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VR-Goggles for Robots:
Real-to-sim Domain Adaptation for Visual Control

Jingwei Zhang∗1 Lei Tai∗2 Peng Yun2 Yufeng Xiong1 Ming Liu2 Joschka Boedecker1 Wolfram Burgard1

Abstract—In this paper, we deal with the reality gap from
a novel perspective, targeting transferring Deep Reinforcement
Learning (DRL) policies learned in simulated environments to the
real-world domain for visual control tasks. Instead of adopting
the common solutions to the problem by increasing the visual
fidelity of synthetic images output from simulators during the
training phase, we seek to tackle the problem by translating the
real-world image streams back to the synthetic domain during the
deployment phase, to make the robot feel at home. We propose
this as a lightweight, flexible, and efficient solution for visual
control, as 1) no extra transfer steps are required during the
expensive training of DRL agents in simulation; 2) the trained
DRL agents will not be constrained to being deployable in only
one specific real-world environment; 3) the policy training and
the transfer operations are decoupled, and can be conducted
in parallel. Besides this, we propose a simple yet effective shift
loss that is agnostic to the downstream task, to constrain the
consistency between subsequent frames which is important for
consistent policy outputs. We validate the shift loss for artistic style
transfer for videos and domain adaptation, and validate our visual
control approach in indoor and outdoor robotics experiments.

Index Terms—Deep Learning in Robotics and Automation,
Visual-Based Navigation, Model Learning for Control.

I. INTRODUCTION

P IONEERED by the Deep Q-network [1] and followed up
by various extensions and advancements [2]–[5], Deep

Reinforcement Learning (DRL) algorithms show great po-
tential in solving high-dimensional real-world robotics sen-
sory control tasks. However, DRL methods typically require
several millions of training samples, making them infeasible
to train directly on real robotic systems. As a result, DRL
algorithms are generally trained in simulated environments,
then transferred to and deployed in real scenes. However, the
reality gap, namely the noise pattern, texture, lighting condi-
tion discrepancies, etc., between synthetic renderings and real
sensory readings, imposes major challenges for generalising
the sensory control policies trained in simulation to reality.
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In this paper, we focus on visual control tasks, where
autonomous agents perceive the environment with their on-
board cameras, and execute commands based on the colour
image reading streams. A natural way and also the typical
choice in the recent literature on dealing with the reality gap
for visual control, is by increasing the visual fidelity of the
simulated images [6], [7], by matching the distribution of
synthetic images to that of the real ones [8], [9], and by
gradually adapting the learned features and representations
from the simulated domain to the real-world domain [10].
These sim-to-real methods, however, inevitably have to add
preprocessing steps for each individual training frame to the
already expensive learning pipeline of DRL policies; or a
policy training or finetuning phase has to be conducted for
each visually different real-world scene.

This paper attempts to tackle the reality gap in the visual
control domain from a novel perspective, with the aim of
adding minimal extra computational burden to the learning
pipeline. We cope with the reality gap only during the actual
deployment phase of agents in real-world scenarios, by adapt-
ing the real camera streams to the synthetic modality, so as
to translate the unfamiliar or unseen features of real images
back into the simulated style, which the agents have already
learned how to deal with during training in the simulation.

Compared to the sim-to-real methods bridging the reality
gap, our proposed real-to-sim approach, which we refer to
as the VR-Goggles, has several appealing properties: (1) Our
proposed method is highly lightweight: It does not add any
extra processing burden to the training phase of DRL policies;
and (2) Our approach is highly flexible and efficient: Since
we decouple the policy training and the adaptation operations,
the preparations for transferring the polices from simulation to
the real world can be conducted in parallel with the training
of the control policies. From each visually different real-
world environment that we expect to deploy the agent in, we
just need to collect several (typically on the order of 2000)
images, and train a VR-Goggles model for each of them. More
importantly, we do not need to retrain or finetune the visual
control policy for new environments.

As an additional contribution, we propose a new shift loss,
which enables generating consistent synthetic image streams
without imposing temporal constraints, and does not require
sequential training data. We show that shift loss is a promising
and cheap alternative to the constraints imposed by optical
flow, and demonstrate its effectiveness in artistic style transfer
for videos and domain adaptation.
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II. RELATED WORKS

A. Domain Adaptation

Visual domain adaptation, or image-to-image translation,
targets translating images from a source domain into a target
domain. We here focus on the most general unsupervised
methods that require minimal manual effort and are applicable
in robotics control tasks.

CycleGAN [11] introduced a cycle-consistent loss to enforce
an inverse mapping from the target domain to the source
domain on top of the source to target mapping. It does not
require paired data from the two domains of interest and shows
convincing results for relatively simple data distributions con-
taining few semantic types. However, in terms of translating
between more complex data distributions containing many
more semantic types, its results are not as satisfactory, in
that permutations of semantics often occur. Several works
investigate imposing semantic constraints [12], [13], e.g.,
CyCADA [12] enforces a matching between the semantic map
of the translated image and that of the input.

B. Domain Adaptation for Learning based Visual Control

Learning-based methods such as DRL and imitation learn-
ing have been applied to robotics control tasks including
manipulation and navigation. Below we review the recent
literature mainly considering the visual reality gap.

Bousmalis et al. [6] bridged the reality gap for manipulation
by adapting synthetic images to the realistic domain during
training, with a combination of image-level and feature-level
adaptation. Also following the sim-to-real direction, Stein et
al. [7] utilized CycleGAN to translate every synthetic frame to
the realistic style during training navigation policies. Although
effective, these approaches still add an adaptation step before
each training iteration, which can slow down the whole
learning pipeline.

The method of domain randomization [8], [9], [14] is pro-
posed to randomize the texture of objects, lighting conditions,
and camera positions during training, such that the learned
model could generalize naturally to real-world scenarios. How-
ever, such randomizing might not be efficiently realized by
some robotic simulators at a relatively low cost. Moreover,
there is no guarantee that these randomized simulations can
cover the visual modality of an arbitrary real-world scene.

Rusu et al. [10] deals with the reality gap by progressively
adapting the features and representations learned in simulation
to that of the realistic domain. This method, however, still
needs to go through a policy finetuning phase for each visually
different real-world scenario.

Apart from the approaches mentioned above, some works
chose special setups to circumvent the reality gap. For ex-
ample, 2D Lidar [15]–[17] and depth images [18], [19] are
sometimes chosen as the sensor modality, since the dis-
crepancies between the simulated domain and the real-world
domain for them can be smaller than those for colour images.
Zhu et al. [20] conducted real-world experiments with visual
inputs. However, in their setups, the real-world scene is highly
visually similar to the simulation, a condition that can be
relatively difficult to meet in practice.

Very related to our method is the work of Inoue et al. which
also adopts a real-to-sim direction [21]. They train VAEs to
perform the adaptation during deployment of the trained object
detection model in the real world. However, their method relies
on paired data between two domains and focuses on supervised
perception tasks.

In this paper, we mainly consider domain adaptation for
learning-based visual navigation. In terms of visual aspects, the
adaptation for navigation is quite challenging, since navigation
agents usually work in environments at relatively larger scales
compared to the relatively confined workspaces for manipu-
lators. We believe our proposed real-to-sim method could be
potentially adopted in other control domains.

An essential aspect of domain adaptation, within the context
of dealing with the reality gap is the consistency between
subsequent frames, which has not been considered in any of
the adaptation methods mentioned above. As an approach for
solving sequential decision making, the consistency between
the subsequent inputs for DRL agents can be critical for the
successful fulfilment of their final goals. Apart from solutions
for solving the reality gap, the general domain adaptation liter-
ature also lacks works considering sequential frames instead of
single frames. Therefore, we look to borrow techniques from
other fields that successfully extend single-frame algorithms to
the video domain, among which the most applicable methods
are from the artistic style transfer literature.

C. Artistic Style Transfer for Videos

Artistic style transfer is a technique for transferring the
artistic style of artworks to photographs [22]. Artistic style
transfer for videos works on video sequences instead of
individual frames, targeting generating temporally consistent
stylizations for sequential inputs. Ruder et al. [23] provides a
key observation that: a trained stylization network with a total
downsampling factor of K (e.g., K = 4 for a network with
2 convolutional layers of stride 2), is shift invariant to shifts
equal to the multiples of K pixels, but can output substantially
different stylizations otherwise. This undesired property (of
not being shift invariant) causes the output of the trained
network to change substantially for even very tiny changes
in the input, which leads to temporal inconsistency (under
the assumption that only relatively limited changes would
appear in subsequent input frames). However, their solution
of adding temporal constraints between generated subsequent
frames, is rather expensive, as it requires optical flow as input
during deployment. Huang et al. [24] offers a relatively cheap
solution, requiring the temporal constraint only during training
single-frame artistic style transfer. However, we suspect that
constraining optical flow on single frames is not well-defined.
We suspect that their improved temporal consistency is actu-
ally due to the inexplicitly imposed consistency constraints for
regional shifts by optical flow. We validate this suspicion in
our experiments (Sec. IV-A).

We propose that the fundamental problem causing the
inconsistency can be solved by an additional constraint of shift
loss, which we introduce in Sec. III-D. We show that the shift
loss constrains the consistency between generated subsequent
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Fig. 1: The VR-Goggles pipeline. We depict the computation of the losses LGANS , LcycR , LsemR and LshiftS . We present both
outdoor and indoor scenarios, where the adaptation for the outdoor scene is trained with the semantic loss Lsem (since its
simulated domain CARLA has ground truth semantic labels to train a segmentation network fS ), and the indoor one without
(since its simulated domain Gazebo does not provide semantic ground truth). The components marked in red are those involved
in the final deployment: a real sensor reading is captured (r ∼ preal), then passed through the generator GS to be translated
into the simulated domain S, where the DRL agents were originally trained; the translated image ŝ is then fed to the DRL
policy, which outputs control commands. For clarity, we skip the counterpart losses LGANR , LcycS , LsemS and LshiftR .

frames, without the need for the relatively expensive optical
flow constraint. We argue that for a network that has been
properly trained to learn a smooth function approximation,
small changes in the input should also result in small changes
in the output.

III. METHODS

A. Problem formulation

We consider visual data sources from two domains: S,
containing sequential frames {s0, s1, s2, · · · } (e.g., synthetic
images output from a simulator; s ∼ psim, where psim denotes
the simulated data distribution), and R, containing sequential
frames {r0, r1, r2, · · · } (e.g., real camera readings from the
onboard camera of a mobile robot; r ∼ preal, where preal
denotes the distribution of the real sensory readings). We
emphasize that, although we require our method to generate
consistent outputs for sequential inputs, we do not need the
training data to be sequential; we formalize it in this way only
because some of our baseline methods have this requirement.

DRL agents are typically trained in the simulated domain
S, and expected to execute in the real-world domain R. As we
have discussed, we choose to tackle this problem by translating
the images from R to S during deployment. In the following,
we introduce our approach for performing domain adaptation.
Also to cope with the sequential nature of the incoming data
streams, we introduce a shift loss technique for constraining
the consistency of the translated subsequent frames.

B. CycleGAN Loss

We first build on top of CycleGAN [11], which learns two
generative models to map between domains: GR : S → R,
with its discriminator DR, and GS : R → S, with its
discriminator DS , via training two GANs simultaneously:

LGANR(GR, DR;S,R) =Epreal [logDR(r)] +

Epsim [log(1−DR(GR(s)))] ,
LGANS (GS , DS ;R,S) =Epsim [logDS(s)] +

Epreal [log(1−DS(GS(r)))] ,

in which GR learns to generate images GR(s) matching those
from domain R, while GS translats r to domain S. We also
constrain mappings with the cycle consistency loss [11]:

LcycR(GS , GR;R) = Epreal [||GR(GS(r))− r||1] ,
LcycS (GR, GS ;S) = Epsim [||GS(GR(s))− s||1] .

C. Semantic Loss

Since our translation domains of interest are between syn-
thetic images and real-world sensor images, we take advantage
of the fact that many recent robotic simulators provide ground
truth semantic labels and add a semantic constraint inspired
by CyCADA [12]. (For simplicity in the following we use
CyCADA to refer to CycleGAN plus this semantic loss instead
of the full CyCADA approach [12]).

Assuming that for images from domain S, the ground truth
semantic labels Y are available, a semantic segmentation
network fS can be obtained by minimizing the cross-entropy
loss Es∼S [CrossEnt(Ys, fS(s))]. We further assume that the
ground truth semantic for domain R is lacking (which is
the case for most real scenarios), meaning that fR is not
easily obtainable. In this case, we use fS to generate ”semi”
semantic labels for domain R. Then semantically consistent
image translation can be achieved by minimizing the following
losses, which imposes consistency between the semantic maps
of the input and that of the generated output:

LsemR(GS ;R, fS) = Epreal [CrossEnt(fS(r), fS(GS(r)))].
LsemS (GR;S, fS) = Epsim [CrossEnt(fS(s), fS(GR(s)))],

D. Shift Loss for Consistent Generation

Different from the current literature of domain adaptation,
our model is additionally expected to output consistent images
for sequential inputs. Although with Lsem, the semantics of
the consecutive outputs are constrained, inconsistencies and
artifacts still occur quite often. Moreover, in cases where
ground truth semantics are unavailable from either domain,
the sequential outputs are even less constrained, which could
potentially lead to inconsistent policy outputs. Following the
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discussions in Sec. II-C, we introduce the shift loss to constrain
the consistency even in these situations.

For an input image s, we use s[x→i,y→j] to denote the result
of a shift operation: shifting s along the X axis by i pixels,
and j pixels along the Y axis. We sometimes omit y → 0 or
x→ 0 in the subscript if the image is only shifted along the X
or Y axis. According to [23], a trained stylization network is
shift invariant to shifts of multiples of K pixels (K represents
the total downsampling factor of the network), but can output
significantly different stylizations otherwise. This causes the
output of the trained network to change greatly for even very
small changes in the input. We thus propose to add a simple yet
direct and effective shift loss (u denotes uniform distribution):

LshiftR(GR;S) = Epsim, i,j∼u(1,K−1)[∣∣∣∣GR(s)[x→i,y→j] −GR(s[x→i,y→j])
∣∣∣∣2
2

]
,

LshiftS (GS ;R) = Epreal, i,j∼u(1,K−1)[∣∣∣∣GS(r)[x→i,y→j] −GS(r[x→i,y→j])
∣∣∣∣2
2

]
.

Shift loss constrains the shifted output to match the out-
put of the shifted input, regarding the shifts as image-scale
movements. Assuming that only limited regional movement
would appear in subsequent input frames, shift loss effectively
smoothes the mapping function for small regional movements,
restricting the changes in its outputs for subsequent inputs.
This can be regarded as a cheap alternative for imposing
consistency constraints on small movements, eliminating the
need for the optical flow information, which is crucial for
meeting the requirements of real-time robotics control.

E. Full Objective

Our full objective for learning VR-Goggles (Fig. 1) is (λcyc,
λsem and λshift are the loss weightings):

L(GR, GS , DR, DS ;S,R, fS)
= LGANR(GR, DR;S,R) + LGANS (GS , DS ;R,S)
+ λcyc

(
LcycR(GS , GR;R) + LcycS (GR, GS ;S)

)
+ λsem (LsemR(GS ;R, fR) + LsemS (GR;S, fS))
+ λshift (LshiftR(GR;S) + LshiftS (GS ;R)) .

This corresponds to solving the following optimization:

G∗R, G
∗
S = arg min

GR,GS
max

DR,DS
L(GR, GS , DR, DS).

IV. EXPERIMENTS

A. Validating Shift Loss: Artistic Style Transfer for Videos

To evaluate our method, we firstly conduct experiments for
artistic style transfer for videos, to validate the effectiveness
of shift loss on constraining consistency for sequential frames.
We collect a training dataset of 98 HD video footage se-
quences (from VIDEVO1 containing 2450 frames in total); the
Sintel [25] sequences are used for testing, as their ground-
truth optical flow is available. We compare the performance
of the models trained under the following setups: (1) FF

1http://www.videvo.net

[22]: Canonical feed forward style transfer trained on single
frames; (2) FF+flow [24]: FF trained on sequential images,
with optical flow added for imposing temporal constraints on
subsequent frames; (3) Ours: FF trained on single frames,
with an additional shift loss as discussed in Sec. III-D.

As a proof of concept, we begin our evaluation by compar-
ing the three setups on their ability to generate shift invariant
stylizations for shifted single frames. In particular, for each
image s in the testing dataset, we generate 4 more test images
by shifting the original image along the X axis by 1, 2, 3, 4
pixels respectively, and pass all 5 frames (s, s[x→1], s[x→2],
s[x→3], s[x→4]) through the trained network to examine the
consistency of the generated images. The results shown in
Fig. 2 validate the discussion from [23], since the stylizations
for s and s[x→4] from FF are almost identical (K = 4 for the
trained network), but differ substantially otherwise. FF-flow
improves the invariance by a limited amount; Ours is capable
of generating consistent stylizations for shifted inputs, with
the shift loss directly reducing the shift variance.

We then evaluate the consistency of stylized sequential
frames, computing the temporal loss [24] using the ground
truth optical flow for the Sintel sequences (Table I). Although
the temporal loss is part of the optimization objective of FF-
flow, and our method does not have access to any optical flow
information, Ours is still able to achieve lower temporal loss
with the shift loss constraint.

We further visualize the consistency comparison in Fig. 3,
where we show the temporal error maps, the same metric as
in [24], of two stylized consecutive frames for each method.
The error increases linearly as shown from black to white in
grayscale. Ours (bottom row) achieves the highest temporal
consistency. Further details about style transfer training and
the calculation of temporal error map are available in the
supplement file [26].

B. Quantitative Evaluation: Carla Benchmark

Secondly, we conduct a quantitative evaluation of our
proposed real-to-sim policy transfer pipeline. Since there are
no publicly available common benchmarks for real-world au-
tonomous driving evaluation, we test our pipeline in the Carla
simulator following its benchmark setup [27], [28]. We choose
the imitation learning pipeline because the reinforcement
learning policy in [27] performs substantially worse. In [27],
the expert datasets for Carla benchmark are collected under
4 different weather conditions (daytime, daytime after rain,
daytime hard rain and clear sunset), and the policy is tested on
benchmark tasks under cloudy daytime and soft rain at sunset.
Since the datasets under the testing benchmark conditions are
not available2 for us to conduct domain adaptation, we split
the provided training datasets into three training conditions
(daytime, daytime after rain, clear sunset) and one testing
condition (daytime hard rain) as shown in Fig. 4.

We present comparisons for both phases in the policy
transfer pipeline: policy training and domain adaptation.

For the policy training phase, we adopt the following
training regimes: (1) Single-Domain: We train one policy

2https://github.com/carla-simulator/imitation-learning
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Fig. 2: Shift-invariance evaluation, comparing between FF, FF+flow and Ours. We shift
an input image s along the X axis by 1, 2, 3, 4 pixels respectively and feed all 5 frames
through the networks trained via FF, FF+flow and Ours and show the generated stylizations.
We mark the most visible differences with small circles and dim the rest of the generated
images. As is discussed in [23], FF generates almost identical stylizations for s and s[x→4]

(because 4 is a multiple of the total downsampling factor of the trained network), but
those for s[x→1],s[x→2],s[x→3] differ significantly. FF+flow improves the shift-invariance,
but we suspect the improvement is due to the inexplicit consistency constraint on regional
shifts imposed by optical flow. Ours is able to generate shift-invariant stylizations with the
proposed shift loss.

FF FF+flow Ours

mosaic

0.152 0.130 0.127

0.119 0.093 0.086

0.132 0.110 0.108

0.127 0.104 0.098

0.115 0.089 0.083

0.124 0.095 0.087

0.122 0.096 0.090

0.113 0.091 0.089

0.113 0.085 0.078

0.125 0.099 0.092

ambush5

bamboo1

market6

temple2

sleeping2

shaman3

alley2

bamboo2

alley1

sleeping1

lamuse

0.154 0.131 0.130

0.123 0.097 0.090

0.135 0.112 0.112

0.138 0.108 0.107

0.121 0.100 0.092

0.132 0.106 0.094

0.129 0.104 0.094

0.114 0.090 0.091

0.127 0.096 0.083

0.132 0.102 0.101

ambush5

bamboo1

market6

temple2

sleeping2

shaman3

alley2

bamboo2

alley1

sleeping1

TABLE I: Comparing tempo-
ral loss between FF, FF+flow
and Ours. FF+flow directly op-
timizes on this metric, while op-
tical flow is never provided to
Ours; yet Ours achieves lower
temporal loss on the evaluated
Sintel sequences.

under each of the three training weather conditions; (2) Multi-
Domain: A policy is trained under a combined dataset contain-
ing all three training weather conditions. We note that since the
imitation policy is trained with datasets instead of interacting
with the simulation environment, the full approach of Domain
Randomization [8], [9] could not be directly applied, as it
requires to randomize the textures of each object, lighting
conditions and viewing angles of the rendered scenes. Thus
the Multi-Domain can be considered as a relatively limited
realization of the Domain Randomization approach in the
Carla benchmark dataset setup. As for the progressive nets
approach [10], it requires a finetuning phase of the policy in
the real world, which for autonomous driving means that we
need to deploy the trained policy onto a real car and finetune it
through rather expensive real-world interactions. Thus we do
not consider this approach in this evaluation. (An additional
comparison experiment with the progressive nets can be found
in the supplementary materials [26].)

For the domain adaptation phase, we compare the following
adaptation methods: (1) No-Goggles: Feed the testing data
directly to the trained policy; (2) CycleGAN [11]: Use Cycle-
GAN to translate the test data to the training domain before
feeding to policy nets and (3) Ours: Add shift loss on top of (2)

as VR-Goggles to translate the inputs. For both CycleGAN and
VR-Goggles, we train an adaptation network from the testing
weather condition to each of the three training conditions. (For
more details about the training of the policy and adaptation
models, please refer to the supplementary materials [26].)

The four benchmark tasks (Straight, One Turn, Navigation
and Nav. dynamic) are in order of increasing difficulty and
each of them consists of 25 different preset trajectories. Since
the Multi-Domain policy is trained with three weather condi-
tions instead of four as in the original setup [27] due to the
reason discussed earlier, directly deploying the Multi-Domain
policy fail to finish any of the two harder tasks under the
relatively extreme testing weather condition. For the different
adaptation strategies, our VR-Goggles outperforms CycleGAN
on almost all of the metrics, especially the two harder tasks
(Navigation and Nav. dynamic) in terms of both the success
rate and the average percentage of distance to goal traveled.
The average distance traveled between two infractions is re-
ported only for the hardest task [27]: navigating in the presence
of dynamic objects (Nav. dynamic). The adaptation models
of Ours enable the agents to drive safely with mostly lower
infraction frequencies compared with CycleGAN. CycleGAN
collides with pedestrians less often with the Multi-Domain
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Fig. 3: Temporal error maps between generated stylizations
for subsequent input frames. The error increases linearly as
shown from black to white in grayscale. 1st row: input frames;
2nd ∼ 4th row: temporal error maps (with the corresponding
stylizations shown on top) of outputs from FF, FF+flow, and
Ours. We here choose a very challenging style (mosaic) for
temporal consistency, as it contains many fine details, with
tiny tiles laid over the original image in the final stylizations.
Yet, Ours achieves very high consistency.

policy. A probable explanation is that most episodes under this
setup end due to collision with cars and static obstacles, so
there does not occur too many challenging pedestrian condi-
tions. For example, for direct deployment without adaptation
(No-Goggles), the average distance between collisions with
pedestrians is higher than 4.6 km, because the total navigation
distance for all 25 episodes in this task is only 4.6 km which
is too short to encounter pedestrians.

We note that the transfer pipelines of Single-Domain poli-
cies behave much better than directly deploying the Multi-

(a) daytime (b) daytime after rain

(c) clear sunset (d) daytime hard rain

Fig. 4: Carla weather conditions used in benchmarking: three
training conditions (a), (b), (c) and one testing condition (d).

Domain policy, and the training time of the former policy is
also much shorter than that of the latter [26].

C. Real-world Indoor & Outdoor Navigation

Finally, we conduct real-world robotics experiments for
both indoor and outdoor visual navigation tasks. We begin
by training learning-based visual navigation policies, tak-
ing simulated first-person-view images as inputs, outputting
moving commands for specific navigation targets. Then, we
deploy the trained policy onto real robots, comparing the
following domain adaptation approaches: (1) No-Goggles:
Feed the sensor readings directly to the trained policy; (2) Cy-
cleGAN/CyCADA [11], [12]: Use CycleGAN (when semantic
ground truth is not available) / CyCADA (when ground truth
semantic maps are provided by the simulator) to translate the
real sensory inputs to the synthetic domain before feeding to
the policy nets; (3) Ours: Add shift loss on top of (2) as the
VR-Goggles.

For indoor office experiments, we build an office environ-
ment in Gazebo [29] and render s ∼ psim from this simulation
environment (Fig. 6a). We capture r ∼ preal from a real
office (Fig. 6b) using a RealSense R200 camera mounted on
a Turtlebot3 Waffle. For conducting the domain adaptation,

Training Testing
Single-
Domain

Multi-
Domain

Single-Domain Multi-Domain
No-Gog. CycleGAN VR-Gog. No-Gog. CycleGAN VR-Gog.

Success rate
(%)

Straight 81.3 97.3 13.3 93.3 90.7 64.0 96.0 100
One turn 64.0 85.3 1.3 54.7 54.7 36.0 61.3 76.0
Navigation 60.0 84.0 0.0 21.3 45.3 0.0 42.7 61.3
Nav. dynamic 58.7 74.7 0.0 21.3 32.0 0.0 34.7 56.0

Ave. distance
to goal
travelled
(%)

Straight 89.7 96.5 37.8 95.8 94.7 83.6 95.9 98.3
One turn 73.6 71.1 18.4 36.3 48.4 24.7 52.0 71.3
Navigation 68.6 88.8 7.3 36.7 51.0 7.4 60.8 73.1
Nav. dynamic 68.2 80.7 5.0 32.6 51.3 5.2 55.7 72.2

Ave. distance
travelled between
two infractions
in Nav. dynamic
(km)

Opposite lane 2.83 2.55 0.23 0.77 0.72 0.26 0.83 2.22
Sidewalk 6.47 9.70 0.21 1.15 2.62 0.38 1.29 2.46
Collision-static 2.38 3.03 0.14 0.52 0.87 0.16 0.77 1.26
Collision-car 2.06 1.03 0.29 1.01 1.40 0.27 0.59 0.77
Collision-pedestrian 15.10 16.17 2.17 4.03 6.98 >4.60 7.29 4.67

TABLE II: Quantitative evaluation of goal-directed Carla navigation benchmark tasks [27]. We train imitation policies under
single weather condition (Single-Domain) and three training weather conditions (Multi-Domain). Policies are evaluated in
testing weather condition through direct deploying (No-Goggles), translating the input image through CycleGAN and through
VR-Goggles (for transferring the Multi-Domain policy with CycleGAN and VR-Goggles we train one adaptation network from
the testing weather condition to each of the three training weather conditions and report the average results under those three
adaptations). Higher is better.
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Fig. 5: Real-world visual control experiments. Indoor (yellow):. A navigation policy is firstly trained in a simulated environment
(Fig. 6a) that is able to navigate to chairs based on visual inputs. Without retraining or finetuning, our proposed VR-Goggles
enables the mobile robot to directly deploy this policy in a real office environment (Fig. 6b), achieving 100% success rate in a
set of real-world experiments. Here Miss refers to test runs where the agent stays put or rotate in place and simply ignores the
chair even when they are in sight as the policy trained in the simulation could not cope with the drastically visually different
inputs (No-Goggles), or due to the inconsistency of the translated subsequent outputs which hinders the successful fulfilment
of the goal-reaching task (CycleGAN). Hit refers to frames where the agent captures the chair in sight and outputs commands
to move towards it. Outdoor (cyan): An autonomous driving policy (via conditional imitation learning [28]) is trained in Carla
daytime (Fig. 6c), a VR-Goggles model is trained to translate between Carla daytime and Robotcar nighttime (Fig. 6d), which
enables the real-world nighttime deployment of the trained policy.

(a) simulated indoor (b) real indoor

(c) simulated outdoor (d) real outdoor

Fig. 6: Samples from the simulated environment (left) and
the real world (right) used in our indoor (top) and outdoor
(bottom) navigation experiments.

as the simulator (Gazebo) does not provide ground truth
semantics, we drop the semantic constraint Lsem. The input
images are of size 640 × 360 and the adaptation network
is trained with 256 × 256 crops. We use the same network
architecture as in CycleGAN, and train for 50 epochs with a
learning rate of 2e − 4 as we observe no performance gain
training for longer iterations.

We train the navigation policy using Canonical A3C with 8
parallel workers [2] in Gazebo, and deploy the trained policy
onto Turtlebot3 Waffle and compare the three domain adap-
tation approaches (Fig. 5). Without domain adaptation, No-
Goggles fails completely in the real-world tasks; our proposed
VR-Goggles achieves the highest success rate (0%, 60% and
100% for No-Goggles, CycleGAN and Ours respectively) due
to the quality and consistency of the translated streams. The

control cycle runs in real-time at 13Hz on a Nvidia TX2.
Finally, we conduct outdoor autonomous driving experi-

ments (we sample s ∼ psim from the Carla daytime [27]
environment Fig. 6c and sample r ∼ preal from a nighttime
dataset of Robotcar [30] Fig. 6d) with input images of
size 640 × 400. Considering that VR-Goggles outperforms
CycleGAN in indoor experiments, and since outdoor robotics
experiments are relateively expensive, we only compare No-
Goggles and VR-Goggles in the outdoor autonomous driving
scenario. We take the driving policy trained through condi-
tional imitation learning [28] as in Section IV-B. This policy
takes as inputs the first person view RGB image and a high-
level command, which falls in a discrete action space and is
generated through a global planner (straight, left, right, follow,
none). In our real-world experiments, this high-level direction
command is set as straight, indicating the vehicle (a Bulldog
with a PointGrey Blackfly camera mounted on it) to always go
along the road. The control policy outputs the steering angle.

The control policy is trained purely in Carla simulated
daytime, while it is tested in a nighttime town street scene (Fig.
5). It is non-trivial to quantitatively evaluate the control policy
in the real world, so we show two representative sequences
marked with the output steering commands. The top row of
each sequence shows the continuous outputs of No-Goggles.
Due to the huge difference between the real nighttime and the
simulated daytime, the vehicle failed to move along the road.
Our VR-Goggles, however, successfully guides the vehicle
along the road as instructed by the global planner (the policy
prefers to turn right since it is trained in a right-driving
environment) 3.

3A video demonstrating our approach and much more experimental re-
sults are available at https://sites.google.com/view/zhang-tai-19ral-vrg/home,
where we also show that the VR-Goggles can easily train a new model for a
new type of chair without finetuning the indoor control policy.

https://sites.google.com/view/zhang-tai-19ral-vrg/home
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V. CONCLUSIONS

In this paper, we tackle the reality gap occurring when
deploying learning-based visual control policies trained in
simulation to the real world, by translating the real images
back to the synthetic domain during deployment. Due to the
sequential nature of the incoming sensor streams for control
tasks, we propose shift loss to increase the consistency of the
translated subsequent frames, and validate it both in artistic
style transfer for videos and domain adaptation. We verify our
proposed VR-Goggles pipeline as a lightweight, flexible and
efficient solution for visual control through Carla benchmark
as well as a set of real-world robotics experiments. It would
be interesting to apply our method to manipulation, as this
paper has been mainly focused on navigation. Also, evaluat-
ing our method in more challenging environments on more
sophisticated control tasks could be another future direction.
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