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Abstract

Task and motion planning (TMP) combines discrete search and continuous motion planning. 

Earlier work has shown that to efficiently find a task-motion plan, the discrete search can leverage 

information about the continuous geometry. However, incorporating continuous elements into 

discrete planners presents challenges. We improve the scalability of TMP algorithms in tabletop 

scenarios with a fixed robot by introducing geometric knowledge into a constraint-based task 

planner in a robust way. The key idea is to learn a classifier for feasible motions and to use this 

classifier as a heuristic to order the search for a task-motion plan. The learned heuristic guides the 

search towards feasible motions and thus reduces the total number of motion planning attempts. A 

critical property of our approach is allowing robust planning in diverse scenes. We train the 

classifier on minimal exemplar scenes and then use principled approximations to apply the 

classifier to complex scenarios in a way that minimizes the effect of errors. By combining learning 

with planning, our heuristic yields order-of-magnitude run time improvements in diverse tabletop 

scenarios. Even when classification errors are present, properly biasing our heuristic ensures we 

will have little computational penalty.
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I. Introduction

INTEGRATED task and motion planning (TMP) requires planning over a task-motion space 

that combines discrete actions for manipulating objects with continuous, collision-free 

motions that achieve these actions in a high degree-of-freedom (DOF) composite space 

representing the state of the robot and the objects. A strictly-hierarchical approach, where a 

task planner first chooses a sequence of actions and then a motion planner finds valid 

trajectories for each action, is incomplete because there is no guarantee that actions selected 

by the task planner will be geometrically feasible. Previous works [1], [2], [3] break the 

strict hierarchy between task planning and motion planning by communicating motion 

feasibility information from the motion planner to the task planner.
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Obtaining completeness in TMP presents challenges due to the computational difficulty of 

high-dimensional motion planning. Most practical motion-planning algorithms for high 

DOF systems such as manipulators are not complete but at best probabilistically complete. A 

probabilistically complete motion planner cannot prove that a motion is infeasible; the 

planner can only run until a timeout. A TMP framework for a high DOF system must call a 

probabilistically complete motion planner using a timeout; otherwise, the motion planner 

could run forever. On infeasible actions, the planner is guaranteed to timeout, but there is 

also a possibility that the planner will time out on a feasible action. So when the planner 

times out, a probabilistically complete TMP framework will typically defer the action, 

instead attempting another action. It will then later revisit the action to reattempt motion 

planning with a longer timeout. The need to expend computation on many possibly 

infeasible motions imposes a high computational cost.

We show empirically that the run time of TMP for tabletop manipulation domains is 

dominated by infeasible motion planning attempts (see section VI). As described previously, 

reducing the timeout of the motion planner is not a viable approach, because then the motion 

planner will frequently fail to solve feasible problems where a plan exists. Typical off-the-

shelf task planners used in TMP frameworks [1], [3] focus on efficient planning in discrete 

spaces and admit only limited geometric information. For example, in a scenario where the 

task planner is searching for a discrete plan containing six steps, it will enumerate satisfying 

plans in an arbitrary order based on the solver’s heuristics and then call a motion planner for 

each discrete step until all steps in a plan succeed.

Because calling motion planning on infeasible actions increases overall run time, we 

propose a principled method of incorporating a motion feasibility heuristic into a TMP 

framework. TMP frameworks break the overall plan into smaller steps, which in turn are 

repetitive, suggesting this problem may be amenable to machine learning algorithms, in our 

case an SVM using geometric features of the objects being manipulated Figure 2. This 

approach balances the difficulty of proving motion infeasibility with the impracticality of 

learning a perfect classifier. Rather than attempting to generalize the classifier, we expand 

the domain by using the classifier on approximations that are intentionally biased to reduce 

the cost of errors on overall run time.

This paper improves the scalability of task and motion planning by demonstrating a new, 
principled method to incorporate a heuristic for motion feasibility and to expand the domain 
of the heuristic to new inputs. We believe that the underlying method can be applied to many 

different TMP approaches because expending computation to search for infeasible motion 

plans is a fundamental challenge in probabilistically complete TMP. We demonstrate that a 

classifier for feasibility can be trained, that it improves scalability, and that we can 

incorporate it in a way that is robust to classification error.

II. Related Work

Task Planning:

Research in task planning for robotics traces back to early efforts in STRIPS [4]. Task 

planning approaches typically focus on efficiently searching the state space, either via 
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heuristic search [5], [6], [7] or constraint-based methods [8], [9]. Heuristic search methods, 

such as FF [6], use general-purpose heuristics to reduce the number of states that are 

expanded. Constraint-based methods, such as Madagascar [9], propagate constraints to avoid 

searching the entire state space.

Motion Planning:

For high DOF manipulators, the major motion planning approaches are optimization-based 

and sampling-based planners. Optimization-based planners [10], [11] can quickly solve 

some problems, but other problems—especially cases involving small obstacles or narrow 

passages—pose fundamental challenges for these planners. While optimization-based 

motion planners are used in some TMP frameworks, they are incomplete. Thus, TMP 

algorithms using optimization-based motion planning will be incomplete. In contrast to 

optimization-based planners, typical sampling-based planners are probabilistically complete, 

i.e. when a solution exists, the sampling-based planner will eventually find it [12], [13]. 

However, probabilistic completeness does not guarantee that a solution will be found within 

a given time limit, so decision problem versions of these algorithms are semi-deciding [14]. 

In our work, we use RRT-Connect [13] to ensure probabilistic completeness, but other 

standard sampling-based planners could be used instead with only minor modifications [15]. 

Heuristic search can also be used for high DOF motion planning [16].

Task and Motion Planning:

Due to the inherent difficulty of the TMP sub-problems—task planning is NP-hard and 

motion planning is PSPACE hard—many TMP approaches consider restricted domains or 

set aside completeness to improve efficiency for specific problem classes [14]. [2] can 

guarantee completeness under some assumptions, such as reversible actions, but performs 

greedy execution of plans, which consumes time and energy if actions must ultimately be 

reversed. [17] uses geometric constraints to reason about motion planning in some scenarios, 

and [18] uses geometric information to guide the task-level search. [3] provides a framework 

to interface between task planners and motion planners, but does not achieve probabilistic 

completeness until the later work mentioned below. [19] focuses on precomputing motion 

roadmaps to guide the search.

Approaches that are probabilistically complete include [20], which achieves asymptotic 

optimality in planar manipulation domains. The aSyMov planner [21], [22] uses an FF based 

task planner with lazily-expanded roadmaps; roadmaps allow plan re-use but present 

difficulty when configuration spaces change as objects interact—e.g., when stacking and 

pushing. The Synergistic Framework and related methods [23], [24], [25] use a discrete 

search weighted by attempted motion planning to provide feedback between the discrete and 

continuous layers. In contrast, our work leverages both a constraint solver and learned 

heuristic to more efficiently search the task space.

Other methods employ discrete abstractions of geometric domains to synthesize policies 

[26] or handle dynamics [25], but these methods do not focus on the high-DOF and 

changing configuration spaces that occur during manipulation.
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Our approach extends the constraint-based TMP implementation of [1], [27] by 

incorporating a learned feasibility heuristic to guide search even in novel scenes.

Heuristics for Task and Motion Planning:

In an attempt to learn a general heuristic for task planning, Yoon and Xu [28], [29] focus on 

learning a correcting factor to the relaxed-deletion based heuristic of FF-search [6].

Learned heuristics have shown promise in the realm of motion planning. For instance, 

sampling-based planners can learn to bias the sampling distribution to achieve better 

planning times [30]. Dynamic Movement Primitives attempt to learn approaches to 

manipulation to allow cooperation between multiple robots [31]. Our approach differs by 

using learning to prune the TMP search but not to guide individual instances of motion 

planning.

Garrett et al. [32] introduce a heuristic that incorporates geometric information into FF 

search. The heuristic is not based on learning and does not offer our guarantees on domain 

expansion. Additionally it is nontrivial to incorporate into frameworks that use a constraint-

based task planner.

Several recent works apply learning to TMP. Chitnis et al. [33] give a probabilistically 

complete method which uses reinforcement learning to guide both the task level search for a 

plan as well as the “refinement” from a symbolic description into a concrete plan. In [34] the 

notion of “score-space” is introduced as a metric to measure similarity between problem 

instances to improve motion planning time. In both approaches, learning is used for a 

different purpose than we propose here and a principled approach to handling classification 

error is not given.

Experience Based Planning:

Though we do not use experience based motion planning, it is an important point of 

discussion for our work since we too use pre-computation to improve runtime performance. 

Deep learning approaches such as [35] are promising but require large amounts of training 

data to learn a sampling distribution. We focus on an easier problem of predicting motion 

feasibility and require less training data. [36] focuses on reusing planning for common areas 

of motion, but it is not clear how it would be adapted to deal with unseen objects. The 

Thunder framework [37] runs planning from scratch in parallel with a retrieve and repair 

planner to maintain completeness. In general, we view such methods as complementary to 

our own as they solve a different, but related problem. It should be noted, however, that 

building any form of experience graph becomes significantly more complicated as the 

number—and combinations—of manipulable objects increases. The free configuration space 

depends on the objects in question, and thus can grow with the number of combinations of 

objects (e.g., stacking or nested objects). The aSyMov planner uses such a method, but the 

authors note that scalability quickly becomes an issue [22]. One option is to prune the graph 

by keeping the “important” nodes and discarding the rest, but doing this for experience 

graphs on a variety of objects is an open problem. Our approach utilizes an SVM which 

takes milliseconds per call and has a small memory footprint.The novel contribution of our 
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work is a principled method of incorporating feasiblity heuristics into a TMP framework to 

allow domain expansion.

III. Problem Description

We focus on Task and Motion Planning involving manipulation in deterministic, fully 

observable cases. Additionally, we assume the objects in our scene are rigid and that our C-

space is connected. Informally, we consider a class of problems where a discrete task 

planning problem is specified (in e.g., PDDL) and some subset of the task actions 

(operators) have a continuous motion component. To specify this component, we include 

definitions of domain semantics that map the discrete operators to continuous motions. For 

example, the operator PICK–UP ?obj has discrete preconditions corresponding to the 

discrete facts that the gripper is empty and the object has nothing resting upon it (assuming 

we disallow moving stacks of objects) as well as appropriate postconditions. Additionally, 

the domain semantics map this discrete action to a continuous motion planning problem of 

finding a collision free trajectory from the current state to a state where the gripper is 

positioned appropriately for grasping.Within this domain, we must find a task-motion plan, a 

collision-free continuous trajectory corresponding to a discrete series of task actions that 

satisfy the task specification.

We also include as input to our algorithm a classifier that can be queried for feasibility 

information on a motion planning problem instance (C-space and start, goal poses).For a 

complete, formal problem definition of standard TMP we point the reader to [1]. Our 

problem definition differs by including a classifier that maps a C-space and set of motion 

planning poses to true or false. 𝒞:[Ξ] × 2𝒬 {0, 1} in the language of [27], where Ξ is a set 

of C-spaces and 𝒞 is a sequence of motion planning poses.

Definition III.1. Task-Motion Plan

A task and motion plan is a sequence of pairs of task operators and motion plans, 

𝒯ℳ𝒫 = (( a[0], Q[0] , …, a[n], Q[n] ) such that (a[0],…,a[n]) is in the task language ℒ (i.e., is 

a valid task plan) and for each pair ⟨a[i], Q[i]⟩ Q[i] is a motion corresponding to task operator 

a[i] in the appropriate configuration: first(Q[0]) = q[0] and for all subsequent i, last(Q[i]) = 

first(Q[i+1]).

IV. Algorithm

In a typical TMP system, the task planner and motion planner iterate between finding high-

level plans and refining the high-level plan into corresponding motion plans. Empirically, we 

have found that most of the run time for common manipulation problems is spent exploring 

motions that are ultimately infeasible (see Figure 4). To address this bottleneck, we learn a 
classifier for motion feasibility that expands to new domains. We use the classifier to quickly 

estimate feasibility of high-level actions, only attempting motion planning when the entire 

high-level plan is classified as feasible. By avoiding motion planning attempts for infeasible 

actions, we address the major bottleneck in TMP and improve scalability.
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Crucially, we integrate our learned heuristic within a TMP framework [27] to produce a 

planning method that tolerates classification error. False positives (infeasible actions 

classified as feasible) are passed on to the motion planner, which will determine infeasibility 

based on its timeout; thus a classifier that always returns feasible will yield the original 

algorithm without our learned heuristic having any effect. False negatives (feasible motions 

classified as infeasible) will cause us to defer motion planning on a feasible instance and 

may reduce performance; however, our overall framework will later retry the action, thus 

maintaining probabilistic completeness, assuming a probabilistically complete motion 

planner is used.

Algorithm 1 shows our overall algorithm. The algorithm has three broad phases: a task 

planning phase (lines 4-10), a feasibility heuristic phase (lines 11-18), and a motion planning 

phase (lines 20-29). The three phases repeat until finding a valid task-motion. Compared to 

prior work [27], we introduce a new feasibility heuristic phase that applies our learned 

classifiers for motion feasibility.

The task planning phase searches for a new, candidate high-level plan of up to horizon steps 

using the constraint-based planner described in [1]. If no new plan below length horizon 

exists (line 6), we extend horizon and the motion planning timeout, reset constraints φ and 

search again for the high-level plan—potentially revisiting previous task plans with the 

increased motion planning timeout, which is necessary for probabilistic completeness (see 

Theorem 1). Once the high-level plan A is found, we pass it to the feasibility heuristic phase.

The feasibility heuristic phase uses learned classifiers to estimate the feasibility of each 

action in the high-level plan. For each action in the high-level plan A, we map the action to a 

motion planning problem—specifically, the free configuration space represented using a 

scene graph and goal pose—via the domain semantics function λρ (line 14). Then, we call 

our classifier to estimate when the motion is feasible (line 15). If a motion is classified as 

infeasible, we update the constraint equations to block the infeasible motion (line 17) and 

return to the task planner. Otherwise, if all motions are feasible, we proceed to motion 

planning.

Finally, the motion planning phase attempts to refine each high-level action into a 

corresponding motion plan (line 22). If motion planning succeeds for all high-level actions, 

we have successfully computed the task and motion plan. Otherwise, if motion planning for 

any action fails (exceeds the timeout), we update the constraint equations to find an alternate 

plan (line 25) and return to the task planner. Note that we reconsider this plan later to 

preserve completeness (see Theorem 1).
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Algorithm 1: TMP with Learned Heuristic

Input: 𝒟 = (ℒ, λα, λρ, 𝒞, σ[0], 𝒢) ∕ ∕ TM Domain

Input: motionTO, cutoffTime, horizon
Output:T ∕ ∕ Task − Motion Plan

1 (s[0], γ[0], q[0]) σ[0]; ∕ ∕ state, scene, config

2 ϕ initialConstraints(s[0], λα(γ[0]), ℒ);

3 repeat

4
5
6
7
8
9

10

11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26
27
28
29

repeat ∕ ⋆ Task Planning Phase ⋆ ∕
A nextTaskPlan(ϕ);
if ∅ = A then ∕ ∕ UNSAT

horizon horizon + 1;
motionTO motionTO + 1;
ϕ reset(ϕ, λα(𝒢), horizon);

until A;
∕ ⋆ Feasibility Heuristic Phase ⋆ ∕
f true;
if motionTo ≤ cutoffTime then

foreach a[i] ∈ A do
m[i] λρ(a[i]); ∕ ∕ Domain

Semantics
if ¬ feasible(C, m) then

f false;

ϕ addConstraints (a[i]);
break;

if f then ∕ ⋆ Motion Planning Phase ⋆ ∕
T ∅;

foreach a[i] ∈ A do
Q[i]

motionPlan(m[i], q[i], motionTO);

if ∅ = Q[i] then ∕ ∕ timeout
T ∅;

ϕ addConstraints (a[i]);
break;

else
q[i + 1] last(Q[i]);

T[i] a[i], Q[i] ;

30 until T;
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A. Training Motion Feasibility Classifiers

We train the motion feasibility classifier based on a given set of minimal, exemplar scenes. 

Each classifier is specific to a robot, a task action, and the minimal set of fixed obstacles in 

the scene (in our case, a table). The feature vector for the classifier encodes the geometry 

and positions of movable objects in the exemplar scene and the robot’s motion goal. We 

obtain the ground truth, i.e., feasible or infeasible, for each feature vector by running a 

sampling-based motion planner with a long enough timeout to ensure that the probability of 

not finding a feasible motion plan is negligible. We label the data based on the result of this 

motion planning, and use the labeled data to train a supervised learner; specifically, we train 

a support vector machine, though other supervised learning techniques could be applied.

B. Applying To Complex Scenes

To reduce training time, we limit training to scenarios with two rectangular prisms 

manipulated by a UR5 mounted to a table. At runtime, however, tabletop scenarios can 

include arbitrary numbers of objects with arbitrary meshes. Using a finite feature vector (see 

Figure 2), we cannot perfectly represent scenes with an arbitrary mesh or number of objects. 

Instead, we expand to these domains by approximating them and/or decomposing them so 

they can be input to our classifier. We use the following approximations to handle these 

more complex scenes. Motivating insights and a proof of correctness are discussed in 

subsection V-C.

Compared to our training scenes, a runtime scene may have additional fixed or stationary 

objects. Each of these objects can either be of the same type as those used in training 

(rectangular prisms) or new objects types, including arbitrary meshes. We generalize in these 

cases as follows:

1) Additional Fixed Obstacles: The classifier can ignore additional fixed obstacles as 

justified below (see subsection V-C). Note that motion planning does not ignore these 

obstacles.

2) Multiple Objects: When working with more than two objects, we decompose the problem 

into estimating feasibility for each pair of objects. We consider the problem to be infeasible 

if any pair classifies as infeasible and feasible otherwise.

3) New Movable Objects: We approximate non-rectangular objects with a rectangular prism 

inscribed in the object.

We formally characterize these three domain expansions (subsection V-C) and empirically 

validate the approach (section VI) for a tabletop manipulation domain.

V. Analysis of the Algorithm

Now, we analyze the properties of our approach. First, we show that our use of a learned 

heuristic maintains probabilistic completeness, even when the classifier is wrong. Then, we 

discuss the impact of classification error. Finally, we characterize how the classifiers expand 

to more complex domains.

Wells et al. Page 8

IEEE Robot Autom Lett. Author manuscript; available in PMC 2020 April 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



A. Probabilistic Completeness

Definition V.1. Probabilistic Completeness—An algorithm is probabilistically 

complete if, as the run time approaches infinity, the probability of the algorithm finding a 

solution, should one exist, approaches one.

Probabilistic completeness requires certain assumptions. For sampling-based motion 

planners, a path is assumed to have some clearance. Additionally, we assume for TMP that 

we can enumerate a sufficient set of placement locations and actions to solve the problem. 

Under these assumptions, the key to maintaining probabilistic completeness in our approach 

is handling cases when the classifier is wrong, which we do by eventually ignoring the 

classifier. It should be noted that because we train the classifier using RRT-connect with a 

long timeout, even if a query is exactly the same as a training example the classifier could 

still be wrong because RRT-connect may have timed out on a feasible instance. Thus, 

ignoring the classifier is unavoidable. Then, the proof of probabilistic completeness follows 

[1].

Theorem 1. Algorithm 1 is probabilistically complete.—Proof. As the run time of 

the algorithm increases, the motion planning timeout increases without bound (line 8), while 

the cutoff time for ignoring the classifier remains constant. Eventually, the motion planning 

timeout is increased beyond the cutoff time. From this point on, the classifier is not used 

(line 15). Then attemptMotion can only be set to true and probabilistic completeness follows 

the proof of [1]: The task planner is complete and enumerates all valid task plans (line 4). 

The motion planner attempts to refine each candidate task plan (line 22). If a 

probabilistically complete motion planner is used, the probability of success approaches one 

as motionTimeout increases. We progressively increase motionTimeout with each increase 

of the task planning horizon, revisiting all prior candidate plans with the greater timeout. 

Thus over time, the probability of successfully refining a feasible candidate plan approaches 

one. ◻

B. Effect of Classification Error

Because we eventually ignore the classifier, classification errors do not impact completeness, 

but they do reduce the performance of our algorithm. The classifier may produce false 

positives—infeasible actions labeled as feasible—or false negatives—feasible actions 

labeled as infeasible. Planning is faster when the classifier produces a false positive than a 

false negative. A false positive will be passed on to the motion planner, which must then 

explore the infeasible action until timeout. Thus, a classifier that always labels every action 

as feasible will be identical to the algorithm in [1]. A false negative, however, may be 

significantly more expensive. The false negative action will not be passed to the motion 

planner until after the motion planning timeout has exceeded the cutoff timeout (line 15), 

potentially spending significant time to explore additional plans before the cutoff. Thus, we 

bias the classifier to prefer false positives to false negatives. Classification errors have two 

causes: errors from the classifier proper and errors from domain expansion (see subsection 

IV-B). We first discuss expansion errors and then later discuss errors from the classifier 

proper.
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C. Analysis of Domain Expansion

We analyze the classification errors introduced by our domain expansions and their effect in 

the overall planning framework. To simplify this discussion, we first assume the classifier is 

an oracle for motion feasibility queries on scenes with two prisms; in subsection VI-A we 

will discuss error with the classifier proper. We prove that applying the oracle to complex 

objects and environments via this domain expansion cannot produce additional false 

negatives, which would adversely effect computation time. These theoretical results have 

important implications for the applicability of our work and are confirmed by our 

experiments.

Definition V.2 (Oracle configuration space). Feature vector f and classifier c 
represent a query in free C-space, ξoracle, where:

• Movable objects have geometry and positions from f

• Fixed obstacles and robot are internal to c, i.e., based on the training data

To apply the oracle to objects beyond pairs of rectangular prisms, we must approximate the 

true runtime C-space, ξrun, with the feature vector. The relationship between ξrun and ξoracle 

affects classification error. Any difference between ξoracle and ξrun may induce classification 

errors. A plan that is feasible in ξrun but not in ξoracle induces a false negative, while a plan 

that is not feasible in ξrun but is feasible in ξoracle induces a false positive.

Because we prefer false positives to false negatives (see subsection V-B), we want an oracle 

free C-space ξoracle that over-approximates the true runtime free C-space ξrun. That is, every 

valid plan through ξrun must also be valid in ξoracle (no induced false negatives), but a valid 

plan in ξoracle may be invalid in ξrun (induced false positives). This positive-biased 

approximation holds when ξrun is a subset of ξoracle.

Theorem 2 (C-space approximation). If ξrun ⊆ ξoracle, then the C-space 
approximation will not increase the false negative ratio of a given classifier.—
Proof. Assume to the contrary that the approximation may induce a false negative and thus 

defer a feasible action. Then, there exists some motion plan Q that is feasible in ξrun but not 

feasible in ξoracle. But this contradicts ξrun ⊆ ξoracle. ◻

Thus, when ξrun ⊆ ξoracle, our approximation of the true free C-space induces no false 

negatives.

Motivated by this observation, we expand our method to new domains in the following 

ways:

1) Additional Fixed Obstacles: Adding additional fixed obstacles at runtime (e.g., a shelf too 

large for the robot to manipulate) causes the true free C-space to under approximate the 

oracle free C-space. Thus we can use the oracle in these scenarios without introducing new 

false negatives (Figure 5d).

2) Multiple Objects: When working with more than two objects, we can decompose the 

problem into estimating feasibility for pairs of objects. Each pair involves the moving object 
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and one of the other objects. Thus there will be n – 1 pairs in a scene with n modeled 

objects. The problem is considered infeasible if any call fails and feasible otherwise (Figure 

5c).

3) New Movable Objects: Adding new movable objects, e.g., glasses or teapots, that are 

under-approximated by inscribed rectangular prisms, causes the true free C-space to under 

approximate the oracle free C-space. Thus we can use the classifier based on these inscribed 

prisms without introducing new false negatives (Figure 5e).

Finally, we note that any subset of these domain expansions can be safely combined without 

introducing new false negatives (Figure 5f).

In the preceding, we assumed that we had an oracle for feasibility. Based on this analysis of 

an oracle, it follows that a classifier without false negatives on the exemplar scenes expands 
well, imposing at most the overhead of calling the classifier. While assuming an oracle may 

be reasonable in simple domains, a more complex domain will make this unlikely. In 

practice we try to use a classifier with few or no false negatives. The classifier can be 

statistically biased to avoid false negatives, but in our experiments, we found this 

unnecessary. It should be noted that our domain expansions will tend to reduce the number 

of false negatives in the framework, but our proof only guarantees that it will not introduce 

new ones. To improve overall scalability, the classifier must generate true negatives to guide 

the search. We demonstrate these improvements empirically.

VI. Experiments

We use experiments to provide training data to our SVM and to test the overall method. 

Training experiments involve two rectangular prisms and the fixed table. Ideally an SVM 

would be trained for each new placement of fixed obstacles, but this is not mandatory (see 

Theorem 2). Each training point for the SVM is generated by running RRT-Connect three 

times with a 30 second timeout and checking if any run solves the instance. Each test 

scenario for the overall method is run in 10 independent trials.

A. Training the SVM

While manipulating one object in the presence of a stationary object, we are learning to 

predict motion feasibility given the locations and the sizes of the objects relative to the robot. 

We use the method of support vector machines (SVM) for our prediction, due to the low 

memory footprint and speed (it may be called thousands of times for a single problem and 

only takes a few milliseconds per call). Other classification models could be used, especially 

in more complex environments, but we found the increased accuracy from using a neural 

network did not justify the additional costs to train, store and evaluate the network.. Figure 2 

illustrates the feature vector for an example training scene. We use polar coordinates d and θ 
describing the locations of the objects relative to the robot and to each other, and we use the 

heights h, widths w, and lengths l of both the objects under consideration.

The data set consists of roughly 10,000 runs of pairs of rectangular prisms placed on a grid, 

which took about two days to generate on a desktop machine. Note that this time is spent 
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running motion planning queries to produce a labeled data set. This time could be reduced, 

but we chose to attempt each query multiple times with long timeouts to ensure a reliable set 

of training data. The prisms vary in size, but are always axis-aligned to increase the 

consistency and minimize the size of the feature vector. The prisms are placed on a grid with 

cells 10cm × 10cm throughout reachable portions of the table. The objective is to move one 

of the prisms to a specified open space. We do this because we are interested in calculating 

whether the specified object can be usefully manipulated. The capability to pick up the 

object is not sufficient, since picking up an object changes the free C-space which can 

restrict the ability to manipulate. Because we are not modeling dynamics, our trajectories are 

reversible. Thus, we can use the same data set to learn about picking up and putting down an 

object. This reuse reduces the training time. With this exception, we train a separate 

classifier for each action, in our case for each grasp face. Because the runs rely on a 

sampling-based planner, we attempt the same problem instance up to three times to achieve 

an accurate ground-truth for the classifier.

We use the open-source library LIBSVM’s implementation of a C-SVC with a radial basis 

function for the kernel and the parameters of the C-SVC set to cost = 5000 and gamma = 

0.95 [38]. With these settings, LIBSVM takes less than 10 seconds to fit the data on a 

desktop machine. On a hold out sample of scenes similar to training, that is, scenes 

consisting of two prisms, the classifier is correct approximately 96% of the time. For a more 

complicated scenario, such as a mobile robot, the classification rate may be lower. In such a 

case, a classifier can be biased to prefer false positives over false negatives to maintain the 

desirable properties discussed in section V. We show a confusion matrix in Figure 3.

B. Runtime Experiments

All experiments are run on a desktop machine and the run times are averaged across 10 

independent runs with error bars showing one standard deviation. We use default settings for 

TMKit with the exception that the motion planning timeout is set to 30 seconds as this was 

found necessary for the scene in Figure 5d Below we include figures of scenes used to test 

our new approach along with run time results and an explanation of why these scenes were 

chosen.

The scene in Figure 5a is chosen to estimate the drop in the performance due to feasibility 

heuristic in scenarios when it is not needed, i.e., where the first task plan chosen by TMKit 

contains only feasible motions. There are two moveable blocks (blue and red) that can be 

placed on the purple regions of the table. The initial scene is given on the left and the final 

on the right. The blue block is moved to a location that is not obstructed by the red block, so 

the motion planner succeeds on the first task plan it attempts to refine. As expected, because 

it has the additional overhead of calling the SVM, the new approach is slower. However, the 

drop in the performance is only marginal.

The scene in Figure 5b is chosen to test the performance increase in the simplest possible 

example where the initial task plan chosen by TMKit will encounter infeasible motion. In 

this setting, the blue block is obstructed by the red block, which must be replaced to the 

original position for a feasible plan. The motion planner needs to evaluate several task plans 

before it succeeds in moving the blue block to its goal location. As expected the new 
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approach is significantly faster than the old because it avoids expensive planning while 

attempting infeasible motions.

Next we look at scenes which differ significantly from the scenes used to train the SVM 

classifier. Our goal is to understand how well our approach expands to new domains.

The scene in Figure 5c is chosen to test our method of dealing with more than two objects. 

We can also contrast it with other works [34] [33] that are tested in similar environments. 

Note however, that our robot is stationary while the existing works use a mobile PR2.

The scene in Figure 5d is chosen to demonstrate the scaling of our approach to environments 

with additional obstacles. The shelf is fixed but causes many motions that were feasible to 

become infeasible (false positives).

The scene in Figure 5e is chosen to demonstrate scaling of our approach to more complex 

objects. The motions of the teapot are classified as if they were motions of a rectangular 

prism fitting inside the teapot handle. Note that we must use the handle rather than the body 

of the teapot to preserve the correct offset from the gripper.

The scene in Figure 5f tests all of the domain expansions together. The cylinder on the table 

is a fixed obstacle. The wineglasses are approximated by rectangular prisms (here we use a 

tighter approximation and treat the cup as if it were not hollow). Our experiments show that 

feasibility prediction can significantly improve the overall run time of the TMP framework 

in tabletop environments.

VII. Conclusion

We have demonstrated an approach that utilizes approximations and decompositions to 

robustly combine learning and planning in TMP frameworks. We prove that our learned 

heuristic expands from simple to complex scenes and that our framework maintains 

probabilistic completeness. We demonstrate results on a variety of tabletop manipulation 

scenarios, showing order-of-magnitude performance improvements.

Limitations of our approach include the need for substantial training data, the assumptions 

of rigid objects and connected C-space, the domain expansions loss of detail and the need to 

retrain for different robots.

There are several possibilities to improve our method. Ideal performance requires that 

objects can be well approximated by rectangular prisms. While we offer a domain expansion 

that uses prisms to under approximate arbitrary meshes, the classifier may fail to prune many 

motions that are infeasible. A richer feature vector and alternative learning techniques could 

give further speed improvements.

The training time is substantial, though the cost is amortized over all planning runs. It is 

possible that beneficial results could still be achieved by reducing the training time and 

statistically biasing the SVM to prefer false positives.
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While we have only tested in a pick-place scenario (with stacking), the framework we have 

tested supports various actions. We would like to expand our heuristic to more general 

scenarios, such as a mobile robot that must move around the room and choose a location 

from which to attempt manipulation. Further work can incorporate sensing, uncertainty, and 

probabilities that motion planning instances are infeasible rather than a binary output.
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Fig. 1: 
Our learned heuristic expands from training on two prisms (front left) to runtime scenes with 

arbitrary numbers and types of objects. We approximate arbitrary meshes with inscribed 

prisms (the red blocks in the wine glasses). Errors induced by the approximation are 

corrected during planning, producing a robust system.
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Fig. 2: 
Representation of polar coordinates used in the feature vector.
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Fig. 3: 
SVM’s confusion matrix from 10-fold cross-validation
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Fig. 4: 
Time spent on task planning (orange) and motion planning (green) for the given scenes.
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Fig. 5: 
Evaluation on tabletop scenes. Times are averaged over ten runs and plotted with an error 

bar showing one standard deviation.
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