
Publications of the DLR elibelibelib

This is the author's copy of the publication as archived with the DLR's electronic library at http://elib.dlr.de. Please
consult the original publication for citation.

Autonomous Parallelization of Resource-Aware Robotic Task
Nodes

Sebastian Georg Brunner; Andreas Dömel; Peter Lehner; Michael Beetz; Freek Stulp

Keywords: Software, Middleware and Programming Environments; Autonomous Agents; Mobile Manipulation; Planning,

Scheduling and Coordination; Agent-Based Systems

Copyright Notice

c 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Citation Notice

@Article{brunner2019autonomous,

author = {Sebastian Georg Brunner and Andreas D{\"o}mel and Peter Lehner and Michael Beetz and Freek Stulp},

title = {Autonomous Parallelization of Resource-Aware Robotic Task Nodes},

journal = {IEEE Robotics and Automation Letters},

year = {2019},

volume = {4},

number = {3},

pages = {2599-2606},

month = {July},

issn = {2377-3766},

doi = {10.1109/LRA.2019.2894463},

keywords = {Software, Middleware and Programming Environments; Autonomous Agents; Mobile Manipulation; Planning, Scheduling and Coordination; Agent-Based Systems},

url = {https://ieeexplore.ieee.org/document/8620533},

}

Autonomous Parallelization of Resource-Aware Robotic Task Nodes

Sebastian G. Brunner1, Andreas Dömel1, Peter Lehner1, Michael Beetz2, and Freek Stulp1

Abstract— Robot task programming often leads to inefficient
plans, as opportunities for parallelization and precomputation
are usually not exploited by the programmer. This inefficiency
is often especially obvious in mobile manipulation, where path
planning and pose estimation algorithms are time-consuming
operations. In this paper, we introduce the concept of Resource-
Aware Task Nodes (RATNs), a powerful descriptive action
model for robots. Next, we propose an algorithm that executes
so-called Concurrent Dataflow Task Networks (CDTNs), robot
plans consisting of RATNs. It optimizes programmed plans
based on two sources of information: 1) The control flow repre-
sented in the original task plan, whose constraints are relaxed to
generate opportunities for parallelization and precomputation.
2) Dependencies between actions pertaining to resources, data
flows and world model changes, the latter being equivalent to
preconditions and effects. CDTNs have been integrated in our
open-source task programming framework RAFCON, and we
show that it leads to 11-29% improvement in terms of execution
time in two simulated mobile manipulation scenarios.

I. INTRODUCTION

Programming robots that require prolonged phases of
autonomy to solve tasks is still very challenging. Robot
task programming frameworks facilitate this process, for
instance by offering graphical design tools [1, 2]. As such,
these frameworks are important components in the Industrie
4.0 initiative for more flexible production [3]. However, in
practice, the execution of such programs is often slow due
to high software run-times. We identify two reasons for this.

First, path planning and object pose estimation are usually
computationally intensive operations, and only by applying
probabilistic and/or learning-based algorithms can sound
solutions be found at all. This holds in particular for mobile
manipulation, which requires many calls to such expensive
operations for perception, navigation, and planning.

Second, actions are often programmed only sequentially,
and opportunities for parallelization and precomputation are
not exploited. In our experience, users often program a task
solution that works in principle, but in the space of all
possible task solutions, is hardly ever the most efficient one.

See for instance the mobile manipulation use case in
Fig. 1, where the task is to navigate to a table, and pick up
two objects on it. Here, both objects could be detected before
manipulating them, rather than detecting the second after
the first has been manipulated, and several path plans could
be precomputed simultaneously in parallel before executing
them, rather than waiting until they are needed.

1 German Aerospace Center (DLR), Robotics and Mechatronics Center
(RMC), Münchner Str. 20, Wessling, Germany.

2 University of Bremen, Institute for Artificial Intelligence (IAI), Biblio-
thekstr. 1, Bremen, Germany.

Fig. 1. An exemplary hierarchical state machine (HSM) representation
for a mobile manipulation task, in which two objects are manipulated. The
scientific question of this work: How can we exploit opportunities for paral-
lelization and precomputation in such overconstrained task descriptions? To
do so we propose a conversion of the HSM to a Concurrent Dataflow Task
Network (CDTN), whose execution is monitored by a resource manager
which, amongst others, manages pools of processes.

We argue that the optimization of programmed tasks
should be automated, rather than leaving it as a tedious task
for the user. Therefore, this paper addresses the following
question: How can we leverage the knowledge and respect
the constraints encoded in programmed task descriptions,
whilst still automatically determining opportunities for paral-
lel execution, and the precomputation and caching of results?

A second aspect of the example worth highlighting is
that all actions are required to solve the task, but not all
of them affect the environment state (i.e. the state of the
real world). For instance, computing a path with a path
planner does not affect the objects in the environment, but
this computation is necessary before the arm can be moved
to follow this path. In this paper, we propose resource-aware
task nodes, which extend robot actions with dependencies,
which represent robot-specific constraints on the ordering of
actions that do not affect the environment state.

The main contributions of this paper, which also define
its structure, are: Section III: Generalizing and extending the
concept of pre- and post-conditions so that they can represent
data flows and resources, which is highly relevant for the
execution of plans on real robots. Section IV: Proposing a
formalism for converting states in hierarchical state machines
(HSMs) into resource-aware task nodes, which extend the
states in a HSM with dependencies. Section V: Introducing
a resource-aware algorithm that is automatically able to
find opportunities for the parallel execution of task nodes
and the pre-computation and caching computations, whilst
respecting the defined dependencies between the task nodes.

Fig. 2. Screenshot of the Hierarchical State Machine (HSM) in Fig. 1 as implemented in RAFCON. The inset highlights that not only state transitions
are defined (white connections labeled success), but also data flows (yellow connections labeled grasp, approach pose, trajectory, etc).

Section VII: Demonstrating how the above leads to 11-29%
faster execution times on mobile manipulation tasks.

II. RELATED WORK

Our work falls into the area of transformational plan-
ning [4], which modifies existing plans – regardless if they
have been planned or manually designed – in order to
meet different constraints. Transforming a plan in order to
reduce the number or probability of errors is the goal of
GORDIUS [5], HACKER [6] and CHEF [7]. As in our
work, these approaches are able to integrate plan revisions
into a partly executed plan, which is necessary to react
to exogenous events and to avoid long planning pauses
during execution. Moreover, our work is related to the
criticize/revise cycle of XFRM [4], the main difference being
that our focus is to make the execution of plans more
efficient rather than robust. The projection of action effects
and the creation of different versions of possible future world
states is very similar. On top of the concepts of Concurrent
Reactive Plans [4] we provide a powerful resource model,
a semantically more distinctive action definition and proper
concepts for dataflow modeling.

Concerning highly parallel execution approaches, the con-
cepts of automatic parallelization in e.g. compiler construc-
tion [8], dataflow programming [9], software pipelining [10],
and speculative multi-threading in the context of processor
development [11] are relevant. Our approach shares with
these methods the aim to execute operations in parallel and/or
in advance as much as possible. To the best of our knowl-
edge, such parallelization and precomputation approaches
have not yet been applied to make the task control of
robotic systems more efficient, especially in combination
with graphically programmed tasks.

Finally, the distribution of executable actions to available
resources poses many open scheduling challenges [14], e.g.
scheduling under complex constraints, managing change dur-
ing execution runtime, and the advantages and disadvantages
between self-scheduling systems and central schedulers.

The concepts presented in this paper are kept as general
as possible. Our implementation of these concepts builds

strongly on the open-source1 tool RAFCON [2]. RAFCON
models tasks as hierarchical finite state machines (HSMs),
adds functionality for explicit modeling of data flows, and
enables concurrent execution of states (similar to [15] for
behavior trees). Although the original extended state machine
formalism is called HPFDs (hierarchical, parallel, finite state
machine with data flows), we will – for sake of brevity – refer
to them simply as HSMs in the rest of this paper. Child nodes
at the bottom of the hierarchy are called Execution States,
because they execute a python snippet. All other states define
the control flow of the task.

III. DEPENDENCY MODEL

Graphically programmed HSMs, as illustrated in Fig. 1
and 2 are often overconstrained, and do not exploit op-
portunities for parallelization. The most extreme approach
to automate such parallelization would be to attempt to
execute all Execution States in the HSM in parallel. In almost
all cases, this will either violate the logical control flow
represented in the HSM, or violate data flow and/or resources
dependencies. In this section, we present how such depen-
dencies are modeled Section IV will then focus on mapping
the control flow represented in the HSM to resource-aware
task nodes with which opportunities for parallelization can
be exploited.

We model three types of dependencies2: Data dependen-
cies, where an action requires some data structure to be
computed before it can be executed. Resource dependen-
cies, where a resource must be available before an action
can be executed. Worldmodel dependencies, where certain
conditions in the world state must hold before the action can
be executed. Worldmodel dependencies are equivalent to pre-
and post-conditions in symbolic plans, so we present them
first.

A. World Model Dependencies

World model dependencies represent action precondi-
tions, whereby actions may only be executed if certain
facts in the world state hold, as in the Planning Domain

1https://github.com/DLR-RM/RAFCON
2A condition dependency is a fourth (special) case, which will be

presented in Section IV-B.4.

Fig. 3. Exemplary dependency graph for the mobile manipulation task shown in Fig. 1. Different colors model different kinds of dependencies between the
actions. Since there are very many resource dependencies, only two exemplary dependencies have been plotted. Condition dependencies and the resource
manager will be explained in Section V.

Definition Language (PDDL) [16].3 Formally, we define
world model dependencies as parametrized predicates, which
are grounded in ontologies (for information on how we
use ontologies in RAFCON we refer to [12]). For in-
stance, the action grasp ob ject(o) can only be called if
the fact manipulator at approach position o f ob ject(o) is
True. As can be seen in this example world model facts
can be bound to specific objects. Action effects, on the
other hand, add, modify or delete facts of the world model
and thus satisfy the preconditions of other actions. For
information about how we implemented them, see Fig. 8
in the implementation section.

B. Data Dependencies

In robotic task planning, data, signals and events are often
modeled in a global variable structure [4]. Dataflow modeling
ensures that data interfaces between processing nodes are
consistent. Furthermore, as in our case, the concept strongly
facilitates parallelization possibilities. In terms of debugging,
this leads to a clear data dependency overview for the whole
system. Another advantage is the ability to modularize and
reuse functionality [17].

A data dependency represents a necessary datum for an
internal computation, but it does not influence the world
model for the robot itself. Thus, we model data dependencies
as data flows of HSMs. They are formally defined as a
quadruple: (source action, source data port, target action,
target data port) (see [2]). Additionally, they are associated
with a defined data type.

The main reason for employing data dependencies in
CDTNs is to enable easy projection of action effects and
finally the pre-calculation of intermediate task data. This
requires a fine-grained modeling, and a separation of the
logical structure of actions from the dataflow dependencies
between them. As shown in Fig. 2 and 8, data flows are rep-
resented as connections between states, and are graphically
created and editable in RAFCON.

3We use “world model” as synonym for “world state”. Both describe the
robot’s model of the real world it acts it. To refer to the state of the real
world we use “environment state”.

C. Resource Dependencies

Planning for robots must take into account the resources
that are available to a robot: Is there a processor free to
compute a motion plan? Is the planning process running, or
has it crashed upon startup? Do I have enough battery power?
Is an accurate world model currently available, and is it up-
to-date? Such questions are usually not taken into account
in planning and scheduling algorithms, but are essential to
achieving robustness and autonomy in robotics [18, 4].

The resource manager, presented in detail in Section V-
B, is a component which administrates all resources in a
resource pool. As a concrete example, if the action Path
Plan depends on the path planner process to be running but
it has crashed, the resource manager will signal the process
manager to create this resource by re-starting the process.

In our resource model, there are five classes of resources:
system, process, module, world and task resources. System
resources are created by hardware interfaces (e.g. by moni-
toring the the battery power), process resources by a process
manager (e.g. if the object detection process is running),
module resources by the modules themselves (e.g. the inter-
nal module state of the navigation module is ‘unlocalized’),
world model resources by the world model pool (i.e. copies
of the root world model) and finally task resources by the task
control module (e.g. two blue boxes are already delivered).
Task resources help to track the progress of the final goal
(e.g. if several blue boxes have to be delivered).

Thus, hardware and software resources can be represented
in the same model. Almost any component can be modeled
as a resource, independent of if it is a software process (e.g.
a constraint geometric motion planer), a semantic resource
(two objects left to deliver) or e.g. the whole robot (what
also makes the model attractive for multi-robot scenarios).

Formally, we define resource dependencies, such as world
model dependencies, as parametrized predicates grounded
inside an ontology (see [12]). In practice, we model resource
dependencies in our Semantic Data Editor, shown in Fig. 8.

D. Use Case as a Dependency Graph

A CDTN is created by converting all actions of a HSM
into task nodes and by defining dependencies between those
task nodes (see Section IV). During CDTN execution,
we generate a dependency graph (see Fig. 3), in which

the nodes are task nodes, and the edges are task node
dependencies. Generating this graph happens in two steps.
First, the Condition and Iterator nodes of the CDTN are
expanded (see Section IV-B). Then all dependencies of the
original and newly created task nodes are inserted as edges
into the dependency tree.

Note that several actions are no longer constrained to
be executed sequentially (e.g. the path planning actions P-
MA1, P-MT1, P-R1), as was the case in the HSM in Fig. 1.
Therefore, they can be executed in parallel on different
processors. In Section V, we present an algorithm that is able
to exploit these potential parallelizations, without violating
any of the dependencies.

IV. FROM HIERARCHICAL STATE MACHINES TO
CONCURRENT DATAFLOW TASK NETWORKS

A CDTN is defined as set of task nodes with world model,
data, resource and condition dependencies. As illustrated in
Fig. 4, a task node extends a HSM state.

Fig. 4. Overview of the components of resource-aware task nodes

A. Resource Aware Task Node Definition

Resource-Aware Task Nodes (or simply task nodes) are
states of the HSM formalization (HPFD to be precise, see
Section II) with an additional set of properties (see Fig. 4). A
task node may have different dependencies associated with
it. The dependency type can be: data, resource, world model
and condition (see Section III). Apart from the HSM state
type such as hierarchy or concurrency, task nodes can have
an explicit control flow type, which can either be condition,
loop or routine (for their use we refer to the CDTN algorithm
V). A task node is not necessarily one HSM state, but can
contain several HSM states and other task nodes, which are
then called child task nodes. This is achieved by using the
hierarchy concept of HSMs. Only condition, loop and child
task nodes of routines can have transitions, as defined in
HSMs. No transitions are allowed otherwise.

B. Converting HSM to CDTN control flow

Each control flow element inside a HSM must be con-
verted into a corresponding set of Resource-aware Task
Nodes, which together form a CDTN. Control flow elements
in the HSM often overconstrain the order of the execution of
the task nodes. Whilst translating them into a CDTN, most
of these constraints are dropped to enable parallelization.
Which parallelizations are actually possible in practice given

the dependencies is determined during the run-time execution
of a CDTN in Section V.

The HSM control flow elements and their conversion to a
CDTN are illustrated in Fig. 5, and now explained in detail.

Fig. 5. Basic control flow building blocks in the HSM (left of the arrow)
and the corresponding CDTN representation (right of the arrow). Only for-
loops are shown; do-while and while-do loops can be rolled out analogously
Nodes marked with Px are PIAs (see IV-B.4), nodes marked with ROU (see
IV-B.2) are routines and nodes marked with CON are conditions (see IV-
B.4).

1) Sequences and Concurrencies: All the Execution
States in a sequence are Task Nodes. This means that,
in principle, they can be executed in parallel. In practice,
this may not be the case due to dependencies (including
preconditions); the algorithm explained in Section V ensures
that no dependencies are violated during execution. If con-
currencies are defined in the HSM, they are treated the same
as sequences.

2) Routines (ROU): The user can define a task node to
be a Routine. This indicates that the child states in that
task node should never be executed in parallel, as they are
tightly coupled. Routines are treated differently from other
task nodes in the execution algorithm in Section V.

3) Hierarchies: Hierarchies are only used by the program-
mer to define abstraction layers in CDTNs. Before execution
the hierarchies are removed and all child nodes are executed
in parallel (as long as no dependencies constrain the nodes
in another way). All dependencies defined for hierarchies
are copied to the child nodes i.e. the child nodes inherit all
dependencies from their parents.

4) Conditions (CON) and Condition Dependencies: Con-
dition dependencies are used to model conditions in a CDTN,
i.e. two mutually exclusive branches of execution. Before a
condition is reached, idle processing power can be used to
precompute results required in both of the branches. Upon
execution, results are then discarded for branches that are
not reached. In many cases, this is more efficient (from the
point of view of execution time, not computational time) than
waiting until it is known which branch will be entered.

Fig. 3 shows an example condition dependency. The Ob-
ject Found task node, which is a condition node, is connected
to subsequent task nodes with condition dependencies (black
arrows). If the detection did not find the target object, the
sensor head moves and records a new image. Otherwise
the condition dependency to the planning task node is
satisfied, which can then generate a collision free path for
the manipulator.

When parallelizing states with condition dependencies,
care must be taken to not execute task nodes that cannot be
undone. It is easy to undo the pre-computation of a result,
i.e. it can be disparagingly discarded from memory, and
an outside observer would not notice. But grasping a cup
changes the robot’s environment state, and can potentially
fail. We call such task nodes Potentially Irreversible Action
(PIA). As they cannot be undone, PIAs should only be
executed if they are in a branch that is actually executed.
This is implemented by automatically adding a condition
dependency from a PIA to all its parental task nodes, as
illustrated in Fig. 5.

5) Loops: Loops, such as for, do-while and while-do
loops are rolled out, whereby each iteration becomes a Task
Node. If dependencies allow it, the different iterations of
the loop can thus be executed in parallel. As for conditions,
the unrolling is not performed for the whole robotic task, as
they often consist of several thousand task nodes [12] and the
computational overhead to do this for every possible logical
branch would be too high. Therefore, a task horizon number
limits the maximum possible length of each logical branch.

V. CDTN EXECUTION ALGORITHM

So far, we have “dissolved” the rigid, overconstrained
structure of the HSM into a set of resource-aware task
nodes (along with their dependencies) that represent the
same task. In this section, we present an algorithm for
executing these task nodes. It is able to exploit parallelization
and pre-computation opportunities, but also ensures that all
dependencies are met.

The inputs for the algorithm are: a CDTN (which can
either be auto-generated or manually created) and an initial
world model. The CDTN can, assuming the initial world
model having a certain structure, reach a goal using the plan
encoded inside its task nodes. The goal is explicitly encoded
as effects of the task nodes of the plan.

At the beginning of the main function the CDTN and the
initial world model are loaded. In line 3 a separate thread is
started, which calls the handle task node termination func-
tion. The following while loop is the main part of the main

1: function MAIN
2: load cdtn and world()
3: do in separate thread(handle termination())
4: while ¬task f inished do
5: dep graph← generate dependency graph()
6: execs← extract executable task nodes(dep graph)
7: for all task node t in execs do
8: do in separate thread(execute task node(t))
9: end for

10: end while
11: end function
12:
13: function EXECUTE TASK NODE(t)
14: request resources o f task node(t)
15: if is loop(t) then
16: roll out loop(t)
17: else if is routine(t) then
18: execute with de f ault execution algorithm(t)
19: else if is PIA(t) then
20: execute PIA(t)
21: else
22: execute task node(t)
23: end if
24: end function
25:
26: function HANDLE TASK NODE TERMINATION
27: while ¬task f inished() do
28: t← wait f or next task node to f inish()
29: f orward data o f task node(t)
30: propagate e f f ects o f task node(t)
31: release and create resources o f task node(t)
32: if condition task node(t) then
33: enable PIAs o f branch(get active branch(t))
34: end if
35: end while
36: end function

Fig. 6. The CDTN execution algorithm in pseudo code.

function. The loop is executed until the whole CDTN is
executed. Inside the loop, the current dependency graph (see
Fig. 3) is calculated before all executable task nodes are
extracted thereafter and finally started in their own thread. A
task node is executable if all its dependencies are satisfied.

The execute task node function defines how task nodes are
executed. In line 14 all resources of the target task node t are
requested (and either blocked or consumed). If t requires a
resource of type world model, then a dedicated world model
has to be prepared by means of world model projection (see
subsection V-A). If the task node is a loop state the loop
is unrolled. This means that for each loop iteration the loop
body is copied, all input data of the loop is copied as well
and distributed to each iteration (for more information about
loop unrolling see IV-B). If the task node has the control
flow type routine, then the task node is executed with the
default HSM execution algorithm [2]. Therefore, transitions
inside routines are allowed (see Section IV-A). If the task
node is potentially irreversible, then a dedicated function to
execute the PIA is triggered. A PIA may never be executed
before all condition dependencies are satisfied. All other task
nodes are just executed as if they were simple HSM states.

The last function handle task node termination defined in
line 26 was triggered in the main function inside a separate
thread. Until the CDTN is not executed it waits for the next
task node t to be finished, forwards its data outputs to the
other states and propagates the task node effects into the
world model. A task node has been executed (terminated) if

all its child nodes have been executed. The CDTN releases
all resources of the terminated task node and creates all
resources defined in t. If t is a condition, the CDTN enables
all PIAs in the branch that was chosen during execution.

A. World Model Projection

During execution, a pool of world models is maintained.
One world model represents the robot’s current belief about
the actual state of the robot’s environment. The other world
models are copies, which are used to project the effects of
task nodes into the future. They represent possible future
states arising from the execution of task nodes.

The world model is a set of facts, as in PDDL [16].
As shown in Fig. 7, world models are also resources and
are managed in the world model pool. The initial world
model is classified as the root world model. The root world
model is always the model of the robot’s real environment,
that resembles it as close as possible. All task nodes which
modify the world model are called world model task nodes.

Many task nodes require a world model as a resource e.g. a
path planning node needs the geometric representation of the
world state to plan a collision free path to some goal pose.
If a task node t requires a world model, a copy of the root
world model is created and all intermediate world model task
nodes are executed on the world model copy. Intermediate
nodes are all nodes, which are on the path from t to the last
executed PIA inside the dependency graph. This implies that
all future events that would affect the world state before t is
executed are applied to the world model copy. The modified
world model copy is then passed to t. This is called the world
model projection of resource dependency satisfaction.

B. Resource Manager

A resource manager holds all resources of the robotic
system, and manages which of them are available. It cares
about concurrent resource requests and resource assignments
to task nodes. The following operations are defined on
resources:
• create: adds a new resource to the resource pool
• consume: consumes a resource for the rest of the task
• delete: deletes a resource
• block: blocks a resource for a certain amount of time;

if a resource is blocked no other task node has access
• release: unblocks a resource
• exists: asks for the existence of a resource

C. Process Pools

Process Pools are used to manage several software pro-
cesses of the same type. They consist of a set of identical
processes that only differ by their configuration and allocated
task, and are maintained by a process manager. To get a new
process of a certain type, the process manager can be asked to
create a new process by providing some specifications for the
process. The manager adds the newly created process to the
pool and returns a handle to the process. In Fig. 7 an example
of two process pools are shown: one pool for path planning
processes and one pool for object detector processes. Being

Fig. 7. Overview of different resource classes and their relationships: The
‘Resource Manager’ in the middle holds all resources, which are created
and forwarded to the ‘Resource Manager’ by the ‘Process Manager’, the
modules administrated by the ‘Process Manager’, the ‘World Model Pool’
and the ‘Task Control’ module.

able to spawn arbitrary many processes of each type is a key
aspect of executing a CDTN.

VI. IMPLEMENTATION

We implemented CDTNs in the task control framework
RAFCON [2] (see Fig. 8).

Fig. 8. Implementation of all dependency types in RAFCON. The
top image shows a screenshot of RAFCON. Data flows (yellow arrows)
represent the data dependencies e.g. the “move to approach pose” task node
needs a valid trajectory before it can move the arm. The Semantic Data
Editor of RAFCON is used to implement world model (red) and resource
(blue) dependencies.

The ontology plugin already presented in [12] was used
and extended to enhance each state with semantic annotations
to make a resource-aware task node out of each state.
Resource and world model dependencies are held as strings
inside python dictionaries and stored as key-value pairs on
disk (json). For data dependencies the data flow information
is directly used. The default execution engine was replaced
via the plugin concept [2] with the CDTN execution engine
described in Section V. The visualization was enhanced to
highlight task nodes that are currently waiting for resources.

For the world model we use the graph-database based ap-
proach presented in [19]. Finally, the logging mechanism of
RAFCON was extended to generate Gantt charts for CDTNs
and to analyze task executions.

VII. EXPERIMENTAL EVALUATION

The following application scenario is based on the abstract
example use case introduced in Section I. It demonstrates the
efficiency benefit of CDTNs in a constraint object manipu-
lation task of our Advanced Industrial Mobile Manipulator
(AIMM [20]) running in a Gazebo [21] simulator. AIMM
consists of a mobile base, a 7-DOF LWR with a two finger
gripper, a pan-tilt unit, four cameras and two laser scanners.
Fig. 9 shows our robot during object manipulation.

Fig. 9. The AIMM platform in the Gazebo simulation environment with
transparent objects in order to visualize frames and contacts.

For simulation we use a setup with three computers.
One computer hosts the Gazebo simulator with the robot
controllers and sensor data providers. The second computer
runs the ROS navigation stack, the path planner process
pool with several instances, the world model pool with at
least the same number of instances as the path planners, the
object detection process pool and several interfacing nodes.
For world modeling we use the knowledge representation
based on graph databases [19]. The third computer runs
RAFCON as the task control framework, together with
Rviz and a Gazebo client for visualization and debugging.
Links and Nodes Manager [22] controls the distribution and
management of all processes.

The goal of the task is to pick up a different amount of
boxes (SLCs, which is short for “small load carriers”) from
a table and bring them to a shelf. Although the results in this
paper have been gathered in simulation, this same task has
been executed over 900 times on the real AIMM system at
the Automatica trade fair in 2018 [23].

At the beginning of the experiment the robot only knows
its initial position and the positions of the table and the shelf.
For deeper investigation we focus on the execution of the first
part of the task after the robot just reached the table. There,
it detects the objects and plans collision free plans to grasp
the boxes to place them onto the mobile base.

The chart in Fig. 10 shows the execution as a HSM (top)
and the execution of the same actions converted to a CDTN
(bottom). On the y-axis, several resources of interest are

Fig. 10. Gantt charts of the execution of the mobile manipulation task
(with three boxes to grasp). Top: execution of the HSM. Bottom: execution
of the corresponding CDTN. The x-axis shows the time in seconds and the
y-axis the different resources used.

TABLE I
RUNTIME STATISTICS FOR FETCHING BOXES FROM A TABLE WITH

HSMS AND THE CORRESPONDING CDTNS. EXECUTION TIMES ARE

AVERAGES OF FIVE RUNS. MP=MOTION PLANNER.

boxes HSM CDTN CDTN Improvement
(1 MP) (2 MPs) (2 MPs)

1 81.3s 73.5s 72.3s 11.1%
2 123.7s 107.3s 97.3s 21.3%
3 164.2s 141.5s 116.5s 29.0%

shown. The HSM execution is purely sequential and there
are thus no overlaps between task nodes in the Gantt chart. In
the CDTN execution many task nodes are parallelized, such
as the object detection calls, the planning tasks themselves
and the planning and manipulation tasks. For parallelizing
the planning task nodes p, the world model state of p is
projected (as described in the algorithm in Section V) and
then passed to p. Table I shows the execution of different task
scenarios with both the HSM and the CDTN. Depending on
the number of boxes, CDTNs reaches a speedup between 11-
29% compared to HSMs (column marked ‘Improvement’).

In another experiment, our robot sets a table in a living
room (Fig. 11). Various dishes and cutlery have to be
manipulated to set the table for different amount of persons.
Plates, bowls and cups are filled, and the robot thus has to
decide if it needs to hold the target objects upright during
manipulation (e.g. bowls) or not (e.g. forks). Table II shows
the subtask of fetching bowls (B) and forks (F) for 2 and 3
persons.

TABLE II
RUNTIME STATISTICS FOR PARTS OF THE TABLE SETTING SCENARIO OF

FIG. 11 WITH HSMS AND THE CORRESPONDING CDTNS. EXECUTION

TIMES ARE AVERAGES OF FIVE RUNS. MP=MOTION PLANNER

objects HSM CDTN Improvement
(2 MPs) (2 MPs)

2 B + 2 F 169.2s 122.9s 27.4%
3 B + 3 F 255.4s 207.2s 18.9%

Fig. 11. The AIMM platform in the Gazebo simulation environment
manipulating various dishes and cutlery.

VIII. CONCLUSION

In this work we presented an uniform approach for au-
tomatic pipelining of robotic task nodes by means of Con-
current Dataflow Task Networks. Based on different classes
of constraints and dependencies, they allow for increased
performance of robotic tasks in different domains. We show-
cased the efficiency benefits of CDTNs in a constraint
manipulation application scenario in which our simulated
AIMM platform with thirteen degrees of freedom manip-
ulated several objects.

The application of CDTNs to the given use cases provided
us several interesting insights. First of all – and this is
what CDTNs where primarily designed for – we have a
significant speedup when executing CDTNs compared to a
purely sequential execution. Our method will only lead to a
performance increase if parallelization is possible; there is
little to no room for improvement in inherently sequential
tasks, or tasks that can already be executed very quickly.
On the other hand, for very complex tasks, graphical rep-
resentations of data dependencies may become cluttered in
practice, and we are developing further visualization tools
for assisting and facilitating this process.

In future work, we will evaluate the representation of
dependencies in different planning languages, such as PDDL.
This will strengthen the formalization of our approach,
and also expose the advantages and limitations of different
modeling languages for the aims that we have set. This
formalization will also allow for direct comparisons with,
for instance, the Madagascar planner [24].

In industrial applications, as the one we have presented on
our mobile manipulation platform at the Automatica 2018
trade fair, it is essential that robots run continually and
robustly. This has been one of the original motivations behind
this work: combining graphical programming of HSMs to
develop a solution that is known to work (but perhaps
inefficient) with symbolic planning methods to make this
plan more efficient (whilst ensuring that it still works).

In summary, we see our work as lying between artificial
intelligence planning methods and parallelization algorithms
(as used in software pipelining and dataflow programming)
but with a particular emphasis on grounding high-level
(symbolic) representations in the concrete data-flows and
resources that are typical for autonomous robotic systems.

ACKNOWLEDGMENT

This work has been supported by the Helmholtz project
ARCHES (ZT-0033), and by the Collaborative Research
Center EASE (SFB 1320) funded by the German Research
Foundation (DFG).

REFERENCES
[1] P. Schillinger, S. Kohlbrecher, and O. von Stryk, “Human-Robot

Collaborative High-Level Control with an Application to Rescue
Robotics,” in IEEE Int’l Conf. on Robotics and Automation, 2016.

[2] S. G. Brunner, F. Steinmetz, R. Belder, and A. Doemel, “RAFCON:
A Graphical Tool for Engineering Complex, Robotic Tasks,” in
IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems (IROS), 2016.

[3] Industrie 4.0 Working Group, sponsored by the German Federal
Ministry of Education and Research (BMBF), “Recommendations for
implementing the strategic initiative industrie 4.0,” April 2013.

[4] M. Beetz, Concurrent Reactive Plans: Anticipating and Forestalling
Execution Failures. Berlin, Heidelberg: Springer-Verlag, 2000.

[5] R. G. Simmons, “A theory of debugging plans and interpretations.” in
AAAI, 1988, pp. 94–99.

[6] G. J. Sussman, “The virtuous nature of bugs,” in Proceedings of the
1st Summer Conference on Artificial Intelligence and Simulation of
Behaviour. IOS Press, 1974, pp. 224–237.

[7] K. J. Hammond, “Explaining and repairing plans that fail,” Artificial
intelligence, vol. 45, no. 1-2, pp. 173–228, 1990.

[8] G. C. Fox, R. D. Williams, and G. C. Messina, Parallel computing
works! Elsevier, 2014.

[9] J. B. Dennis, “Data flow supercomputers,” Computer, no. 11, 1980.
[10] J. Ruttenberg et al., “Software pipelining showdown: Optimal vs.

heuristic methods in a production compiler,” in ACM SIGPLAN
Notices, vol. 31, no. 5. ACM, 1996, pp. 1–11.

[11] P. Yiapanis, G. Brown, and M. Luján, “Compiler-driven software
speculation for thread-level parallelism,” ACM Trans. Program. Lang.
Syst., vol. 38, no. 2, pp. 5:1–5:45, 2015.

[12] S. G. Brunner, P. Lehner, M. J. Schuster, S. Riedel, R. Belder,
A. Wedler, D. Leidner, M. Beetz, and F. Stulp, “Design, execution,
and postmortem analysis of prolonged autonomous robot operations,”
IEEE Robotics and Automation Letters, vol. 3, pp. 1056–1063, 2018.

[13] R. T. Effinger, B. C. Williams, and A. G. Hofmann, “Dynamic
execution of temporally and spatially flexible reactive programs.” in
Bridging the Gap Between Task and Motion Planning, 2010, p. 121.

[14] S. F. Smith, “Is scheduling a solved problem?” in Multidisciplinary
Scheduling: Theory and Applications. Springer, 2005, pp. 3–17.

[15] M. Colledanchise and L. Natale, “Improving the parallel execution of
behavior trees,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2018.

[16] D. Mcdermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram,
M. Veloso, D. Weld, and D. Wilkins, “PDDL - The Planning Domain
Definition Language,” Yale Center for Computational Vision and
Control,, Tech. Rep. TR-98-003, 1998.

[17] W. Wulf and M. Shaw, “Global variable considered harmful,” ACM
Sigplan notices, vol. 8, no. 2, pp. 28–34, 1973.

[18] M. J. Schuster et al., “Towards Autonomous Planetary Exploration:
The Lightweight Rover Unit, its Success in the SpaceBotCamp Chal-
lenge, and Beyond,” Journal of Intelligent & Robotic Systems, 2017.

[19] P. Lehner, S. Brunner, A. Dömel, H. Gmeiner, S. Riedel, B. Vo-
dermayer, and A. Wedler, “Mobile manipulation for planetary explo-
ration,” in Aerospace Conference. Montana, USA: IEEE, 2018.

[20] A. Dömel, S. Kriegel, M. Kassecker, M. Brucker, T. Bodenmüller,
and M. Suppa, “Toward fully autonomous mobile manipulation for
industrial environments,” International Journal of Advanced Robotic
Systems, vol. 14, no. 4, 2017.

[21] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2004, pp. 2149–2154.

[22] F. Schmidt et al., “How we deal with software complexity in robotics:
‘links and nodes’ and the ‘robotkernel’,” DLR, Tech. Rep., 2014.

[23] A. Dömel, S. G. Brunner, S. Riedel, and M. Suppa, “Increasing De-
pendability of Autonomous Robots by Fault Tolerance on Skill Level,”
in submitted to IEEE/RSJ Int’l Conf. on Robotics and Automation,
2019.

[24] J. Rintanen, “Madagascar: Scalable planning with SAT,” Proceedings
of the 8th International Planning Competition (IPC-2014), vol. 21,
2014.

