

“Robot, o to the|
restaurant to bring|

Fig. 1: Our system enables a robot to understand the goals and
constraints in the natural language instruction and localize these
abstract concepts with concrete objects in the physical world by
using dynamic grounding techniques, which leverage the knowledge
from a global semantic map (in the green box) and from the RGB-
D sensor (in the orange box). The grounded knowledge is then fed
into a costmap motion planner to accomplish global navigation in
complex scenarios with both static and moving obstacles.

optimal navigation trajectory. In this way, we can efficiently
solve the action grounding problem for navigation tasks.
However, the semantic output of the NLP module cannot
be directly used by the motion planner, which requires
concrete knowledge about positions of the goal and the
objects referred to by constraints. For instance, given the
constraint phrase “keep far away from the red desk” that
is extracted from the NLP module, the motion planning
algorithm needs to understand what is the item “red desk”
referred to in the physical world, and what is its position
in the robot’s local coordinate system. In other words, we
need to ground abstract semantic concepts from the NLP
module to concrete physical attributes of the objects that
are ready to be used in the motion planning framework.
Motivated by the visual grounding technique [11], [12],
which takes image-sentence pairs as input and learns to
visually localize linguistic phrases with pixels or regions
in a given image, our solution is to extract the concrete
positions of goals and constraint-related objects from RGB-D
images, by combining computer vision and NLP techniques.
In addition, due to occlusion and the camera’s limited range,
the robot usually cannot ground all constraints at a time.
As a result, the robot needs to dynamically analyze the
surrounding environment for possible grounding and add a
constraint into the motion planner once it has been grounded.
Main Results: In this paper, we present an algorithm to
enable a mobile robot to understand the navigation goal and
trajectory constraints from natural language human instruc-
tions and sensor measurements, in order to generate a high-
quality navigation trajectory following user’s requirements.
We first use a Long Short-Term Memory (LSTM) recursive

https://sites.google.com/view/snhi

neural network to parse and interpret the commands and
generate the navigation goal and a set of constraint phrases.
The navigation goal is in form of a location name in the
semantic map. The constraint phrase describes the spatial
relationship between the robot and a target object, e.g., in
“keep away from the desk”, “desk” is the target object and
“keep away from” is the spatial relation. Moreover, we use
the attention mechanism to improve the accuracy of the NLP
command parsing. Next, we perform a dynamic grounding
algorithm to localize the extracted linguistic phrases with
concrete items in the physical world. In particular, we will
link the goal phrase to the corresponding physical location
in the semantic map and will link the target object for a
constraint phrase to a point cloud observed by the RGB-
D sensor. In this way, we can translate the abstract NLP
commands into parameters that can be used in a motion
planner. For instance, “keep away from the desk” can be
translated into a costmap f(X) = 1jx—xgq|/<r(X), Where
X is one point in the local costmap, Xgesk iS the grounded
position for the desk, 1(x) is the indicator function, and
r is the potential field parameter. The constraints will be
grounded whenever the target object is observed by the robot,
and thus the costmap is dynamically updated during the
navigation. Finally, a trajectory is computed using an online
search over a costmap in the robot’s local coordinate system.
The planned trajectory is further combined with a local
collision avoidance module to enable the robot approach its
goal safely and efficiently. As compared to prior techniques,
our approach offers the following benefits:

« We use the costmap motion planner as the bridge con-
necting the NLP module and the navigation command
generator. The costmap can conveniently formulate pa-
rameters like goal positions and spatial constraints, and
also allows the dynamic update of these parameters.

¢ Our dynamic grounding allows constraint phrases con-
taining moving objects, e.g., “keeping away from peo-
ple”. By combining with our collision avoidance tech-
nique, it can provide safe navigation in crowds.

e We use LSTM enhanced with attention mechanisms
to provide high-quality and efficient NLP information
extraction for the navigation task.

We highlight the performance of our method in a simulated
environment as well as on a Turtlebot operating in two
real-world scenarios. Our approach can handle a rich set
of natural language commands and can generate appropriate
paths in real-time.

II. RELATED WORK
A. Natural Language Processing in Robotic Navigation

Many previous works introduce natural language into
robotic navigation and use probabilistic graph models as
a key tool to perform language grounding. Wei et al. [1]
presented a variant of Markov Random Field (MRF) to
perform path inference from human instructions. Kollar et
al. [2] [3] proposed an algorithm called Spatial Description
Clauses (SDCs) to transform instructions into a structured

formulation and then used a probabilistic model to perform
verb and direction grounding. Tellex et al. [13] also used
SDCs to describe instructions but presented some useful
new features, such as distance, to formulate the probabilistic
model. Kollar et al. [5] presented a special probabilistic
framework called the Generalized Ground Graphs (G?) to
ground a word phrase to an object, place, path, or event in
the physical world, where the probabilistic graph is a factor
graph constructed based on SDCs. Once the graph is built
and trained, the grounding can be obtained by maximizing
the conditional probability described by the graph. Howard et
al. [6] extended the G2 model to the Distributed Correspon-
dence Graph (DCG) by adding all possible grounding nodes
to reduce the search space. Instead of grounding actions, this
work directly grounds constraints to obtain better inference
performance. Built upon a similar idea, our approach also
infers the constraints directly and combines motion planning
with NLP computations. [7], [8] proposed a variant of DCG
called the Hierarchical Distributed Correspondence Graph
(HDCG) for dealing with the computation of large and
complex symbolic representations. Paul et al. [9] extended
DCG and proposed a model called the Adaptive Distributed
Correspondence Graph (ADCG), which provides a hierarchy
of the meanings attached to a word phrase to deal with
abstract groundings. Park et al. [10] presented a similar
probabilistic graph called the Dynamic Grounding Graphs
(DGG) to dynamically parse and interpret commands and
generate constraints for optimization-based motion planning.
Their work modeled the motion planner’s parameters as
latent variables and used Conditional Random Fields (CRF)
to perform training and inference. There are also some other
works using techniques other than the probabilistic graphs.
Matuszek et al. [14] used a statistical machine translation
model that transforms natural language instructions to an
automatically-labeled map, which is then used for navigation.
Duvallet et al. [15] applied imitation learning to the direction
following task, which used demonstrations to learn a policy
about how to explore the environment, how to backtrack
when necessary, and how to explicitly declare when the
destination has been reached. The learned policy can be well
generalized to unknown environments.

B. Visual Grounding

There is a rich literature about visual grounding, i.e., how
to visually ground (i.e., localize) arbitrary linguistic phrases
with pixels or objects in an image. Huang et al. [11] built a
connection graph between a word phrase and a visual bound-
ing box and then performed inference using EM (Expectation
Maximization) to ground referring expressions like “it”.
Shridhar et al. [12] proposed to solve the referring expression
grounding problem by combining Fast R-CNN with LSTM
to generate a word probability sequence, which represents
an expression distribution describing the image region. An-
derson et al. [16] proposed a simulation environment for
visually-grounded navigation and presented an LSTM based
reinforcement learning algorithm to perform simulated room-
to-room navigation. Their LSTM formulation not only takes

| goal

«go to the §o3 } E
restaurant, iy
and you
know, keep |
away from o _.
people” AN

matching

N\

uninformative phrase

human instruction

(J1 /I

constraint object
matching

constraint object

scene understanding

semantic map

goal position

& global plan

‘E local cost map i
m:osiﬁons

Perm

i :erso}. .I
!/j? Ba‘-‘leu Table
N

=i S ==

I\ J

instruction phrase
pre-processing classification

goal and constraint grounding

navigation control

global & local navigation output

Fig. 2: An overview of our navigation algorithm, which takes the human instructions as input and generates a suitable trajectory. The
algorithm has four main modules: the instruction pre-processing, the phrase classification, the goal and constraint grounding, and the global
and local navigation planning. The instruction pre-processing splits the speaker input into a set of phrases. The phrase classification uses
a bi-directional LSTM enhanced using attention mechanisms to understand the function of each phrase. Given a phrase, the LSTM output
is a class probability about whether this phrase is a goal indicator (the red bar), a constraint descriptor (the green bar), or uninformative
words (the blue bar). The goal and constraint grounding module maps the goal and constraint phrases to concrete objects in the physical
world. In particular, we determine the goal’s location by search the goal name in the semantic map, and determine the target object in a

constraint by matching with the output from the scene understanding.

map for computing a navigation control output.

previous images as input but also considers actions taken in
the previous steps. This mechanism allows their model to
handle more complex instructions than previous approaches.
Wau et al. [17] proposed a 3D navigation environment called
House3D, which includes 3D objects, textures, and scene
layouts. Their dataset can generate both low-level and high-
level variations like color and layout changes. Matuszek et
al. [18] proposed a joint probabilistic model of language and
perception for visual grounding. Posada et al. [4] presented
a robotic navigation framework without a global map. Their
approach performs object segmentation and detection given
scene images using a set of traditional classification modules
such as Random Forest and Support Vector Machine.

III. OVERVIEW

The goal of our work is to enable robots to follow human
instructions such as “go to the restaurant, and you know,
keep away from people.” Our navigation system takes the
command sentence as the input and outputs a suitable trajec-
tory for robots to execute. Our approach contains four steps:
pre-processing, phrase classification, goal and constraint
grounding, and motion planning. First, the pre-processing
step takes the command sentence as the input and divides it
into phrases according to conjunctions and commas. Next,
we assume that each phrase has one of three labels: goal,
constraint, or uninformative phrase. For example, the phrase
“go to the restaurant” is a goal phrase, “keep away from
people” is a constraint phrase, and the phrase “you know” is
uninformative. We train a Long Short-Term Memory (LSTM)
network [19] to classify phrases into those three types. The

The grounded goal and constraints are then used to update the cost

LSTM is suitable for our task because the classification
output does not depend only on individual words but also
on the meaning of the entire phrase. After recognizing the
constraint and goal phrases, we need to ground them with the
physical world. In particular, we ground the goal phrase by
computing the similarity between the noun extracted from
the goal phrase and the location name in the predefined
semantic map, and use the most similar location as the goal
configuration for the robot navigation. To dynamically add
the target object in a constraint into the planner’s costmap,
we use an object detection module to dynamically look
for the object mentioned in the constraint phrase and then
output the object’s 3D location in the robot’s local coordinate
system. To deal with objects that are moving (like “people”)
or objects that are occluded, we will perform the grounding
in a dynamic manner along with the navigation. That is,
whenever a constraint object occurs in the camera frame, we
add it to the local planner’s costmap. Finally, our costmap
motion planner will compute a suitable trajectory based on
the costmap which is updated in real-time according to
the grounded constraint result. To improve the navigation
performance in crowd scenarios, we further use the planning
result to guide a reinforcement learning based local collision
avoidance approach developed in our previous work [20].
An overview of our proposed navigation system is shown in
Figure 2.

IV. PHRASE CLASSIFICATION

To understand the roles that different instruction phrases
play in the motion planning, we propose an LSTM-based

method to ground phrases into different types. For navi-
gation task, we notice that the goal and the user-specified
trajectory constraints are the most important parameters for
the planning algorithm. As a result, we classify each phrase
into one of three types: goal, constraint, and uninformative
phrase. For example, “go to the restaurant” is a goal phrase,
“keep away from people” is a constraint phrase, and “you
know” is an uninformative phrase. We train a bi-directional
LSTM network [21] with attention mechanism to solve
such classification problems. In Section VII, we show that
the bi-directional LSTM network with attention mechanism
can provide better classification performance than standard
LSTM.

More specifically, as shown in Figure 3, our classification
subsystem contains four layers: the embedding layer, the bi-
directional LSTM layer, the attention layer, and the output
layer. The embedding layer transforms a phrase .S with length
T: S = {x1,29, -+ ,xr} into a list of real-valued vectors
E = {ej,eq, - ,er}. We transform a word z; into the
embedding vector through an embedding matrix W,: e; =
W.vt, where v’ is a vector of value 1 at index e; and 0
otherwise.

Next, we extract the representation for the sequential data
E using LSTM, which provides an elegant way of modeling
sequential data. But in standard LSTM, the information
encoded in the inputs can only flow in one direction and the
future hidden unit cannot affect the current unit. To overcome
this drawback, we employ a bi-directional LSTM layer [21],
which can be trained using all the available inputs from two
directions to improve the prediction performance.

A bi-directional LSTM consists of a forward and backward
LSTM. The forward LSTM reads the input embedded vector
sequence from el to e and computes a sequence of forward
hidden states (hjp,...,hr), where h; € RP and p is the
dimensionality of hidden states. The backward LSTM reads
the embedded vector sequence in the reverse order, i.e., from
er to eq, resulting in a sequence of backward hidden states
(hr, ..., hy), wheE; hr g_}Rp. By adding the forward and
backward states h; and h;, w car<1_0btain the final latent
vector representation as h; = h; 4+ h;, where h; € R?.

?

classification output layer

attention layer

bi-directional
LSTM layer

embedding layer

embedding

I ! ! ! |

£0 to the restaurant
Fig. 3: The phrase classification bi-directional LSTM network.

go to the restaurant

Fig. 4: Attention visualization for a goal phrase, where the color
with higher transparency indicates a lower attention value.

Given the hidden states of the bi-directional LSTM, we
want to combine them to predict the class label of each
phrase. Here we use the attention mechanism, which has
been successfully applied in many tasks such as image cap-
tioning, language translation, speech recognition. Its success
is mainly due to the fact that human recognition does not
tend to process a whole signal at once; instead one only
focuses on selective parts of the entire perception space as
needed. For phrase classification, we add an attention layer
after the bi-directional LSTM layer to weight hidden units
differently so as to improve the classification performance.
Here we are using a location-based attention mechanism,
which calculates the weights solely from the current hidden
state h; as a; = w7 tanh(h;), where w € R? is a vector
of parameters to be learned. We then can obtain an attention
weight vector « using softmax function as follows:

a = softmax([aq, ..., ar]). ()

Then a summarized vector r € RP can be computed based
on the weights obtained in Equation 1 and the hidden states
from h; to hy as r = Zzll o;h;. The summarized vector
then passes through a tanh nonlinear function to generate
the final output h* of the attention layer: h* = tanh(r).

In this way, different words can have different impacts
on the final classification results. In Figure 4, we illustrate
the visualization of the learned attention for the goal phrase.
As we can observe, the word “to” has a greater impact on
the goal phrase and the word “go” is also related to the
goal. In Section VII, we further show that the attention
mechanism can indeed improve the performance of our
navigation algorithm.

The final layer in our phrase classification network is the
output layer, which is a dense layer with 3 neural units and
the softmax activation and outputs the probability p(y) that
the phrase belongs to each class:

p(y) = softmax(Wh™ + b),)

g = argmax p(y), 3)
Yy
where W and b are the parameters of the output neural layer
to be learned, and y is the phrase label from the set of goal,
constraint, and uninformative phrase.

V. DYNAMIC GOAL AND CONSTRAINT GROUNDING

For goal grounding, we compute the goal location by
extracting the noun from the goal phrase and then computing
the similarity between this noun and the location names in
the predefined semantic map. The similarity is computed as
the cosine similarity between the embedded vectors of two
given word items. The embedding is accomplished using the
Word2Vec embedding network [22], [23] that can convert a
word into a vector based on the Wiki corpus. We use the
2D coordinate of the location that has the highest similarity
with the noun in the goal phrase as the goal location.

For constraint grounding, we first determine whether a
constraint object exists in the current scenario and if it does,

determine its locations in the robot’s local coordinate system.
Previous works [1], [9] used predefined objects and their
locations to ground the language rather than dynamically
determining their locations according to the output of a vision
system. Our navigation algorithm combines NLP with com-
puter vision to achieve dynamic constraint grounding, which
can determine the existence and location of the constraint
objects in an online manner.

In particular, we first understand the current scene using
instance segmentation, which takes one image frame as input
and outputs several masks with semantic information (i.e.,
labels), as shown in Figure 5. To compute the location of
each object in the robot’s local coordinate, we apply these
masks to the corresponding depth image and compute the
mean depth value over each mask, which is then used as the
3D location of each object.

Fig. 5: For scene understanding, we use a mask R-CNN based
instance segmentation to extract semantic objects in the scenario.

Once we label the objects in the current scene, we compute
the similarity between the nouns that occur in the constraint
phrase and those object labels discovered by the scene
understanding. Again, we use the Word2Vec embedding
network [22], [23] to embed all words in the vector space
and compute the cosine similarity between word vectors of
the constraint object and objects detected in the instance
segmentation. If the similarity is larger than a predefined
threshold, we add this constraint to the motion planner.

VI. GLOBAL AND LOCAL PLANNING

For both global and local planning, we assume that the
robot can accurately localize itself in a predefined global
semantic map. We use a state-of-the-art 2D localization
technique [24] for the robot localization. The global semantic
map is constructed using SLAM (simultaneous localization
and mapping) algorithm. The resulting map consists of grid
cells which may be one of three types: free space, obstacle,
and no information.

1) Global Planning in the Semantic Map: To perform
global planning, we use the RRT algorithm to compute
a trajectory connecting the robot’s current position in the
semantic map and the goal position determined with goal
grounding in Section V.

2) Local Planning in the Costmap: The robot then starts
to follow the globally planned trajectory, but it needs to
perform local planning to adapt to the dynamically added
constraints. In particular, the local planning algorithm will
maintain a costmap in the robot’s local coordinate. The
costmap contains both static obstacles and constraints. The
static obstacles like walls, rooms, and buildings can be
directly added into the costmap by transforming a subset
of the global map. The constraints can also be conveniently
modeled in the costmap. Given the location (xg,yo) of a
constraint object computed via constraint grounding, we can
mark the cells inside the region {(z,v) : (z — 20)% + (y —
Y0)?> < a?} as the obstacle cells, where a is a parameter
indicating the influencing radius of the constraint. Finally, we
perform the smooth inflation operation over all the obstacle
cells in the grid map, in order to enable the robot to keep
a safe distance from the obstacle. Samples of the costmap
computed are shown in Figure 6.

constraints
b] -1

()

Fig. 6: Path planning and the corresponding costmap visualization:
(a) without constraints and (b) with constraints.

Given the costmap and the globally planned trajectory, the
local planning is performed as follows. First, we choose one
point from the global planned trajectory as the intermediate
goal in the short time horizon. Next, we add this intermediate
goal into the costmap by converting it to the local coordinate
of the robot. After that, we use A* algorithm to compute
an optimal path in the costmap, which is used as the local
planning result.

3) Dynamic Obstacle Avoidance: After global planning
and local planning, the robot can avoid static obstacles
(e.g., walls, heavy desks) that appear in the global semantic
map and constraint obstacles that appear in the human
instructions. However, there exist some other obstacles in
the navigation environment, including static obstacles like
chairs and non-static obstacles like carts and dogs, which
appear neither in the human instruction nor in the semantic
map. To guarantee the robot to avoid these obstacles reliably,
our navigation algorithm combines the output of the local
planning with a reinforcement learning-based local collision
avoidance policy developed in our previous work [20].

The local collision avoidance controller is a 4-hidden-layer
neural network as shown in Figure 7. It requires three inputs:
the sensor scanning about the surrounding environment, the
current velocity of the robot, and an intermediate goal for the

Sampling

Fig. 7: The neural network architecture. The network takes the laser
scanner’s data o, relative goal position of, and current velocity of,
as inputs, and outputs the mean of velocity v!mean. The executable
action a’ is sampled from the Gaussian distribution constructed by
Vi mean With a separated log standard deviation vector vtl(,gsm.

robot to approach. We train the neural network policy using
a wide variety of multi-agent scenarios, in order to enable
the robot to learn a sophisticated coordination behavior so
that accomplish safe and efficient navigation in scenarios
with high agent density and complex static obstacles. The
training is implemented as an extension of the state-of-the-
art reinforcement learning algorithm PPO (Proximal Policy
Optimization) [25]. For more details about the collision
avoidance controller, please refer to [20].

In our navigation algorithm, the local collision avoidance
controller will use the waypoints generated by the local
planning as the goal input, and then outputs a navigation
command which will drive the robot toward the eventual
goal but also avoid all the obstacles in the environment.

VII. EXPERIMENTS AND RESULTS

We test the performance of our natural language driven
navigation algorithm on a Turtlebot robot platform mounted
with an Intel Core i5-7500T CPU and a GeForce GTX 1070
GPU. We first present the experimental results on individual
modules including phrase classification and dynamic con-
straint grounding. Then we demonstrate the results of the
entire navigation system in both simulated and real-world
scenarios.

A. Phrase Classification

The phrase classification accuracy is very important for
the following grounding operations. Thus in our experiment,
we have tested different networks and compared their per-
formance. In particular, we test three different networks: the
standard LSTM network (LSTM), the bi-directional LSTM
network (Bi-LSTM), and the bi-directional LSTM with at-
tention mechanism (Att-Bi-LSTM). All these networks are
trained using the Adam optimizer with the cross-entropy as
the loss function.

The comparison of the training losses of the three LSTM
networks is shown in Figure 8. We can observe that all
three LSTM networks are able to reach a relatively low loss
value, which implies that they can learn how to classify the
instruction phrases correctly. The bi-directional LSTM with
attention mechanism provides the best performance with a
loss value of around 0.006, which is much lower than that

\ — Att-Bi-LSTM
1 H Bi-LSTM
—LSTM
0.8
&
3 0.6
04
0.2
0 | I b "
0 200 400 600 800 1000

epoch

Fig. 8: The loss values in epochs during the training process
for three LSTM networks: the standard LSTM (LSTM), the bi-
directional LSTM (Bi-LSTM), and the bi-directional LSTM with
attention mechanism (Att-Bi-LSTM).

LSTM | Bi-LSTM | Att-Bi-LSTM
82% 88% 96%

TABLE I: The accuracy for phrase classification of three LSTM
architectures, including the standard LSTM (LSTM), the bi-
directional LSTM (Bi-LSTM), and the bi-directional LSTM with
attention mechanism (Att-Bi-LSTM).

Network
Accuracy

of the standard LSTM (around 0.15) and the bi-directional
LSTM (around 0.05).

To perform training and testing for phrase classification,
we collect a dataset containing 500 navigation instructions.
The accuracy of the three LSTM networks mentioned above
is tested in a test set with 300 phrases, and the result is shown
in Table I. We can observe that the bi-directional LSTM
with attention mechanism achieves the best performance with
96% accuracy. As a result, in the following experiments, we
choose the bi-directional LSTM with attention mechanism
as our phrase classification network.

B. Dynamic Constraint Grounding

To recognize the constraint objects mentioned in the hu-
man instructions and ground their locations, we use the mask
R-CNN network [26] to perform instance segmentation. The
network is trained on a COCO dataset which includes 80
different objects or labels. Figure 5 shows the output of
the mask R-CNN. To compute the location of the detected
constraint objects, we use the mask produced by the mask
R-CNN to crop the depth image from the RGB-D sensor, and
then compute the average depth value of each masked depth
image. The average depth value is then converted from the
camera’s coordinate to the robot’s local coordinate to provide
the location of the constraint objects. After that, the similarity
between the constraint objects mentioned in the instruction
and the labels provided by the instance segmentation is
computed to accomplish the grounding process.

C. Navigation Performance

We test our algorithm using a set of navigation instructions
shown in Table II. We also record the execution time of
the entire system with respect to the different length of the
instruction sentences, and the result is shown in Figure 9.

instructions goal constraint object

“go to the restaurant and you know, keep away from | “restaurant”

people.”

“people”

“move to the laboratory and watch out the table and
chairs.”

laboratory “table” “chair”

time (s)
(2]

entire navigation algorithm
—-Aphrase classification

. . .)
0 5 10 15 20 25
sentence length

Fig. 9: Both the phrase classification and the entire navigation
pipeline require more computational time when the human instruc-
tion becomes longer in sentences.

(b (©

Fig. 10: We test our navigation algorithm in a simulated environ-
ment with static obstacles and moving pedestrians, as shown (a).
The simulated robot can obtain the RGB and depth information
about the scene, as shown in (b) and (c) respectively. Please refer
to the video for more details about the simulation.

1) Simulated Environments: As shown in Figure 10, we
build a complex simulated scene to test the performance
of our algorithm. This scenario covers both the indoor
and outdoor environments. It contains static obstacles such
as “office building”, “post office”, ‘“cafe”, “thrift shop”,
“school”, “table” and “playground”. It also contains moving
obstacles like walking pedestrians in the “cafe” region.

Our navigation algorithm can achieve successful naviga-
tion in such complex scenarios by following human instruc-
tions. Please refer to the video for the details. In addition,
we also evaluate how the path planning performance changes
given the different number of constraints. We fix the goal
position and gradually add more constraints. The lengths
and the execution time of the resulting trajectories are listed
in Table III. We can see that both the trajectory length
and execution time increase when the number of constraints
increases, but the first two constraints will bring the most

“robot, go to the lift” “lift”

“don’t collide with people and walk to the information | “information desk”

desk”

“people”

“robot, go to the school and stay away from children” | “school” “children”

“go to the thrift shop to buy some water and watch out
the table in the shop and you know, keep away from
the people”

“thrift shop” “table” “people”

TABLE II: Samples of natural language human instructions used in
our simulated environment. The second and third columns are the
goal and constraint objects extracted using our phrase classification
and grounding algorithm.

#constraints| 0 1 2 3 4 5 6
path 2.83 | 3.02 | 3.13 | 342 | 3.42 | 345 | 3.52
length
time 5.3 6.4 6.8 7.1 7.3 74 7.6

TABLE III: We compare the length (in meters) and execution time
(in seconds) of the paths generated by our navigation system given
the different number of constraints and the same goal.

significant changes.

2) Real-world Environment: For the real-world experi-
ment, we first run the SLAM algorithm [24] around our
lab to construct a global amp, and then manually annotate
this map with semantic information. The resulting semantic
maps are shown in Figure 11, including semantic locations
such as restaurants, information desks, laboratory, lifts, hall,
rest regions, and workstations. Our navigation algorithm can
enable a robot to follow human’s navigation instructions
successfully in these scenarios. Please refer to the video for
more details.

To demonstrate the impact of constraint grounding, in
the scenario shown in Figure 1la, we run a contrast ex-
periment comparing the navigation trajectory without and
with constraints. Figure 12a shows the navigation result
when receiving the instruction “go to the restaurant,” and
Figure 12b shows the trajectory when receiving “go to the
restaurant and you know, keep away from people”. We can
observe that the existence of constraints significantly changes
the robot’s trajectory.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we solve the problem of robotic naviga-
tion following a complex natural language instruction by
combining natural language processing, computer vision,
local/global motion planning, and collision avoidance tech-
niques. By using the costmap motion planner as a bridge
between the natural language instruction and the collision-
free navigation command, our system accomplishes safe
navigation in complex scenarios.

For future work, we plan to train an end-to-end neural
network to combine all the components proposed in this
work, including phrase classification, dynamic constraint
grounding, and obstacle avoidance, to allow all the parame-
ters to be optimized by the robot’s navigation experience.

work
station

work
station

work work
station station

work
station

(b) semantic map for scene 2

Fig. 11: Two semantic maps for different scenarios constructed
using SLAM.
REFERENCES
[1]1 Y. Wei, E. Brunskill, T. Kollar, and N. Roy, “Where to go: Interpreting

[2]

[3]
[4]
[51

[6]
[71

[8]

[91

[10]

(111

[12]

[13]

natural directions using global inference,” in ICRA, 2009, pp. 3761-
3767.

T. Kollar, S. Tellex, D. Roy, and N. Roy, “Grounding verbs of motion
in natural language commands to robots,” in Experimental robotics,
2014, pp. 31-47.

——, “Toward understanding natural language directions,” in HRI,
2010, pp. 259-266.

L. F. Posada, F. Hoffmann, and T. Bertram, “Visual semantic robot
navigation in indoor environments,” in ISR, 2014, pp. 1-7.

T. Kollar, S. Tellex, M. R. Walter, A. Huang, A. Bachrach,
S. Hemachandra, E. Brunskill, A. Banerjee, D. Roy, S. Teller et al.,
“Generalized grounding graphs: A probabilistic framework for under-
standing grounded language,” JAIR, 2013.

T. M. Howard, S. Tellex, and N. Roy, “A natural language planner
interface for mobile manipulators,” in /CRA, 2014, pp. 6652—-6659.
J. Arkin and T. M. Howard, “Towards learning efficient models for
natural language understanding of quantifiable spatial relationships,”
in RSS 2015 Workshop on Model Learning for Human-Robot Com-
munication, 2015.

I. Chung, O. Propp, M. R. Walter, and T. M. Howard, “On the
performance of hierarchical distributed correspondence graphs for
efficient symbol grounding of robot instructions,” in IROS, 2015, pp.
5247-5252.

R. Paul, J. Arkin, N. Roy, and T. M Howard, “Efficient grounding of
abstract spatial concepts for natural language interaction with robot
manipulators,” in RSS, 2016.

J. S. Park, B. Jia, M. Bansal, and D. Manocha, “Generating real-
time motion plans from complex natural language commands using
dynamic grounding graphs,” arXiv:1707.02387, 2017.

D.-A. Huang, S. Buch, L. Dery, A. Garg, L. Fei-Fei, and J. C. Niebles,
“Finding it: Weakly-supervised reference-aware visual grounding in
instructional videos,” in CVPR, 2018.

M. Shridhar and D. Hsu, “Interactive visual grounding of referring
expressions for human-robot interaction,” arXiv:1806.03831, 2018.
S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee, S. J.
Teller, and N. Roy, “Understanding natural language commands for
robotic navigation and mobile manipulation,” in AAAI vol. 1, 2011,

p- 2.

Fig.

work
_station 3 -

(a) path planning without constraints
work
station3 -

(b) path planning with the constraint object “person”

12: Comparison of the planning results without and with

constraints. In (a), the human constraint object is not taken into
account in the planning, and thus it will choose a path close to
the humans. In (b), the planner will recognize the human constraint
object and take an alternative path to avoid humans.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]
[25]

[26]

C. Matuszek, D. Fox, and K. Koscher, “Following directions using
statistical machine translation,” in HRI, 2010, pp. 251-258.

F. Duvallet, T. Kollar, and A. Stentz, “Imitation learning for natural
language direction following through unknown environments,” in
ICRA, 2013, pp. 1047-1053.

P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Siinderhauf,
I. Reid, S. Gould, and A. van den Hengel, “Vision-and-language
navigation: Interpreting visually-grounded navigation instructions in
real environments,” in CVPR, 2018.

Y. Wu, Y. Wu, G. Gkioxari, and Y. Tian, “Building generalizable
agents with a realistic and rich 3d environment,” arXiv:1801.02209,
2018.

C. Matuszek, N. FitzGerald, L. Zettlemoyer, L. Bo, and D. Fox,
“A joint model of language and perception for grounded attribute
learning,” arXiv:1206.6423, 2012.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
optimally decentralized multi-robot collision avoidance via deep rein-
forcement learning,” in /CRA, 2018.

A. Graves and J. Schmidhuber, “Framewise phoneme classification
with bidirectional Istm and other neural network architectures,” Neural
Networks, vol. 18, no. 5-6, pp. 602-610, 2005.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” arXiv:1301.3781, 2013.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their compo-
sitionality,” in NIPS, 2013, pp. 3111-3119.

W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure
in 2d lidar slam,” in ICRA, 2016, pp. 1271-1278.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimoyv,
“Proximal policy optimization algorithms,” arXiv:1707.06347, 2017.
K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in
ICCV, 2017, pp. 2980-2988.

	I Introduction
	II Related Work
	II-A Natural Language Processing in Robotic Navigation
	II-B Visual Grounding

	III Overview
	IV Phrase Classification
	V Dynamic Goal and Constraint Grounding
	VI Global and Local Planning
	VI-.1 Global Planning in the Semantic Map
	VI-.2 Local Planning in the Costmap
	VI-.3 Dynamic Obstacle Avoidance

	VII Experiments and Results
	VII-A Phrase Classification
	VII-B Dynamic Constraint Grounding
	VII-C Navigation Performance
	VII-C.1 Simulated Environments
	VII-C.2 Real-world Environment

	VIII Conclusion and Future work
	References

