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Accelerated Inference in Markov Random Fields
via Smooth Riemannian Optimization

Siyi Hu and Luca Carlone

Abstract—Markov Random Fields (MRFs) are a popular model
for several pattern recognition and reconstruction problems in
robotics and computer vision. Inference in MRFs is intractable in
general and related work resorts to approximation algorithms.
Among those techniques, semidefinite programming (SDP) re-
laxations have been shown to provide accurate estimates while
scaling poorly with the problem size and being typically slow
for practical applications. Our first contribution is to design a
dual ascent method to solve standard SDP relaxations that takes
advantage of the geometric structure of the problem to speed up
computation. This technique, named Dual Ascent Riemannian
Staircase (DARS), is able to solve large problem instances in
seconds. Our second contribution is to develop a second and
faster approach. The backbone of this second approach is a novel
SDP relaxation combined with a fast and scalable solver based on
smooth Riemannian optimization. We show that this approach,
named Fast Unconstrained SEmidefinite Solver (FUSES), can solve
large problems in milliseconds. Contrarily to local MRF solvers,
e.g., loopy belief propagation, our approaches do not require
an initial guess. Moreover, we leverage recent results from
optimization theory to provide per-instance sub-optimality guar-
antees. We demonstrate the proposed approaches in multi-class
image segmentation problems. Extensive experimental evidence
shows that (i) FUSES and DARS produce near-optimal solutions,
attaining an objective within 0.1% of the optimum, (ii) FUSES and
DARS are remarkably faster than general-purpose SDP solvers,
and FUSES is more than two orders of magnitude faster than
DARS while attaining similar solution quality, (iii) FUSES is faster
than local search methods while being a global solver.

Index Terms—Object Detection, Segmentation and Categoriza-
tion; Optimization and Optimal Control; Recognition.

I. INTRODUCTION

Markov Random Fields (MRFs) are a popular graphical
model for reconstruction and recognition problems in com-
puter vision and robotics, including 2D and 3D semantic
segmentation, stereo reconstruction, image restoration and
denoising, texture synthesis, object detection, and panorama
stitching [, [2], [3]. An MRF can be understood as a factor
graph including only unary and binary factors, and where
node variables are discrete labels. The discrete nature of
the variables makes maximum a posteriori (MAP) inference
in MRFs intractable in general, and this clashes with the
need for real-time inference that characterizes several robotics
applications (e.g., semantic understanding, mapping).

The literature on MRFs (reviewed in Section [VI) is vast
and includes methods based on graph cuts, message pass-
ing techniques, greedy methods, and convex relaxations, to
mention a few. These approaches are typically approximation
techniques, in the sense that they attempt to compute near-
optimal MAP estimates efficiently (the problem is NP-hard in
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Fig. 1. Snapshots of the multi-label semantic segmentation computed by the
proposed MRF solvers (a) FUSES and (b) DARS on the Cityscapes dataset.
FUSES is able to segment an image in 16ms (1000 superpixels).

general, hence we do not expect to compute exact solutions
in polynomial time). Among those, semidefinite programming
(SDP) relaxations have been recognized to produce accurate
approximations [4]. On the other hand, the computational
cost of general-purpose SDP solvers prevented widespread
use of this technique beyond problems with few hundred
variables [5] (semantic segmentation typically involves thou-
sands to millions of variables), and SDPs lost popularity in
favor of computationally cheaper alternatives including move-
making algorithms (based on graph cut) and message passing.
Move-making methods [6] require specific assumptions on the
MREF and their performance typically degrades when these
assumptions are not satisfied. Message passing methods [7]],
[8], on the other hand, may not even converge, even thought
they are observed to work very well in practice.

Contribution. Our first contribution, presented in Sec-
tion [l is to design a dual-ascent-based method to solve
standard SDP relaxations that takes advantage of the geo-
metric structure of the problem to speed up computation.
In particular, we show that each dual ascent iteration can
be solved using a fast low-rank SDP solver known as the
Riemannian Staircase [9)]. This technique, named Dual Ascent
Riemannian Staircase (DARS), is able to solve MRF instances
with thousands of variables in seconds, while general-purpose
SDP solvers (e.g., cvx [10]]) are not able to provide an answer
in reasonable time (hours) at that scale.

Our second contribution, presented in Section [[V] is a
Fast Unconstrained SEmidefinite Solver (FUSES) that can
solve large problems in milliseconds. The backbone of this
second approach is a novel SDP relaxation combined with
the Riemannian Staircase method [9]]. The novel formulation
uses a more intuitive binary matrix (with entries in {0, 1}),
contrarily to related work that parametrizes the problem using
a vector with entries in {—1, +1}. FUSES does not require an
initial guess for optimization (i.e., it is a global solver) and
provides per-instance sub-optimality guarantees.

Our third contribution is an extensive experimental evalu-
ation. We test the proposed SDP solvers in semantic image
segmentation problems and evaluate the corresponding results
in terms of accuracy and runtime. We compare the pro-
posed techniques against several related approaches, including



move-making methods (a-expansion [6]) and message passing
(Loopy Belief Propagation 8] and Tree-Reweighted Message
Passing [7]). Upon convergence, DARS attains the same solu-
tion of standard SDP relaxations. FUSES, on the other hand,
trades-off inference time for a mild loss in accuracy. More
specifically, our results show that (i) FUSES and DARS produce
near-optimal solutions, attaining an objective within 0.1% of
the optimum, (ii) FUSES and DARS are remarkably faster than
general-purpose SDP solvers (e.g., CVX [10]), and FUSES is
more than two orders of magnitude faster than DARS while
attaining similar solution quality, (iii) FUSES is more than 2x
faster than local search methods while being a global solver.

While the evaluation in this paper focuses on the MRF
solver (rather than attempting to outperform state-of-the-art
deep learning methods for semantic segmentation), we believe
FUSES can be used in conjunction with existing deep learning
methods, as done in [[L1], to refine the segmentation results.
For this purpose, we released our implementation online at
https://github.mit.edu/SPARK/sdpSegmentation.

Before delving into the contribution of this paper, Section
provides preliminary notions on inference in MRFs, while we
postpone the review of related work to Section

II. PRELIMINARIES

This section introduces standard notation for MRFs (Sec-
tion[lI-A) and provides necessary background on semidefinite
relaxations (Section|lI-B).

A. Markov Random Fields: Models and Inference

A Markov Random Field (MRF) is a graphical model in
which nodes are associated with discrete labels we want to
estimate, and edges (or potentials) represent given probabilistic
constraints relating the labels of a subset of nodes. Formally,
for each node ¢ in the node set V = {1,..., N} (where N is
the number of nodes), we need to assign a label z; € £, where
L={1,..., K} is the set of K possible labels. If K = 2 (i.e.,
nodes are classified into two classes) the corresponding model
is called a binary MRF. Here we consider K > 2 possible
labels, a setup generally referred to as a multi-label MRF.

Maximum a posteriori (MAP) inference. The MAP
estimate is the most likely assignment of labels, i.e., the
assignment of the node labels that attains the maximum of
the posterior distribution of an MRF, or, equivalently, the
minimum of the negative log-posterior. MAP estimation can be
formulated as a discrete optimization problem over the labels
r; € Lwithi=1,...,N [1]:

S Ei(zi)+ Y Ei(ix))

(i,5)eB

(PO)

where U C V is the set of unary potentials (probabilistic
constraints involving a single node), B C V x V is the set
of binary potentials (involving a pair of nodes), and F;(-)
and E;;(-) represent the negative log-distribution for each
unary and binary potential, respectively (described below).
For instance, in semantic segmentation each node in the
MREF corresponds to a pixel (or superpixel) in the image, the
unary potentials are dictated by pixel-wise classification from
a classifier applied to the image, and the binary potentials
enforce smoothness of the resulting segmentation [13]. The

binary potentials (often referred to as smoothness priors) are
typically enforced between nearby (adjacent) pixels.
MREF Potentials. A typical form for the unary and binary

potentials is:

8i
d;; otherwise

otherwise

(D
Eij(wi,x5) = {

where Z; is a data-driven noisy measurement of the label
of node 4 (typically from a classifier), and &; and J;; are
given scalars. Typically, it is assumed &; > 0, i.e., choosing
a label different from the measured one incurs a cost &;
in (PO). Similarly, for the binary potentials E;;(-) it is typically
assumed Sij > 0, i.e., label mismatch (z; # x;) incurs a
cost of &-j in the objective (PO). In this case the binary
potentials are called arttractive, while they are referred to as
repulsive when Sij < 0 (i.e., the potentials encourage label
mismatches) [[14].

The MREF resulting from the choice of potentials in eq. (T)
is known as the Potts model [15], which was first proposed
in statistical mechanics to model interacting spins in ferro-
magnetic materials. When K =2 (binary MRFs) the resulting
model is known as the Ising model [2l Section 1.4.1].

B. Standard Semidefinite Relaxation

Semidefinite programming (SDP) relaxation has been shown
to provide an effective approach to compute a good approxi-
mation of the global minimizer of [S], [L6l], [17]. In this
section we introduce a standard approach to obtain an SDP
relaxation, for which we design a fast solver in Section

In order to obtain an SDP relaxation, related works rewrite
each node variable z; € £ = {1,...,K} as a vector
w; € {—1,+1}%, such that w; has a single entry equal to
+1 (all the others are —1), and if the j-th entry of w; is
+1, then the corresponding node has label j. Moreover, they
stack all vectors w;, ¢ = 1,..., N, in a single N K-vector
w = [w] w) ... w}]". Using this reparametrization, the
inference problem (PO) can be written in terms of the vector
w as follows (full derivation in Appendix A):

wT Aw +2b"w
diag (wa) =1yk, (2
uiT'w:ZfK, t=1,....,N

min,,
subject to

where A and b are a suitable symmetric matrix and a suitable
vector collecting the coefficients of the binary terms and the
unary terms in (T), respectively; diag (ww") is the diagonal
of the matrix ww’, and u; = eiT ® 1%, where e; is an N-
vector which is all zero, except the i-th entry which is one,
1x is a K-vector of ones, and ® is the Kronecker product.
Intuitively, diag (ww?") contains the square of each entry of
w, hence diag (ww') = 1y imposes that every entry of
w has norm 1, i.e., it belongs to {—1,+1}; the constraint
uiTw = 2 — K writes in compact form 1Tw,; = 2— K, which
enforces each node to have a unique label (i.e., a single entry
in w; can be +1, while all the others are —1).

Before relaxing problem (), it is convenient to homogenize
the objective by reparametrizing the problem in terms of an
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extended vector y = [wT1]7, where an entry equal to 1 is
concatenated to w. We can now rewrite (2) in terms of y:

o= min, tr (Lny)

subject to  diag (yy') = Ink41
tr(Uyy')=2-K, i=1,...,N
(P1)
where L = {g g and U; = } In (PI), we

[

used the equality y Ly = tr (Lyy"), and noted that since
T
ww

yy' = [ A }, then tr (U;yy") = u] w.

So far we have only reparametrized problem (PO),
hence (PI) is still a MAP estimator. We can now introduce
the SDP relaxation: problem (PI)) only includes terms in the
form yy', hence we can reparametrize it using a matrix
Y = yy'. Moreover, we note that the set of matrices Y that
satisfy Y = yyT is the set of positive semidefinite (Y = 0)
rank-1 matrices (rank (Y') = 1). Rewriting (PI)) using Y and
dropping the non-convex rank-1 constraint, we obtain:

f& = miny tr(LY)
subject to  diag (Y) = 1nk+1
tr(U;)Y)=2-K, i=1,...,N
Y -0
(S

which is a (convex) semidefinite program and can be solved
globally in polynomial time using interior-point methods [18]].
While the SDP relaxation (SI) is known to provide near-
optimal approximations of the MAP estimate, interior-point
methods are typically slow in practice and cannot solve
problems with more than few hundred nodes in a reasonable
time.

ITI. DARS: DUAL ASCENT RIEMANNIAN STAIRCASE

This section presents the first contribution of this paper: a
dual ascent approach to efficiently solve large instances of the
standard SDP relaxation (SI).

A. Dual Ascent Approach

The main goal of this section is to design a dual ascent
method, where the subproblem to be solved at each iteration
has a more favorable geometry, and can be solved quickly
using the Riemannian Staircase method introduced in Sec-
tion Towards this goal, we rewrite (SI) equivalently as:

miny ¢(Y)

subject to  tr (U;Y)=2—- K, )

i=1,...,N

where the objective function is now g(Y) tr (LY) +
I(diag (Y) = 1nk+1) + Z(Y = 0), where Z(-) is the
indicator function which is zero when the constraint inside
the parenthesis is satisfied and plus infinity otherwise.

Under constraints qualification (e.g., the Slater’s condition
for convex programs [19, Theorem 3.1]), we can obtain an
optimal solution to (3) by computing a saddle-point of the
Lagrangian function £(Y, \):

max i?/f LY, )= max igljfg(Y)JrZ,fil Ai(tr (U Y)+K—-2)
“)

where XA € RY is the vector of dual variables and Y is the
primal variable.

The basic idea behind dual ascent [20, Section 2.1] is to
solve the saddle-point problem (@) by alternating maximization
steps with respect to the dual variables A and minimization
steps with respect to the primal variable Y .

Dual Maximization. The maximization of the dual variable
is carried out via gradient ascent. In particular, at each iteration
t=1,...,7 (T is the maximum number of iterations), the
dual ascent method fixes the primal variable and updates the
dual variable X as:

A® = A=Y L av L, (YED A1) (5)

where VL (Y =1 X(¢=1) is the gradient of the Lagrangian
with respect to the dual variables, evaluated at the latest
estimate of the primal-dual variables (Y ¢~1) A(~1)) and «
is a suitable stepsize. It is straightforward to compute the gra-
dient with respect to the i-th dual variable as VLy, (Y, ) =
tr (U;Y) + K — 2. Intuitively, the second summand in @)
penalizes the violation of the constraint tr (U;Y) = 2 — K
(for all 7). Moreover, since the gradient in () grows with the
amount of violation tr (U;Y) — K + 2, the dual update (3]
increases the penalty for constraints with large violation.

Primal Minimization. The minimization step fixes the dual
variable to the latest estimate A(*~1) and minimizes (@) with
respect to the primal variable Y:

ming(Y) + S0, ATV @ (UY) + K -2) ©
where we substituted “inf” for “min” since the objective
cannot drift to minus infinity due to the implicit constraints
imposed by the indicator functions in ¢(Y’). Recalling the
expression of ¢g(Y'), defining Ly = L + Zf\il )\,Et_l)Ui, and
moving again the indicator functions to the constraints we
write (6) more explicitly as:

Y® = argminy tr(L,Y)
subject to  diag (Y) = 1nk41 @)
Y -0
where we dropped the constant terms Y AY(K —2)

from the objective since they are irrelevant for the optimiza-
tion. The minimization step in the dual ascent is again an SDP,
but contrarily to the standard SDP (ST, problem (7) can be
solved quickly using the Riemannian Staircase, as discussed
in the following.

B. A Riemannian Staircase for the Dual Ascent Iterations

This section provides a fast solver to compute a solution for
the SDP , that needs to be solved at each iteration of the
dual ascent method of Section

We use of the Burer-Monteiro method [21]], which replaces
the matrix Y’ € RIVE+HDX(NEFL) i [7) with a rank-r product
RRT with R € RIWK+1)xr,

tr (LARRT)
diag (RRT) = ]-NK+1

Note that the constraint Y >= 0 in (7)) becomes redundant after
the substitution, since RRT is always positive semidefinite,
hence it is dropped.

Following Boumal et al. [9] we note that the constraint set
in (8) describes a smooth manifold, and in particular a product

ming
subject to

®)



of Stiefel manifolds. To make this apparent, we recall that the
(transposed) Stiefel manifold is defined as [9]:

St(d,p) = {M € R*?. MM =1,} )

Then, we observe that diag (RRT) = 1nyx+1 can be written
as R;R] =1,i=1,...,NK + 1 (where R; is the i-th row
of R), which is equivalent to saying that R; € St(1,r) for
i=1,..., NK + 1. This observation allows concluding that
the matrix R belongs to the product manifold St(1,r)NV&+1,
Therefore, we can rewrite @ as an unconstrained optimization
on manifold:

tr (LARR") (R1)

min

ReSt(1,r)NEK+1
The formulation (RI) is non-convex (the product of Stiefel
manifolds describes a non-convex set), but one can find
local minima efficiently using iterative methods [9], [22].
While it might seem that little was gained (we started
with an intractable problem and we ended up with another
non-convex problem), the following remarkable result from
Boumal et al. 9] ties back local solutions of to globally
optimal solutions of the SDP (7).

Proposition 1 (Optimality Conditions for (RI), Corollary
8 in [9]): If R € St(1,7)NE+! is a (column) rank-deficient
second-order critical point of problem (RT)), then R is a global
optimizer of (RI), and Y* = RR" is a solution of the
semidefinite relaxation (7).

The previous proposition ensures that when local solutions
(second-order critical points) of are rank deficient, then
they can be mapped back to global solutions of (7), hence
providing a way to solve (7)) efficiently via (RT).

The catch is that one has to choose the rank r large
enough to obtain rank-deficient solutions. Related work [9]]
therefore proposes the Riemannian staircase method, where
one solves (RT) for increasing values of r till a rank-deficient
solution is found. Boumal et al. [9] also provide theoretical
results ensuring that rank-deficient solutions are found for
small r (more details in Section [V).

C. DARS: Summary, Convergence, and Guarantees

We name DARS (Dual Ascent Riemannian Staircase) the
approach resulting from the combination of dual ascent and
the Riemannian Staircase. DARS starts with an initial guess
for the dual variables (we use A = Op), and then alternates
two steps: (i) the primal minimization where a solution for
is obtained using the Riemannian Staircase (RT) (in practice
this is solved using iterative methods, such as the Truncated
Newton method); (ii) the dual maximization were the dual
variables are updated using the gradient ascent update (3).

Rounding. Upon convergence, DARS produces a matrix
Y* = RR". When deriving the standard SDP relaxation (ST)
we dropped the rank-1 constraint, hence Y * cannot be written
in general as Y* = gy*. The process of computing a feasible
solution g for the original problem (PT)) is called rounding. A
standard approach for rounding consists in computing a rank-
1 approximation of Y (which can be done via singular value
decomposition) and rounding the entries of the resulting vector
in {—1;+1}. We refer to g as the rounded estimate and we
call f31 the objective value attained by ¢ in (PI).

Convergence. While dual ascent is a popular optimiza-
tion technique, few convergence results are available in the
literature. For instance, dual ascent is known to converge
when the original objective is strictly convex [23]]. Currently,
we observe that DARS converges when the stepsize « in (3]
is sufficiently small. We prove the following per-instance
performance guarantees.

Proposition 2 (Guarantees in DARS): If the dual ascent
iterations converge to a value A\* (i.e., the dual iterations reach
a solution where the gradient in (3 is zero) then the following
properties hold:

o let R* be a (column) rank-deficient second-order critical
point of problem (RT) with Ly = L + > | A*U,, then
the matrix Y* = (R*)(R*)" is an optimal solution for
the standard SDP relaxation (ST);

o let f&, be the (optimal) objective value attained by Y*
in the standard SDP relaxation (SIJ), f, be the optimal
objective of (PI)), and f s1 the objective attained by the
rounded solution g, then it holds f51 —fp1 £ fs1— 4.

The proof of Proposition [2| is given in Appendix B. The first
claim in Proposition [2] ensures that when the dual ascent
method converges, it produces an optimal solution for the
standard SDP relaxation (SI)). The second claim states that we
can compute an upper-bound on how far the DARS’ solution is
from optimality (fs1 — fp,) using the rounded objective fs;
and the relaxed objective f%;.

IV. FUSES: FAST UNCONSTRAINED
SEMIDEFINITE SOLVER

In this section we propose a more direct way to obtain a
semidefinite relaxation and a remarkably faster solver. While
DARS is already able to compute an approximate MAP esti-
mate in seconds for large problems, the approach presented
in this section requires two orders of magnitude less time
to compute a solution of comparable (but slightly inferior)
quality. We first present a binary {0, 1} (rather than {—1,+1})
matrix formulation (Section[[V-A) and derive an SDP relax-
ation (Section[[V-B). We then present a Riemannian staircase
approach to solve the resulting SDP in real time (Section[TV-C)
and discuss performance guarantees (Section[IV-D).

A. Matrix Formulation

In this section we rewrite the node variables x; € £ =
{1,...,K} as an N x K binary matrix X € {0, 1}"*¥ that
is such that if an entry in position (7,j) is equal to 1, then
node ¢ has label j and is zero otherwise. In other words, the
i-th row of X is a binary vector that describes the label of
node ¢ and has a single entry equal to 1 in position j, where
7 is the label assigned to the node. This is a more intuitive
parametrization of the problem and indeed leads to a more
elegant matrix formulation, given as follows.

Proposition 3 (Binary Matrix Formulation of MAP-MRF):
Let G € RV*K and H € RVXN be defined as follows:

. G; = —Sie;,, ifield
G - T N .
G; =0y, otherwise (10)
H= HZ":—SZ‘]‘, if (7,7])EB
H;; =0, otherwise

where G is the i-th row of G, H;; is the entry of H in row ¢
and column j, 6; and §;; are the coefficients defining the MRF,



f. eq. (I), and ez, is a vector with a unique nonzero entry
equal to 1 in position Z; (Z; is the measured label for node 7).
Then the MAP estimator can be equivalently written as:

miny tr (XTHX + tr (GXT)
subject to  diag (XXT =1y
X € {0, 1}VxK
The equivalence between and (TI) is proven in Ap-
pendix C. We note that the constraint diag (XXT) = 1y
in (contrarily to the diag(-) constraint in (2)) imposes
that each node has a unique label when X € {0, 1}V*K,

B. Novel Semidefinite Relaxation

Y

This section presents a semidefinite relaxation of (TI).
Towards this goal, we first homogenize the cost by lifting the
problem to work on a larger variable:

}) (12)

L X ) T [ XXT X
V= [ I } (note. Vv = [ X7 Ix
where Iy is the KxK identity matrix. The reparametrization
is given as follows.

Proposition 4 (Homogenized Binary Matrix Formulation):

Let us define Q = lIéT %OG ] e RINHE)X(N+E)  Then
the MAP estimator can be rewritten as:

fpa = miny, tr (VTQV)r
subject to  diag ([VV']y) =1y P2)
VvV, =1k

Vv € {0, 1}(N+K)X(K)

where [VV'T];; denotes the (N x N) top-left block of the
matrix VVT, cf @I), (the corresponding constraint rewrites
the first constraint in (T1)), and where [V'V ], denotes the
(K x K) bottom-right block of VV'T, ¢f. (12).

At this point it is straightforward to derive a semidefinite
relaxation, by noting that tr (VTQV) =tr (QVVT) and by
observing that VV'T is a (N + K) x (N + K) symmetric
positive semidefinite matrix of rank K.

Proposition 5 (Semidefinite Relaxation): The following SDP
is a convex relaxation of the MAP estimator (P2):

f50 = ming tr (QZ)
subject to  diag ([Z]y) = 1w
S2
(Z]pr = Ik (52)
Z >0

where [Z]y; and [Z]p, are the (N x N) top-left block and the
(K x K) bottom-right block of the matrix Z, respectively, and
we dropped the rank-K constraint for Z.

C. Accelerated Inference via the Riemannian Staircase

We now present a fast specialized solver to solve the
SDP (S2) in real time and for large problem instances. Simi-
larly to Section [[II-B} we use the Burer-Monteiro method [21]],
which replaces the matrix Z in (S2)) with a rank-r product
RR™:

ming tr (QRRT
subject to  diag ([RR']y) = 1x (13)
[RR ]y =1k

where R € RNV*" (for a suitable rank r), and where the
constraint Z > 0 in (S2) becomes redundant after the
substitution, and is dropped.

Similarly to Section [[II-B] we note that the constraint set
in (I3) describes a smooth manifold, and in particular a
product of Stiefel manifolds. Specifically, we observe that
diag ([RRT]”) = 1y can be written as R;R] = 1, i =
1,..., N, which is equivalent to saying that R; € St(1,r) for
i =1,...,N. Moreover, denoting with R; the block matrix
including the last K rows of R, the constraint [RR"];, = I
can be written as RbRg = Ik, which is equivalent to
saying that Ry, € St(K,r). The two observations above allow
concluding that the matrix R belongs to the product manifold
St(1,7)N x St(K,r). Therefore, we can rewrite (I3) as an
unconstrained optimization on manifold:

min

tr (QRR"
ReSt(1,r)N xSt(K,r) : <Q )

(R2)

The formulation (R2) is non-convex but one can find local
minima efficiently using iterative methods [9], [22]. We can
again adapt the result from Boumal et al. [9] to conclude that
rank-deficient local solutions of (R2) can be mapped back to
global solutions of the semidefinite relaxation (S2).

Proposition 6 (Optimality Conditions for (R2), Corollary
8 in [9]): If R € St(1,7)N x St(K,r) is a (column) rank-
deficient second-order critical point of problem (R2), then R
is a global optimizer of (R2), and Z* = RR" is a solution
of the semidefinite relaxation (S2).

Similarly to Section [[II-B] we can adopt a Riemannian
staircase method, where one solves @]) for increasing values
of r till a rank-deficient solution is found. In all fests we
performed, at most two steps of the staircase (initialized at
r = K 4 1) were sufficient to find a rank-deficient solution.

D. FUSES: Summary, Convergence, and Guarantees

We name FUSES (Fast Unconstrained SEmidefinite Solver)
the approach presented in this section. Contrarily to DARS,
FUSES is extremely simple and only requires solving the rank-
restricted problem (R2), which can be solved using iterative
methods, such as the Truncated Newton method. Besides its
simplicity, FUSES is guaranteed to converge to the solution of
the SDP (S2) for increasing values of the rank 7 (Proposi-
tion [6).

Rounding. Upon convergence, FUSES produces a matrix
Z*. Similarly to DARS, we obtain a rounded solution by
computing a rank-K approximation of Z* and rounding the
corresponding matrix in {0,1} (i.e., we assign the largest
element in each row to 1 and we zero out all the others).
We denote with X the resulting estimate and we call fso the
objective value attained by X in (TI).

Since the SDP (S2) is a relaxation of the MAP estima-
tor (P2)), it is straightforward to prove the following proposi-
tion.

Proposition 7 (Guarantees in FUSES): Let fZ, be the
optimal objective attained by Z* = (R)(R)" in (S2), f5, be
the optimal objective of (P2), and fsg be the objective attained
by the rounded solution X, then fgo — fpy < fo2 — fio.

Again, we can use Proposition [/| to compute how far the
solution computed by FUSES is from the optimal objective
attained by the MAP estimator.



V. EXPERIMENTS

This section evaluates the proposed approaches, FUSES and
DARS, on semantic segmentation problems, comparing their
performance against several state-of-the-art MRF solvers.

A. FUSES and DARS: Implementation Details

We implemented FUSES and DARS in C++ using Eigen’s
sparse matrix manipulation and leveraging the optimization
suite developed in [22]. Sparse matrix manipulation is crucial
for speed and memory reasons, since the involved matrices are
very large. For instance in DARS, the matrix Ly in (RI) has
size (NK + 1) x (NK + 1) where typically N > 10° and
K > 20. We initialize the rank 7 of the Riemannian Staircase
to be r = 2 for DARS and r = K + 1 for FUSES (this is
the smallest rank for which we expect a rank-deficient solu-
tion). The Riemannian optimization problems (RI) and (R2)
are solved iteratively using the truncated-Newton trust-region
(TNT) method. We refer the reader to [24] for a description
of the implementation of a truncated-Newton trust-region
method. As in [24], we use the Lanczos algorithm to check
that (RI) and (R2) converged to rank-deficient second-order
critical points, which are optimal according to Proposition [I]
and Proposition [6] respectively. If the optimality condition
is not met, the algorithm proceeds to the next step of the
Riemannian staircase, repeating the optimization with the rank
r increased by 1. In all experiments, FUSES found an optimal
solution within the first two iterations of the staircase, while
we observed that the rank in DARS (initially r = 2) sometimes
increases to 6 — 8. Our implementation has been made avail-
able online at https://github.mit.edu/SPARK/sdpSegmentation.

Parameter Choice. The proposed techniques are based in
the Riemannian staircase method and they look for rank-
deficient solutions for increasing values of the rank r. As
mentioned above, we use the initial value of » = 2 for DARS
and r = K + 1 for FUSES. After solving the rank-constrained
SDP for a given value of r, each technique checks if the
resulting solution is rank deficient (in which case an optimal
solution is found), or the techniques moves to the next step
of the staircase (r <— r + 1). The thresholds used to check
that the Riemannian optimization converged (gradient norm
and relative decrease in the objective) and that the resulting
solution is rank deficient (eigenvalue tolerance) are given in
Table [l The table also reports parameters governing the trust-
region method (maximum number of iterations, initial radius
and parameters oy and o the decide how to change the
radius), as well as the Conjugate Gradient (CG) solver used
within TNT. In DARS, we also limit the maximum number
of dual ascent iterations to 7' = 1000, and we terminate
iterations when the gradient in (5)) has norm smaller than 0.5.
We adopted a stepsize o = 0.005 for the dual ascent iterations.

B. Setup, Compared Techniques, and Performance Metrics

Setup. We evaluate FUSES and DARS using the Cityscapes
dataset [25]], which contains a large collection of images
of urban scenes with pixel-wise semantic annotations. The
annotations include 30 semantic classes (e.g., road, sidewalk,
person, car, building, vegetation). We first extract superpixels
from the images using OpenCV (we obtain around 1000
superpixels per image, unless specified otherwise). Then, the

[ Parameters [ DARS | FUSES |
Initial rank 2 K+1
Gradient norm tolerance le-3 le-2
Eigenvalue tolerance le-2
Relative decrease in function value tolerance le-5
Max TNT iterations 500
Initial trust-region radius (dg) 1
Trust region decrease factor (av1) 0.25
Trust region increase factor (a2) 2.5
Max GC iterations 2000
Successful CG step (1) 0.9
Max dual ascent iterations (1°) 1000 -
Dual ascent gradient tolerance 0.5 -
Dual ascent gradient stepsize 0.005 -

TABLE T

PARAMETERS USED IN DARS AND FUSES.

unary terms are obtained using the 512x256 pretrained model
from Bonnet [26], which uses a CNN to obtain pixel-wise
segmentation. We restrict our evaluation to 19 (out of 30)
classes to be consistent with Bonnet. Moreover, we create
the unary terms in the MRF by picking the three most likely
labels (averaged across all pixels in a superpixel) returned by
Bonnet. Bonnet achieves 52.65% accuracy on the Cityscapes
dataset, while the accuracy drops after restricting the labeling
to the superpixels (see Tables [ and [IT). Bonnet returns noisy
labels for each superpixel and the role of the MRF is to
refine the segmentation by encouraging smoothness of nearby
labels. The binary potentials are modeled as Sl-j = A\ +
A2 exp(—B||ci — ¢;|3) 2. Section 7.2], where ¢; denotes the
average color vector in superpixel ¢, A\; and Ay are parameters
to tune, and 8 = (2([|c; — ¢;|3)) " where "(-)" represents the
sample mean. In our tests, we set A\; = 0.02, Ay = 0.04, and
B =0.000173; A\; and A, are tuned to maximize the accuracy
of the optimal solution of (PO) (computed from CPLEX, see
below) on the training data.

Compared techniques. We compare the proposed tech-
niques against three state-of-the-art methods: a-expansion [6]]
(label: a-exp). Loopy Belief Propagation (8] (label: LBP) and
Tree-Reweighted Message Passing [[1] (label: TRW-S). We use
the implementation of these methods available in the newly-
released OpenGM?2 library [27].

Performance metrics. We evaluate the results in terms of
suboptimality, accuracy, and CPU time. We measure the sub-
optimality using three metrics: the percentage of optimal la-
bels, the percentage relaxation gap, and the percentage round-
ing gap. The optimal labels are those that agree with the op-
timal solution of (PO). The relaxation gap is (f5, — f51)/ /51
for DARS, and (fp, — f&,)/fpy for FUSES. The rounding gap
is (fs1—f5,)/ 5, for DARS, and (fsa — f5y)/f 5y for FUSES.
We compute the optimal labels (and the corresponding optimal
objective) using a commercial tool for integer programming,
CPLEX [28]]. The runtime of CPLEX increases exponentially
in the problem size hence we can only use it offline for
benchmarking the proposed solvers. We measure the accuracy
using the Intersection over Union (IoU) metric [25]], and record
the CPU time for each compared technique.

C. Semantic Segmentation Results

Fig. |2| shows a typical execution of the algorithms for a
single image in the Cityscapes dataset. Fig. 2fa) shows the
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Fig. 2. Convergence results for a single test image: objective value over
time (in milliseconds) for all the compared techniques. (a) Objective vs. time
for (P2); (b) Objective vs. time for (PI); (c)-(d) Objective vs. time for (PO).
convergence of FUSES, reporting the relaxed objective attained
by iteratively solving (R2) (FUSES-relaxed), the objective of
the corresponding rounded estimate at each iteration (FUSES-
rounded), and the optimal cost attained by CPLEX (Exact).
The approach converges in few milliseconds, and the corre-
sponding rounded estimate settles near the optimal objective.
Fig.[2b) shows the convergence of DARS, reporting the relaxed
objective attained by (RI) (DARS-relaxed), the objective of
the corresponding rounded estimate (DARS-rounded), and the
optimal cost from CPLEX (Exact). DARS’ relaxed cost does
not decrease monotonically. Moreover, its convergence time is
around two orders of magnitude slower than FUSES.
Fig.2[c) shows all the compared techniques, while Fig. 2[d)
provides a zoomed-in view restricted to the first 18ms. We
only report the final cost for DARS, whose convergence is
much slower than all the other methods. From Fig. Ekc)-(d) we
note that a-exp, LBP, an TRW-S perform well in segmentation
problems and indeed return near-optimal solutions in all the
tested images. a-exp and LBP have longer convergence tails
but typically obtain a smaller value than FUSES and DARS.
TRW-S also requires more time to terminate but attains a near-
optimal objective in few iterations. FUSES is farther from
optimal (see also Tables [[I{III), but it is the only technique that
does not require any initial guess. FUSES attains an objective
comparable to the one of DARS, while being much faster.

Tables [[I) and [[II| report statistics describing the performance
of the compared techniques on the Cityscapes dataset, when
using 1000 and 2000 superpixels, respectively. We show the
percentage of optimal labels (“Optimal Labels” column), the
relaxation gap (“Relax Gap” column), and the rounding gap
(“Round Gap” column). The tables show that FUSES and
DARS have comparable suboptimality (typically larger than
the other compared techniques). FUSES and DARS produce
optimal assignments for most of the nodes in the MRF, and
attain a rounded cost within 0.1% of the optimum. The IoU
(“Accuracy” column) shows that all the techniques have com-
parable accuracy (around 49.4% for 1000 superpixels). All the
compared techniques outperform the Bonnet solution restricted
to the superpixels (48.08% in Table by a small margin
of 1.4%. However, their accuracy is inferior to the original
Bonnet solution (52.65%, not restricted to superpixels). This
is due to the fact that the MRF solution heavily depends on the
quality of the superpixels and on the model used for the binary
terms. While improving these aspects is outside the scope of
this work (we focus on solving the MREF, rather than building
it from data), in Section we provide extra results to show
that having more accurate superpixels and binary terms can
boost the IoU above 70%.

FUSES is the fastest MRF solver (more than 2x faster
than TRW-S) and can compute a solution in milliseconds,
while not relying on any initial guess. Table also shows
that FUSES scales better than other techniques. Fig. [I] shows
qualitative segmentation results obtained using the proposed
techniques. We also attempted to use a general-purpose SDP
solver, cvx [10], for our evaluation: with only 200 superpixels,
CvX requires more than 50 minutes to solve @]) while for
1000 superpixels it crashes due to excessive memory usage.

Fig. [3(a) shows the relaxation gap for FUSES and DARS for
increasing number of nodes; we control the number of nodes
by controlling how many superpixels each image is divided
into. The relaxation gap decreases for increasing number of
nodes, which is a desirable feature since one typically solves
large problems (>1000 nodes). The relaxation gap in FUSES
is slightly larger: in hindsight, we traded-off suboptimality for
fast computation. Fig. [3(b) shows the relaxation gap for FUSES
and DARS for increasing number of labels; we artificially
reduce the number of labels in Cityscapes for this test. The
quality of both relaxations does not degrades significantly for

Suboptimalit: .
Method Optimal lgelax y Round Accuracy | Runtime
Labels (%) | Gap (%) Gap (%) (% ToU) (ms)
FUSES 99.17 2.584 0.047 49.46 16.15
DARS 99.68 0.210 0.010 49.43 683.77
a-exp 99.93 - 8.08e-4 49.38 65.78
LBP 99.99 - 1.74e-4 49.38 106.48
TRW-S 100.00 - —8.31e-6 49.36 41.64
Bonnet (SP) - - - 48.08 -
TABLE II

PERFORMANCE ON THE CITYSCAPES DATASET (1000 SUPERPIXELS).

Suboptimalit .
Method Optimal lgelax A Round Accuracy | Runtime
Labels (%) | Gap (%) Gap (%) (% 1oU) (ms)
FUSES 99.17 2.331 0.050 51.37 40.20
DARS 99.68 0.163 0.011 51.27 1700.45
a-exp 99.93 - 1.02e-3 51.22 145.48
LBP 99.99 1.57e-4 51.23 250.58
TRW-S 100.00 —3.31e-6 51.21 99.19
Bonnet (SP) - - - 50.28 -
TABLE IIT

PERFORMANCE ON THE CITYSCAPES DATASET (2000 SUPERPIXELS).
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D. Semantic Segmentation: Results with Enhanced MRF's

The main focus of this work is to design a fast MRF solver.
However, when used for semantic segmentation, the accuracy
(IoU) of the resulting solution may be implicitly limited by the
choice of unary and binary potentials, as well as by the choice
of nodes (superpixels). For instance, a superpixel including
pixels belonging to different classes implicitly induces errors
in the segmentation and the MRF cannot do anything to
mitigate that issue (each superpixel can only be assigned a
single label). This section presents an extra set of results to test
the performance of the MRF solution for increasing quality of
the unary potentials, binary potentials, and superpixels. While
the tests for improved unary factors are realistic (we use a
slower but more accurate model from Bonnet), the tests with
improved binary potentials and superpixels rely on an idealized
(and unrealistic) setup; in particular we create improved binary
potentials and superpixels using the knowledge of the ground
truth labels. While this setup is not implementable in practice,
we believe it provides interesting insights on the potential
performance of MRF-based segmentation (and FUSES) when
the construction of the MRF is less naive than the one in
Section [V-C| For these extra results, we omit DARS, which is
currently slow compared to the other techniques.

the MRF solution outperforms (by a small margin) the pixel-
wise accuracy of Bonnet (61.23%). Moreover, the accuracy of
all techniques is approximately 10% higher than the results in

Tables [ and
Suboptimalit .
Method Optimal lI)Qelax s Round Accuracy | Runtime
Labels (%) | Gap (%) | Gap (%) (% ToU) (ms)
FUSES 99.06 0.947 0.131 62.67 23.97
a-exp 99.97 - 7.39e-3 63.33 46.41
LBP 99.89 - 3.36e-3 63.26 114.87
TRW-S 100.00 - 7.51e-6 63.32 38.07
Bonnet (SP) - - - 60.85 -
Bonnet (P) - - - 61.23 -
TABLE VI

PERFORMANCE ON THE CITYSCAPES DATASET
(1000 SUPERPIXELS, Bonnet 1024 X 512 MODEL, IMPROVED BINARY).

Suboptimality

Method Optimal Relax Round Accuracy | Runtime
Labels (%) | Gap (%) | Gap (%) (% IoU) (ms)
FUSES 98.93 0.944 0.156 63.28 45.87
a-exp 99.97 - 5.45e-4 64.13 91.94
LBP 99.88 - 4.16e-3 64.02 296.94
TRW-S 100.00 - 0.00 64.09 98.62
Bonnet (SP) - - - 61.16 -
Bonnet (P) - - - 61.23 -
TABLE VII

PERFORMANCE ON THE CITYSCAPES DATASET
(2000 SUPERPIXELS, Bonnet 1024 x 512 MODEL, IMPROVED BINARY).

Suboptimality

Method Optimal Relax Round Accuracy | Runtime
Labels (%) | Gap (%) | Gap (%) (% IoU) (ms)
FUSES 99.50 2.31 0.025 60.96 16.85
a-exp 99.97 - 6.22e-4 60.98 51.90
LBP 99.99 - 1.69e-4 60.99 60.59
TRW-S 100.00 - 8.66e-6 60.99 19.94
Bonnet (SP) - - - 60.85 -
Bonnet (P) - - - 61.23 -
TABLE TV
PERFORMANCE ON THE CITYSCAPES DATASET
(1000 SUPERPIXELS, Bonnet 1024 X 512 MODEL).
Suboptimalit .
Method Optimal Pl){elax : Round Accuracy | Runtime
Labels (%) | Gap (%) | Gap (%) (% ToU) (ms)
FUSES 99.43 2.036 0.034 61.36 36.43
a-exp 99.96 - 5.80e-4 61.31 112.01
LBP 99.99 - 1.20e-4 61.32 166.62
TRW-S 100.00 - 4.64e-6 61.32 57.52
Bonnet (SP) - - - 61.16 -
Bonnet (P) - - 61.23 -
TABLE V

(2000 SUPERPIXELS, Bonnet 1024 X 512 MODEL).

PERFORMANCE ON THE CITYSCAPES DATASET

Improved Binary Potentials. This section evaluates the
performance of the MRF-based semantic segmentation tech-
niques when computing the binary potentials from the ground
truth labels. This is not a realistic setup and is used to obtain
an “upper bound” on the performance of the MRF solvers
when the binary potentials are accurate. Therefore, for the tests
in this section, we evaluated all compared techniques using
synthetic binary potentials obtained as follows: for a pair of
superpixels ¢ and j, we set 52-]- = 0.2 for nearby superpixels
with the same ground truth labels and &»j = 0 otherwise.
Tables and confirm our findings so far (FUSES is
the fastest technique but it is slightly less accurate than
competitors) but also stress that an improved choice of binary
potentials can further boost accuracy. In particular, Table
shows that FUSES is approximately 2% better than Bonnet with
this improved binary potentials. We remark that while in the
Cityscapes dataset we can only use pixel information to create
the binary potentials, in several robotics applications, one can
leverage other sources of information, e.g., the geometry of the
scene estimated from SLAM, to obtain better binary potentials.

Improved Unary Potentials. One way to improve the
accuracy of the MRF segmentation is to use a better CNN
model for the unary potentials. In Section [V-C| we ran
experiments with the Bonnet 512 %256 model which strikes a
good balance between accuracy and computational cost. In
this section, we report extra results using a more accurate
model, Bonnet 1024 x 512, which requires four times more
operations but achieves 61.23% accuracy (pixel-wise). We
used the Bonnet results to create improved unary potentials
in the MRF and repeated the tests in Section [V-C| keeping the
parameters as in the previous tests. The results are reported
in Tables V] and [V] The tables report both the pixel-wise
accuracy of Bonnet (“Bonnet (P)”) and the accuracy of the
induced superpixel segmentation (“Bonnet (SP)”). Table
confirms that FUSES is fast but slightly less optimal than the
other techniques. Table [V] shows that with 2000 superpixels

Suboptimalit; .
Method Optimal Rpelax y Round Accuracy | Runtime
Labels (%) | Gap (%) Gap (%) (% ToU) (ms)
FUSES 99.54 0.899 0.059 72.23 14.89
a-exp 99.98 - 4.20e-4 72.73 34.56
LBP 99.94 - 1.30e-3 72.70 64.40
TRW-S 100.00 - —7.18¢-6 72.71 27.10
Bonnet (SP) - - - 69.53 -
Bonnet (P) - - - 61.23
TABLE VIIT

PERFORMANCE ON THE CITYSCAPES DATASET (1000 SUPERPIXELS,
Bonnet 1024 x 512 MODEL, IMPROVED BINARY AND SUPERPIXEL).

Improved Superpixels. We can boost performance even
further by considering an enhanced superpixel segmentation.
For these tests, we consider a “ground truth” superpixel
segmentation where each superpixel is constrained to include
pixels from a single class; for this purpose we obtain the



Suboptimality

Method Optimal Relax Round | Accuracy | Runtime
Labels (%) | Gap (%) Gap (%) (% IoU) (ms)
FUSES 99.47 0.898 0.072 72.50 34.91
a-exp 99.98 - 3.48e-4 73.34 74.36
LBP 99.94 1.99¢-3 73.28 171.95
TRW-S 100.00 —5.80e-7 73.33 74.11
Bonnet (SP) - - 68.89 -
Bonnet (P) - - 61.23
TABLE IX

PERFORMANCE ON THE CITYSCAPES DATASET (2000 SUPERPIXELS,
Bonnet 1024 X 512 MODEL, IMPROVED BINARY AND SUPERPIXEL).

superpixel segmentation from the ground truth labeling of
the Cityscapes images. With the improved superpixels, we
attain an accuracy higher than 72% for all the MRF-based
techniques, with an improvement of 11% with respect to
Bonnet (61.23%). While this setup leverages ground truth
labels, hence it is not implementable in practice, one can
envision to inform the superpixel creation with geometric
information (e.g., 3D reconstruction from SLAM), so to only
cluster together pixels picturing nearby points in 3D.

VI. RELATED WORK

This section reviews inference techniques (Section[VI-A}
and applications (Section[VI-C)) for pairwise MRFs
including work on semantic segmentation. Our presentation
is based on [1], [2], [3] but also covers more recent work on
MRFs and semantic segmentation.

A. Exact Inference in MRFs

Efficient Algorithms. Inference in MRFs is intractable in
general. However, particular instances of the problem are
solvable in polynomial time. In particular, the Ising model
can be solved exactly in polynomial time via graph cut [29],
[30]. Note that graph cut algorithms are exact when binary
potentials are “attractive”, i.e., gij > 01in (priors encourage
nearby nodes to have the same label). MRFs with repulsive
potentials (Sij < 0) are intractable in general [31]. A more
general (necessary and sufficient) condition that ensures op-
timality of graph cut for binary pairwise MRFs with classes
L = {0;1} is the regularity condition:

E;;(0,0) + E;;(1,1) < E;;(0,1) + E;;(1,0)  (14)
for any (i,7) € B, see Lemma 3.2 and Theorem 3,1 in [31].
The regularity condition in eq. (I4) is a special case of
submodularity, and indeed the corresponding potentials are
also called submodular [31]], [32], [33].

For multi-label pair-wise MRFs, exact solutions exist for
the case when the binary potentials are convex functions of
the labels [34], [35], [36]] and for the case where the binary
potentials are linear and the unary potentials are convex [37].
We remark that these approaches assume a linear ordering of
the labels, where the potentials penalize node labels depending
on their label distance |z; — x;|; this means that choosing
z; = 1 and z; = 3 incurs a larger penalty than choosing
z; = 1 and x; = 2; on the other hand, the Potts model in
eq. (I) penalizes in the same way any class mismatch z; # z;.
Assuming a linear ordering is often unrealistic in practice;
for instance, in semantic segmentation the classes (e.g., cat,
table, car) do not admit a linear order in general. Moreover,
convexity is a strong assumption for several MRF applications,
such as depth reconstruction, where nonconvex costs have

the desirable property of being discontinuity-preserving [31]]
contrarily to convex ones, which tend to smooth out depth
discontinuities. Inference in multi-class MRF based on the
Potts model is NP-hard, see [6].

In the special case where the topology of the MRF is a
chain (e.g., when the MRF describes a 1D signal or sequence),
or more generally a tree, Dynamic Programming provides an
optimal MAP estimate in polynomial time, see [33l], [38].
Related work [39], [40] also extends dynamic programming
to certain families of graphs with cycles and small cliques.

Global Integer Solvers. The energy minimization prob-
lem (PO) is a quadratic integer program and can be easily
reformulated as a binary optimization problem [41], [42]], [43].
Integer programming is NP-hard in general, but one may still
resort to state-of-the-art integer solvers (e.g., CPLEX [28]]) for
moderate-size instances. For quadratic and linear programs,
integer solvers based on cutting plane methods or branch &
bound are able to produce solutions for problems with few
hundred variables relatively quickly (i.e., in few seconds), but
become unacceptably slow for larger problems. A Branch-and-
Cut approach is proposed in [44]]. An evaluation and a broader
review of integer programming for MRFs is given in [3].

B. Approximate and Local Inference in MRFs

Iterative Local Solvers and Meta-heuristics. Local solvers
start at a given initial guess and iteratively try to converge to
a local optimum of the cost function. Early work includes
the [terative Local Modes (ICM) of Besag [45], which at
each iteration greedily changes the label of a node in order
to get the largest decrease in the cost. ICM is known to
be very sensitive to the quality of the initial guess [1]. In
order to improve convergence, Geman and Geman [46] use
Simulated Annealing to perform inference in MRFs. Simulated
Annealing requires exponential time to converge in theory and
is notoriously slow in practice [47]].

Graph Cuts and Move-Making Algorithms. While graph
cut methods are able to compute globally optimal solutions
in binary pairwise MRFs with submodular potentials (Sec-
tion [VI-A)), they are only able to converge to local minima
in non-submodular binary MRFs or in multi-class MRFs. For
the binary case, related works [48]], [32] develop schemes to
approximately solve MRFs with non-submodular potentials.
Regarding the multi-class case, popular graph cut methods
include the swap-move (a--swap) and the expansion-move
(a-expansion) algorithms, both proposed in [6]. At each
inner iteration, these algorithms solve a binary segmenta-
tion problem using graph cut, while the outer loop attempts
to reconcile the binary results into a coherent multi-class
segmentation. Boykov et al. [6] show that the swap-move
algorithm is applicable whenever the smoothness potentials
are semi-metric (i.e., E;;(z;,z;) = E;j(xz;,z;) > 0 and
E;j(z;,z;) = 0 <= x; = z;), and the expansion-move
algorithm is applicable whenever the smoothness potentials
are metrid'| (i.e., they are semi-metric and also satisfy the
triangle inequality E;;(x;, ;) < Eip(xi, xk) + Egj(xr, x5));
these conditions are further generalized in [31]. Under these
conditions, Boykov et al. [6] show that these graph cut meth-
ods produce “strong” local minima, i.e., local minima where

INote that both the Potts model and the truncated ¢» distance are metrics.



no allowed move is able to further reduce the cost. Moreover,
these techniques produce a local solution with is proven to
be within a known factor from the global minimum [6].
When these conditions are not satisfied, approximations of
the cost function can be used [49]], [6]. Komodakis and Tzir-
itas [50] draw connections between move-making algorithms
and the dual of linear programming relaxations. Kumar and
Koller [51]], [52] propose a move-making approach that applies
to the semi-metric case and attains the same guarantees of
the linear relaxation (see paragraph below) in the metric case.
Faster algorithmic variants are proposed by Alahari et al. [53]].
Lempitsky et al. [54] provide a low-complexity algorithm
(LogCut) that requires an offline learning step. A summary
of the MRF formulations that can be solved exactly or within
a constant factor from the global minimum via graph cut is
given in [31]. When the potentials do not satisfy the conditions
for applicability of graph cut methods, approximate versions of
these techniques can be still applied [49] but the corresponding
performance bounds no longer hold.

Message-Passing Techniques. Message passing techniques
adjust the MAP estimate at each node in the MRF via
local information exchange between neighboring nodes. A
popular message passing technique is belief propagation [S3],
which results in exact inference in graphs without loops,
but is also applicable to generic graphs [56], [S7] (loopy
belief propagation, or LBP in short). LBP is not guaranteed to
converge in presence of cycles, but if convergence is attained
LBP returns “strong” local minima [, [S8]]. Tree-Reweighted
Message Passing [1] (TRW-S) is another popular message-
passing algorithm which is also able to estimate a lower-
bound on the cost that can be used to assess the quality of
the solution. Also in this case the estimate is not guaranteed
to converge and may oscillate. Message-passing techniques
do not necessarily return integer solutions, hence the resulting
estimates need to be rounded, see [3, Section 4.5]. Krihenbiihl
and Koltun [59] use message passing to perform inference in
a mean field approximation of a fully-connected Conditional
Random Fields (CRFs)[]

Linear Programming (LP) Relaxations. These techniques
relax the optimization to work on continuous labels rather
than discrete ones. Early relaxation techniques include the
LP relaxation of the local polytope [1], which is typically
applicable only to small problem instances [3]. Kleinberg
and Tardos [60] provide suboptimality guarantees for LP
relaxations with metric potentials. Gupta and Tardos [61]
extend these results considering a truncated linear metric.
Chekuri et al. [62] and Werner [63] further refine the subopti-
mality bounds. Komodakis and Tziritas [[64]] consider the case
of semi-metric and non-metric potentials and derive primal-
dual methods to efficiently solve the resulting LP relaxations.
Sontag and Jaakkola [65] propose a cutting-plane algorithm
for optimizing over the marginal polytope. Other specialized
solvers to attack larger instances have also been proposed,
including block-coordinate ascent [66], subgradient methods
based on dual decomposition [67], [68], [69], Alternating
Directions Dual Decomposition [70], and others [71], [72],

2Conditional Random Fields (CRFs) are a special case of MRFs, where the
binary terms, rather than being smoothness priors, are data driven.

[73]. The performance of these techniques is typically sensitive
to the choice of the parameters (e.g., stepsize) and can only
ensure local convergence [3]]. For binary pairwise MRFs, LP
relaxation over the local polytope can be solved efficiently
by reformulating it as a maximum flow problem, see the roof
duality (or QPBO) approach of Rother er al. [74]. LP relax-
ations typically do not produce an integer solution, therefore
the corresponding solutions need to be rounded. Moreover,
they are tightly coupled with message-passing algorithms,
see [3L Section 4.3]. Kumar et al. [4] provide a comparison
between linear, quadratic, and second-order cone programming
relaxations, showing that the linear relaxation dominates the
others.

Spectral and Semidefinite Relaxations. These techniques
typically rephrase inference over an MRF in terms of a
binary quadratic optimization problem [17], which can be then
relaxed to a convex program (more details in Section [[I-Bj.
Shi and Malik [75] propose a spectral relaxation for image
segmentation; more recently, spectral segmentation is used by
Aksoy et al. [16]. Keuchel et al. [5] introduce SDP relaxations
to several computer vision applications and use interior-point
methods and randomized hyperplane techniques to obtain
integer solutions, leveraging the celebrated result of Goemans
and Williamson [77]], which bounds the suboptimality of the
resulting solutions. SDP relaxations are known to provide
better solutions than spectral methods [5], [17]. While early
approaches also recognized the accuracy of SDP relaxations
with respect to commonly used alternatives (e.g., [4]), the
computational cost of general-purpose SDP solvers prevented
widespread use of this technique beyond problems with few
hundred variables [S]]. Keuchel et al. [16] propose an approach
to reduce the dimension of the problem via image prepro-
cessing and superpixel segmentation. Concurrently, Torr [78]]
proposes the use of SDP relaxations for pixel matching
problems. Schellewald and C. Schnérr [79]] suggest a similar
SPD relaxation for subgraph matching in the context of object
recognition. Heiler et al. [80] propose to add constraints in the
SDP relaxation to enforce priors (e.g., constrain the number of
pixels in a class, or force set of pixels to belong to the same
class). Olsson et al. [17]] develop a spectral subgradient method
which is shown to reduce the relaxation gap of spectral relax-
ations. Huang et al. [81] use an Alternating Direction Methods
of Multipliers to speed up computation, while Wang et al. [82],
[83] develop a specialized dual solver. Frostig et al. [84] resort
to non-convex optimization to approximate the SDP solution,
while Wang et al. [85] consider fully-connected CRFs and
propose fast solvers for the case where the pairwise potentials
admit a low-rank decomposition. We remark that the approach
to derive the SDP relaxation is common to all papers above and
follows the line of Section [[I-B] Wainwright and Jordan [86]
use semidefinite programming to approximately compute the
marginal distributions in a graphical model. More generally,
semidefinite programming has been a popular way to relax
combinatorial integer programming problems [87], [88] and
assignment problems [89]], [90].

C. Applications

Overview. MRFs have been successfully used in several
application domains including computer vision, computer



graphics, machine learning, and robotics. Popular applications
include image denoising, inpainting, and super-resolution [36],
[6], [30l, [S6], image segmentation (reviewed below), stereo
reconstruction [91]], [36], [6], [92l, [35], [93l, [94], [95l,
[96]], panorama stitching and digital photomontages [97]],
image/video/texture synthesis [98]], multi-camera scene recon-
struction [99], voxel occupancy estimation [100], non-rigid
point matching and registration [101l], [17], medical imag-
ing [102]], [103]. In stereo reconstruction, the labels are the
disparities at each pixel and the binary potentials are function
of the absolute color differences at nearby pixels. Birchfield
and Tomasi [47] provide a comparison of graph-cut methods
for stereo reconstruction, while Tappen and Freeman [104]]
compare graph cut and LBP; Kolomogorow and Rother [105]
evaluate TRW-S, LBP, and graph cut. Szeliski et al. 1] compare
several techniques on stereo reconstruction, photomontage,
image segmentation, and image denoising benchmarks. The
study concludes the the expansion move algorithm typically
outperforms the swap move algorithm, while ICM performs
poorly in practice. In general, the best approach may depend
on the application: for instance, the expansion move algorithm
is the best performer for the photomontage benchmark, while
expansion move and TRW-S perform the best on the depth
reconstruction benchmark. A broader evaluation is presented
in [3]], which also provides a C++ library, OpenGM2 [27], that
implements several inference algorithms.

Semantic Segmentation. Semantic segmentation methods
assign a semantic label to each “region” in an RBG image
(2D segmentation), RBG-D image, or 3D model (3D segmen-
tation). Depending on the approach, labels can be assigned
to single pixels/voxels, superpixels, or keypoints [3]]; Since
semantic segmentation is typically modeled as an MRF, the
literature review in Sections already covers several
work in segmentation, and indeed segmentation (together with
depth reconstruction) is a typical benchmark for inference in
MREFs, see [, [2]], [3], [33], [[L3]] and the references therein.
Therefore, the goal of this section is to (i) provide a brief
taxonomy of semantic segmentation problems, and (ii) review
semantic segmentation techniques that do not directly use
MRFs. The corresponding literature is vast, and we refer the
reader to the excellent survey of Zhu et al. [[13] for a broader
review of related work.

Taxonomy. Semantic segmentation is different from cluster-
ing, which groups pixels based on similarities without neces-
sarily associating a given semantic label to each group (this
is sometimes called non-semantic, unsupervised, or bottom-
up segmentation [106], [13l]). While semantic segmentation
classifies image regions into semantic classes, instance seg-
mentation also attempts to discern multiple objects belonging
to the same class. In full analogy with MRFs, segmentation
problems can be divided in binary segmentation problems
(where only two classes, foreground and background, are
segmented) and multi-class segmentation problems, where
more than two labels are allowed. We can further divide the
literature depending on the type of input data the segmentation
operates on, including isolated RGB images (most common
setup in computer vision), stereo images [6], RGB-D im-
ages [107], [LO8], volumetric 3D data (e.g., volumetric X-
ray CT images [109]], or 3D voxel-based models [110]), or

multiple RBG images; the latter setup is typically referred to
as co-segmentation [111]], [L12]], [13] (for generic unordered
images), or temporal (or video) segmentation [[113] (if images
are collected over time). Thoma [106] also categorizes the
segmentation problems into active (where one can influence
the data collection mechanism, as it happens in robotics),
passive (where the input data is given), and inferactive (where
a human user provides coarse information to the segmentation
algorithms).

Other Approaches. Traditional approaches for semantic
segmentation work by extracting and classifying features in
the input data, and then enforcing consistency of the clas-
sification across pixels (e.g., using MRFs or other models).
Common features include pixel color, histogram of oriented
gradients, SIFT, or textons, to mention a few [106]], [114].
Shotton et al. [[115]], [116] use textons and Random Decision
Forests for semantic segmentation. Yang et al. [117] use
Support Vector Machine (SVM) demonstrating competitive
performance in the PASCAL segmentation challenge [118].
A latent SVM model is used by Felszenzwalb er al. [119]
to detect objects using deformable part models. Winn and
Shotton [120] use a CRF-based algorithm, named the Lay-
out Conditional Random Field (LayoutCRF), to detect and
segment objects from their parts; the approach is further
generalized by Hoiem et al. [121]; Shotton et al. [122] use
textons within a CRF model for object segmentation. Ku-
mar et al. [123]] use MRFs to detect and segment objects in an
image. Bray et al. [124] concurrently segment and estimate the
3D pose of a human body from multiple views. Higher-order
MRF formulations are also used for semantic segmentation,
see the work by Kohli and co-authors [125], [126], [127]
and the review [3]. Approaches for interactive segmentation
include intelligent scissors [128]], active contour models [129],
[130] (based on dynamic programming), and graph cut meth-
ods (GrabCut [131]). While most of the work mentioned
so far operates on a discrete set of nodes of a graphical
model, related work in multi-class segmentation also includes
contributions modeling the problem over a continuous domain;
examples of such efforts include the variational method of
Lellmann et al. [132], and the anisotropic diffusion method
of Kim et al. [[112]; see the chapter by Cremers et al. [133]]
for a recent survey. More recently, deep convolutional neural
networks have become a popular solution for semantic seg-
mentation, see the recent review of Garcia-Garcia et al. [[134]].
State-of-the-art methods, such as DeepLab [11], refine the
results of a deep convolutional network with a fully-connected
conditional random field in order to improve the localization
accuracy of object boundaries.

VII. CONCLUSION

We propose fast optimization techniques to solve two
semidefinite relaxations of maximum a posteriori inference in
Markov Random Fields (MRFs). The first technique, named
DARS (Dual Ascent Riemannian Staircase), provides a scal-
able solution for the standard SDP relaxation proposed in
the literature. The second technique, named FUSES (Fast
Unconstrained SEmidefinite Solver), is based on a novel
relaxation. We test the proposed approaches in semantic
segmentation problems and compare them against state-of-the-



art MRF solvers, including move-making and message-passing
methods. Our experiments show that (i) FUSES and DARS
produce near-optimal solutions, attaining an objective within
0.1% of the optimum, (ii) our approaches are remarkably faster
than general-purpose SDP solvers, while FUSES is more than
two orders of magnitude faster than DARS, (iii) FUSES is faster
than local search methods while being a global solver. While
the evaluation in this paper focuses on the MRF solver (rather
than attempting to outperform state-of-the-art deep learning
methods in semantic segmentation), we believe FUSES can be
used in conjunction with existing deep learning methods, as
done in [11], to refine the segmentation results.
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APPENDIX
APPENDIX A: EQUIVALENCE BETWEEN PROBLEMS (2))

AND (PO)

Here we prove that solving Problem () is equivalent to
solving (PU), in the sense that the solution set of a problem
is in 1-to-1 correspondence with the solution set of the other.
Towards this goal, we show that (2) can be simply obtained
as a reparametrization of (P0).

We first rewrite each node variable z; € £ = {1,...,K}
in (PO) as a vector w; € {—1,+1}%, such that w; has a single
entry equal to +1 (all the others are —1), and if the j-th entry
of w; is +1, then the corresponding node has label j. Each
vector w; € {—1,+1}¥ is a valid label assignment as long as
there is a unique entry equal to 41, or, equivalently, 1Tw; =
2—K, 1=1,...,N. Using this vector parametrization we
rewrite the unary and binary potentials (T) as:

Ei(w;) = i(l - e}c—iwi) )

dij
#(w}wj - K+2)

where ez, is a vector of all zeros, except the entry in position
Z; (measured class label for node 7), which is equal to +1.
The reparametrization of the unary potentials in (T3) can be
seen to be the same as (I) by observing that e; w; = +1 if

15)

[\')‘Qn\

Eij(wi, ’ll)j) =
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x; = Z; or —1 otherwise; similarly, the reparametrization of
the binary potentials follows from the fact that w] w; = K if
x; = xj or K — 2 otherwise.

Using (I3), we rewrite Problem (PO) as:

. 5; 5
min N Z—ée;wi—f— Z %ijj

ii=1,...
w = (i,)eB (16)
subject to  w; € {—1,+1}X
1"w; =2-K, i=1,...,N

where we dropped the constant terms from (which are
irrelevant for the optimization), and where the constraint
1Tw; = 2 — K enforces each vector to have at most one
entry equal to +1 (i.e., we assign a single label to each node).

In order to obtain Problem (2), we adopt a more compact
notation by stacking all vectors w;, with ¢ = 1,... N, in a
single N K-vector w = [w] wd ... w}]T, and note that the
cost function (I6) is quadratic in the entries of w. Therefore,
we rewrite problem (T6) as:

20Tw + w'Aw
w e {1, +1}NVE
ww=2-K, i=1,...,N

%

Min,,

subject to 17

where A is an NK x NK symmetric block matrix, and b
is an N K-vector, and u; = e;r ® 17T, where e; is an N-
vector which is all zero, except the ¢-th entry which is one,
1k is a K-vector of ones, and ® is the Kronecker product.
The constraint u] w = 2 — K simply rewrites the constraint
1Tw; = 2—K in (T6). The reader can also verify by inspection
that the following choice of A and b ensures that the objective

in (I7) is the same as (I6):

|
5

= bl = —esz, ificl 1
b= { [b]; = Ok, otherwise (18)
A= MMZ—%Im if (1,j) e B
[A]ij = Ok xK, otherwise

where b stacks N subvectors of size K, [b]; is the i-th
subvector of b, [A];; is the K x K block of A in block row ¢
and block column j, and Iy is the identity matrix of size K.

Now we observe that for a scalar w, we can equivalently
write w € {—1,+1} as w € {R : w? = 1}. Moreover, we
note that the diagonal of the matrix ww ' contains the squares
of every entry of w. Combining these two observations, we
rewrite problem (I6) equivalently as:

w' Aw +2b"w
diag (wa) =1yk,
wWw=2-K, i=1,...,N

i

Min,,

subject to (19)

which is the same as (), concluding the proof.
APPENDIX B: PROOF OF PROPOSITION

Here we assume that the dual ascent iterations of DARS
converged to a value A* (i.e., the dual iterations reach a
solution where the gradient in (9) is zero) and prove the two
claims of Proposition

Let us start by proving the first claim. Let us consider the
latest dual ascent iteration, where the dual variable is A*
and we need to solve to compute an updated primal
variable. Moreover, assume that the Riemannian Staircase,

which solves (RI) for increasing rank r, finds a (column)
rank-deficient second-order critical point (RT), which we call
R*. Then, Proposition |1| guarantees that the matrix Y* =
(R*)(R*)T is an optimal solution for the SDP (7). Moreover,
since (7) simply rewrites (6), Y* is also an optimal solution

for (6):

dA*) = miny g(Y) + XN A (tr (U)Y) — K + 2) =20)

g(Y) + XN A(tr (UY*) - K +2) (21)

Now we are left to prove that Y* is also an optimal solution
for the standard SDP relaxation @I) Towards this goal, we
observe that (20) is the dual function [18], Section 5.1.2] of the
optimization problem (3, and standard results in optimization
theory [18] Section 5.1.3] ensure that d(\) is a lower bound
for the optimal cost of (3) for any A. Since (3) is the same
as (ST) and both attain the optimal objective f%,, it then holds

d(X*) < f5; (22)

Since we assumed that the dual iterations reached a solution
where the gradient in (3) is zero, and since the gradient with
respect to the i-th dual variable is VLy, (Y, \) = tr (U;Y) —
K +2, it follows tr (U;Y*) = K — 2, fori = 1,..., N. This
implies that d(A*) = tr (LY *)f| and becomes:

tr (LY™) < f&, (23)

Now we note that since Y'* satisfies tr (U;Y™*) = K — 2, for
i=1,...,N, it is a feasible solution for (SI). Therefore by
optimality of f%, it holds:

& <tr (LY™) (24)

Combining (23) and (24) it follows tr (LY ™) = f&,ie, Y*
attains the optimal objective in (STJ), proving the first claim.

To prove the second claim, we observe that @]) is a
relaxation of @, hence it holds:

[615 b1 = —[h1 < —f&

Adding fs1 to both sides of (25) yields the desired inequalit
fs1—fp1 < fs1— f&;, concluding the proof of Proposition

(25)

APPENDIX C: PROOF OF PROPOSITION

Here we prove that solving (II) is equivalent to solv-
ing (PO, in the sense that the solution set of a problem is
in 1-to-1 correspondence with the solution set of the other.
Towards this goal, we show that (TT]) can be simply obtained as
a reparametrization of (P0). Let us first consider the constraints
in (TI)), and note that the equality diag (X X T) =1y can be
written explicitly as || X;||?>= 1 fori = 1,..., N, where X; is
the ¢-th row of X; since the ¢-th row X describes the label
assignment of node ¢ and is a binary vector, the constraint
| X:]|>= 1 enforces X; to have a unique nonzero element,
hence matching the requirement of assigning a unique label
to each node in (PO).

We are only left to prove that the two objective functions
are equivalent. For this purpose, we observe that the objective

3The indicator functions also disappear since Y * satisfies the corresponding
constraints by construction.



in (PO), with the choice of potentials in (T)), can be written as
a function of the rows of X as:

E(X)=> &(1-el X+ Y 0;1-XX]) (26)

€U (1,7)€B
=) —Gel X[+ Y —6;XX] @D
€U (i,9)eB

where = denotes equality up to constant (irrelevant for the
optimization). Using definitions (I0), by inspection we can
verify that tr (GXT) =Y, ,, —d;e;. X,/ and that

o (XTHX) = tr (HXXT) = Yy, v Hy[XXT];;
j=1,...,N
usin, <
=3 i=1,.N H”XZXJT E Z(i,j)el’j’ —5iniX;r

,,,,,

j=1,...,.N

which demonstrates the equality (up to constant) of the objec-
tive functions in (PO) and (TI)), concluding the proof.
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