
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2019 1

Bayesian Active Learning for Collaborative
Task Specification Using Equivalence Regions

Nils Wilde, Student Member, IEEE, Dana Kulić, Member, IEEE, and Stephen L. Smith, Senior Member, IEEE

Abstract—Specifying complex task behaviours while ensuring
good robot performance may be difficult for untrained users.
We study a framework for users to specify rules for acceptable
behaviour in a shared environment such as industrial facilities.
As non-expert users might have little intuition about how their
specification impacts the robot’s performance, we design a
learning system that interacts with the user to find an optimal
solution. Using active preference learning, we iteratively show
alternative paths that the robot could take on an interface. From
the user feedback ranking the alternatives, we learn about the
weights that users place on each part of their specification. We
extend the user model from our previous work to a discrete
Bayesian learning model and introduce a greedy algorithm for
proposing alternative that operates on the notion of equivalence
regions of user weights. We prove that with this algorithm the
revision active learning process converges on the user-optimal
path. In simulations on realistic industrial environments, we
demonstrate the convergence and robustness of our approach.

I. INTRODUCTION

We address two active research topics in human-robot
interaction (HRI): learning from non-expert users and human-
robot collaboration. We develop a methodology for non-expert
users to create specifications for complex robot tasks [1].
These specifications then enable humans and robots to operate
in a shared workspace [2].

For instance, in an industrial environment shared between
humans, autonomous and human-operated vehicles, a facility
operator might define road rules to be followed by both robot
and human-operated vehicles. Such road rules increase the pre-
dictability of robot behaviour for humans in the environment.
These can include constraints such as areas of avoidance, one
way roads or speed limits. The environment map, the operator
specifications and a defined set of start and goal locations
yield a complete specification of a robot task. In practice,
designing such rules can be challenging, as operators might
have little intuition about how their specification will affect the
robot’s behaviour and therefore the performance. They might

©2019 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Manuscript received September, 10, 2018; Revised December, 8, 2018;
Accepted January, 13, 2019. This paper was recommended for publication by
Editor Dongheui Lee upon evaluation of the Associate Editor and Reviewers’
comments. This research is partially supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) and OTTO Motors.

N. Wilde and S. Smith are with the Department of Electrical and Computer
Engineering, University of Waterloo, D. Kulić is with the University of Water-
loo and Monash University. (nwilde@uwaterloo.ca; dana.kulic@uwaterloo.ca;
stephen.smith@uwaterloo.ca)

Fig. 1. Example environment (white) with obstacles (black) and user defined
constraints. Roads are drawn in green with an arrow indicating the direction.
Speed limit zones are drawn in yellow, while areas of avoidance are illustrated
in red. Further, four different paths between a given start and goal are shown.
Dark blue indicates the initial path following the specification. Purple and
orange paths are alternatives that the simulated user accepted during the
interaction. In cyan we show the user optimal path P ∗, to which the learning
eventually converged.

be willing to accept the violation of less important constraints
if sufficiently beneficial for task performance. For instance,
Figure 1 shows an industrial environment with several user
defined constraints. When the robot uses the dark blue path, it
respects all constraints. In the alternative solutions, the robot
traverses (i.e., violates) constraints as this enables a significant
reduction in the time to travel from start to goal.

A user likely has a preference for which path is a better
solution for the given task, based on the completion time and
on the importance of the constraints. This can be captured via
weights, describing the importance of constraints. However,
asking the user to define these weights is unintuitive and
possibly challenging. We propose a framework where a user
provides only a spatial definition of constraints, while the
importance of each constraint is latent.
To fill the gap between this incomplete user input and a
complete robot task description we apply active preference
learning. We present the user with alternative solutions, i.e.,
paths, and ask for a ranking. In our framework, the user is
”on-the-loop” and provides feedback at their convenience. The
latest path preferred by the user becomes the current path and
can already be executed. Consequently, each set of alternative
paths contains the current path. Through this interaction with

ar
X

iv
:1

90
1.

09
47

0v
1

 [
cs

.R
O

]
 2

8
Ja

n
20

19

nwilde@uwaterloo.ca
dana.kulic@uwaterloo.ca
stephen.smith@uwaterloo.ca

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2019

the user, the relative importance of each constraint can be
learned. In our previous work [3], we developed an algorithm
that iteratively builds a set of linear inequalities on the hidden
weights of the user constraints. Our user model evaluated
paths based on a cost function trading-off constraint violation
and time. The learning system assumed that the user would
always provide feedback consistent with that cost function and
thus iteratively rejected paths that became inconsistent with
the user feedback. We extend our previous work [3] in two
ways: First, the assumptions on the user are relaxed in order
to capture more realistic behaviour. By considering noisy user
feedback and introducing a probabilistic learning approach,
we allow users to not always behave consistently with our
user model. Second, based on our formulation of the problem
as a shortest path search on a graph, we define equivalence
regions for possible solutions. We propose a new learning
system that exploits the notion of equivalence regions, which
are sets of constraint weights that are indistinguishable to
the user. From this we obtain a greedy algorithm that allows
highly efficient learning, outperforming other state-of-the-art
techniques.

Related work: Recently, active preference learning has
been extensively studied for robot task specification. Thereby,
a user is assumed to have an internal, hidden cost function
which is learned from the user feedback to a presented set of
alternatives. For instance, in [4] experts rank the demonstrated
task performance for grasping applications while [5], [6]
focus on continuous trajectories of dynamical systems like
autonomous mobile robots. We propose a framework relying
on a deterministic black-box planner that outputs a path for
a given set of weights for the user constraints [3]. Different
weights can have the same optimal solution, allowing for a
discretization of the weight space. Therefore, our problem can
be cast as an entity identification problem [7]: Our hypotheses
are the sets of constraint weights that have different optimal
solutions, tests correspond to asking the user about their pref-
erence between paths and observations equal their feedback.
Golovin et al. [8] introduce a strong algorithm for near-optimal
Bayesian active learning with noisy observations. However,
their approach focuses on running each test at most once while
we allow for repeated queries. While [5] greedily reduces the
integral of the continuous probability density function over
the weight space, our greedy algorithm is formulated over
the discretized weight space corresponding to unique paths.
A major drawback of the user model proposed in [5] and
[6] is that the user’s behaviour depends on the scale of the
selected features as it considers an absolute instead of a relative
error and does not provide a normalizing mechanism. We
propose a more general, scale-invariant user model and show
its robustness in simulations. Finally, our work differs from
other applications of active preference learning for robotics in
the way we choose the features for the cost function. Usually,
features are picked manually and are therefore a design choice
for the learning system [4], [9]. In our case, features are the
violations of constraints that follow from the user specification
and are user specific.

A common technique for learning from demonstration

[10] is inverse reinforcement learning (IRL). The optimal
behaviour of a dynamical system is described by a hidden
reward function. IRL then learns this reward function by
observing optimal demonstrations. Similarly, we assume a
hidden user cost/reward function for the quality of a path. The
cost function is modelled as a weighted sum of predefined
features and we are interested in learning the weights.
However, providing demonstrations might be difficult [4], the
amount of necessary demonstrations may be prohibitively
large [11] or demonstrations may require a high level of
expertise [12]. Providing rich and precise specifications prior
to a robot executing a task can be challenging and more prone
to inaccuracies [13]. In contrast, active preference learning
learns hidden reward functions by proposing alternative
solutions and asking for the user’s preference. Closely related
to this work, [14] presents a GUI for specifying the user
constraints on a given environment, which is used as a
front-end to the work presented in this paper.

Contributions: In our previous work [3], we proposed a
deterministic user model for learning about weights from a
ranking feedback and proposed a complete algorithm. Using
the same framework for combining path planning with user
constraints, we extend the user model. To capture user feed-
back inconsistent with our assumed cost function, we propose
a Bayesian learning approach (Section III-A). Thereby, we
exploit the discrete properties of our problem, introducing a
partitioning of the solution space based on equivalence regions.
We prove almost sure convergence of the algorithm (Section
III-B) and derive a greedy approach (Section III-C). Finally,
we show the performance and robustness of our approach in
comparison with another state-of-the-art technique in extensive
simulations (Section IV).

II. PROBLEM FORMULATION

A. Preliminaries

Using definitions from [15], a multi-graph is a triple
G = (V,E,Ψ), where the function Ψ : E → {(v, w) ∈
V × V : v 6= w} associates each edge with an ordered pair
of vertices. Multiple edges are allowed to connect the same
ordered pair of vertices and are then called parallel. In our
problem we consider doubly weighed multi-graphs of the form
G = (V,E,Ψ, c1, c2). Thereby, c1 and c2 are independent
weight functions, each associating a real number to each edge
of the graph: ci : E(G)→ R for i ∈ {1, 2}.

A walk between two vertices v1 and vk+1 on a
graph G is a finite sequence of vertices and edges
v1, e1, v2, e2, . . . , ek, vk+1 where e1, e2, . . . ek are distinct. A
path Pv1,vk+1

between two vertices v1 and vk+1 is defined
as a graph ({v1, v2, . . . , vk+1}, {e1, e2, . . . , ek}) where
v1, e1, v2, e2, . . . , ek, vk+1 is a walk. On a weighted graph,
the cost of a path is defined as c(P) =

∑
e∈P c(e). In

doubly weighted graphs we define two costs c1 and c2 where
ci(P) =

∑
e∈P ci(e) for i ∈ {1, 2}.

WILDE et al.: BAYESIAN ACTIVE LEARNING FOR COLLABORATIVE TASK SPECIFICATION USING EQUIVALENCE REGIONS 3

Initial
Specification

User
interaction

Revised
Specification

Environment

Constraints Feedback

Fig. 2. Flowchart of the problem. An initial specification is revised using
interactive learning to obtain a revision that better fits the user preferences.

B. Problem statement

We summarize the problem setup in Figure 2. From the
environment and a set of user constraints we construct an
initial specification for the robot. As users might allow the
violation of some of their constraints for sufficient time benefit,
we present them with alternative paths during the interaction
and ask for feedback. From this feedback we learn the weights
of the constraints and obtain a revised specification that
corresponds to the user preferences. Figure 1 illustrates how
the path that we believe to be optimal evolves after observing
user feedback until it converges to the optimal solution.

As in our previous work [3], we consider a fully known,
static environment, represented as a weighted strongly con-
nected multigraph G′ = (V,E,Ψ, t). The weight t on the
graph encodes the time a robot requires to traverse an edge. We
use parallel edges with different times to model speed. A robot
task consists of navigating from a start vertex vstart to a goal
vertex vgoal on G′. On the environment, a user specifies a set
Γ containing d constraints. Each constraint is a pair (Ei, w

∗
i),

where Ei is a subset of the edges of G′ and w∗i is a hidden user
cost for the constraint. To incorporate the user specification,
we create a doubly weighted graph G = (V,E,Ψ, t, w∗). For
each edge e in G the second weight w∗(e) is defined as the
sum of all w∗i that belong to a constraint containing e. The
problem is to find a path from vstart to vgoal that minimizes
the following objective:

min
P

∑
e∈P

w∗(e) + t(e). (1)

The true user weights w∗i are latent. Moreover, they are
defined in units of time, allowing us to pose the multi-
objective optimization as an unweighted sum. To learn about
the weights, we can query the user by presenting them with
a set of paths {P 0, P 1, . . . P k}. The feedback is a vector
u ∈ Rk representing a ranking, i.e., a partial ordering, of the
presented paths. Without loss of generality we focus only on
pair-wise comparisons, as the ranking of additional elements
can be expressed with a set of pair-wise relations. This is also
well motivated with respect to the user; ranking more than two
alternatives might be unnecessarily challenging [16].

We formally define the Learning of User Preferences (LUP)
problem as follows:

Problem 1 (LUP). Given a graph G′, a user specification Γ, a
start and goal vertex, a user evaluating a presented set of paths
and a budget of iterations for querying the user, maximize the
belief about the true user weights w∗i and its corresponding
shortest path P ∗ with respect to equation (1).

III. PROBABILISTIC LEARNING

In this section we propose a probabilistic model of user
behaviour. In our previous work [3] we required the user to
always provide feedback consistent with a linear user model.
In contrast, we now consider that the user feedback may be
noisy and thus the user feedback is not deterministic.

A. Bayesian Learning

Using definitions for Bayesian inference from [17] we set
up a learning model for gaining information about the hidden
(latent) parameter w. We model the user weights to be positive
and finite: wi ∈ [0, wmax]. The cost of a path P is C(P) =
φw∗ + t, where the violation vector φ describes how many
edges of each constraint are traversed by P , w∗ is a column
vector containing all latent user weights and t is the time to
traverse P . From each user feedback for a pair (P i, P j) we
can derive a hyperplane of the form (φi−φj)w = tj−ti. This
hyperplane defines two subsets of the weight space, Λij and
Λji, where Λij = {w ∈ [0, wmax]d|(φi − φj)w ≤ tj − ti}.
Thus Λij is the set of all weights for which P i has lower cost
than P j .

Probabilities of halfpspaces: For any pair of paths
(P i, P j), the parameter w∗ ∈ Λij holds iff C(P i) ≤ C(P j).
Adopting a Bayesian perspective, we treat w∗ ∈ Λij as a
random variable and assign an uninformed prior P(w∗ ∈
Λij) = 1/2. Notice that the volumes of Λij and Λji do not
correspond to the probability of a path being preferred over
another path. From the user feedback about two paths P i and
P j we obtain binary observations. We denote observations
with a random variable U ij , indicating whether the user prefers
path P i or P j . A deterministic user always provides feedback
where U ij = 1 ⇐⇒ C(P i) ≤ C(P j), i.e., U ij = 1 ⇐⇒
w∗ ∈ Λij . A probabilistic user is consistent with this model
with some probability pij . Hence, the probability of U ij given
w∗ ∈ Λij is

P(U ij = 1|w∗ ∈ Λij) = pij

P(U ij = 1|w∗ /∈ Λij) = 1− pij .
(2)

We refer to pij as the accuracy of the user and assume pij >
1/2, i.e., that our user model fits the user’s decision making
better than a random guess. If the parameter pij is hidden,
we can evaluate equation (2) with an estimate p̂. To simplify
notation we write P(U ij = 1) as P(U ij). In general, pij is
a function of P i and P j . This allows us to model different
levels of the user’s accuracy depending on how similar the
paths are.

Probabilities of equivalence regions: Equation (2) de-
scribes an observation model for a pair of paths, assigning
probabilities to halfspaces. We now assign probabilities to
paths instead. We observe that not every value in the weight
space leads to a unique shortest path, which leads to our
definition of equivalence regions.

Definition 1 (Equivalence region). If the same path is optimal
for two weights wi and wj , we call wi and wj equivalent.
An equivalence region of a weight wi is then the set of all
weights that are equivalent to the weight: Ω(wi) = {wj ∈
Rn
≥0|wj is equivalent to wi}.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2019

We can use equivalence regions to discretize the weight
space [0, wmax]d. Given a comparison of two paths (P i, P j),
we introduce a second observation model that describes the
probability of user feedback given that the true user weight
w∗ lies in the equivalence region Ω′ of some path P ′ as

P(U ij |w∗ ∈ Ω′) =


pij , if Ω′ ⊆ Λij

1− pij , if Ω′ ⊆ Λji

1/2, otherwise.
(3)

If an equivalence region lies in both halfspaces Λij and Λji,
we obtain no information from the feedback U ij , since not
all weights in Ω′ are either feasible or infeasible with the
user feedback; expressed in the third case. Let O be the set
of all equivalence regions for a given problem instance. The
observation model allows us to express a probability for w∗ ∈
Ω′ given an observation U ij as a Bayesian posterior

P(w∗ ∈ Ω′|U ij) =
P(U ij |w∗ ∈ Ω′)P(w∗ ∈ Ω′)∑

Ω∈O
P(U ij |w∗ ∈ Ω)P(w∗ ∈ Ω)

. (4)

Following [17], we write the Bayesian posterior for a series
of n observations U for arbitrary pairs of paths as

P(w∗ ∈ Ω′|U) =

∏
Uij∈U

P(U ij |w∗ ∈ Ω′)P(w∗ ∈ Ω′)∑
Ω∈O

∏
Uij∈U

P(U ij |w∗ ∈ Ω)P(w∗ ∈ Ω)
.

(5)

Remark. Notice that this general model does not depend
on the exact form of the likelihoods pij , we only require
pij > 1/2. Therefore, our model could use the likelihood
function from [6]. Alternatively, one could fix all pij to a
constant. Then, in contrast to [5], [6], the accuracy of the
user does not depend on the scaling of the features in the
cost function. Moreover, our model increases the robustness
towards user feedback that appears inaccurate because the
user is considering context that is not described by our
features. For instance, in a warehouse an operator might have
different preferences for different weekdays or wants a robot
to temporarily avoid certain regions. This can not be covered
with the current cost function and thus this user would appear
erratic to the learner. Finally, when the accuracy is set to one,
the deterministic learning model [3] is recovered. The key
advantage of using equivalence regions in equation (5) is that
it reduces the complexity of the probability distribution since
we now have a discrete distribution over regions rather than
a continuous one This allows for a significantly faster solving
of the problem, as we will show in Section IV.

B. Probabilistic Algorithm

In Algorithm 1 we propose a general procedure to iteratively
learn about user preferences from pairwise user feedback with
inaccurate users. Initially, we compute the set of all equiv-
alence regions O (line 2). After updating our current belief
about all equivalence regions (line 4), we iteratively generate
new paths (line 5) similar to our deterministic algorithm from
[3]. Then, we request user feedback for the pair (P curr, P new)

and add the user feedback to a set (6-7). After adding the new
observation to our set, we update the weight space and, if
necessary, the current weight (8-9). The procedure is repeated
until we reach the iteration budget N in line 2, at the end
we return the weight ŵbest where the posterior belief is
maximized. We discuss an implementation of the function
getNewPath(·) in Section III-C.

Algorithm 1: Learning user weights by sampling
Input: G′, Γ, N
Output: ŵcurr

1 ŵcurr = wmax, U = ∅
2 Calculate O
3 for n = 1 to N do
4 Update P(w∗ ∈ Ω′|U) for all Ω′ ∈ O
5 P (ŵnew)← getNewPath(O, ŵcurr,

{P(w∗ ∈ Ω1|U),P(w∗ ∈ Ω2|U), . . . })
6 Get user feedback U curr,new for paths P (ŵcurr) and

P (ŵnew)
7 U = U ∪ U curr,new

8 if U curr,new = new then
9 ŵcurr = ŵnew

10 return ŵbest = arg max
w′|Ω′∈O

P(w∗ ∈ Ω′|U)

Convergence: We now establish almost surely conver-
gence of Algorithm 1. Let w∗ be the true user weight and
pij > 0.5 for all pairs of paths (P i, P j). Without loss of
generality, we only consider i, j pairs that are ordered such
that C(P i) ≤ C(P j); hence w∗ ∈ Λij always hold (but this
is not known to the algorithm). Moreover, l is the number
of equivalence regions in O and m the number of all pair-
wise comparisons. For the following definition we change our
notation and denote the optimal path P ∗ as P 1.

Definition 2 (Asymptotically completely informative se-
quence). Let Xn be a sequence of pairs of paths presented
to the user in n iterations, and for each j, let X1j =

{X1r1
1 , X1r2

2 , X
1rnj
nj } be the longest subsequence of X for

which Ωj ⊆ Λ1r1 ,Ωj ⊆ Λ1r2 , ...,Ωj ⊆ Λ1rnj . Then the
sequence is asymptotically completely informative if as n goes
to ∞, we have nj →∞ for all j.

In other words, if a sequence of pairs of paths contains
observations about every (P ∗, P j), and the number of obser-
vations for each (P ∗, P j) pair goes to infinity as the length
of the sequence goes to infinity, it is called asymptotically
completely informative. Notice that such a sequence of paths
is not required to contain subsequences for all pairs of paths
(P ∗, P j); it is sufficient if the feedback to the pairs (P ∗, P j)
contains information about all other equivalence regions ac-
cording to (3). Finally, we call U asymptotically completely
informative if the corresponding sequence of paths is asymp-
totically completely informative and treat the probability that
the true user weight w∗ or an estimate ŵ lie in an equivalence
region Ω as a random variable.

WILDE et al.: BAYESIAN ACTIVE LEARNING FOR COLLABORATIVE TASK SPECIFICATION USING EQUIVALENCE REGIONS 5

Proposition 1 (Convergence). Let Ω∗ be the equivalence
region containing w∗. Given asymptotically completely infor-
mative user feedback U , the probability that the best estimate
ŵbest of Algorithm 1 lies in Ω∗ converges almost surely to 1
as all nj go to infinity:

P(ŵbest ∈ Ω∗|U) = 1, nj →∞, for all j. (6)

Proof. At first consider the comparison of an arbitrary pair
(P i, P j) and fix P i = P ∗. Let U be a sequence of user
feedback of length nijand kij be the number of times the user
chooses P i, i.e., chooses accurately. Moreover, let p̂ij be our
estimate of pij . For simplification we drop the ij superscript.
From p > 1/2, we can conclude that k > n/2 as n→∞, using
Hoeffding’s inequality [18]. We notice that the probability for
a sequence of user feedback given w∗ ∈ Λij depends on p,
while our belief about w∗ ∈ Λij given some user feedback is
based on p̂. Given user feedback U with known n and k, the
posterior probability is

P(w∗ ∈ Λij |U) =
p̂k(1− p̂)n−k

p̂k(1− p̂)n−k + p̂n−k(1− p̂)k

=
1

1 + p̂
1−p̂

n−2k
.

(7)

We take the limit as n goes to ∞:

lim
n→∞

P(w∗ ∈ Λij |U) = 1 = lim
n→∞

1

1 + p̂
1−p̂

n−2k
. (8)

Using p̂ > 1/2 leads to p̂
1−p̂ > 1. The term n− 2k is strictly

negative if k > n/2. Hence, p̂/(1−p̂)
n−2k approaches zero as n

goes to infinity. We conclude that lim
n→∞

P(w∗ ∈ Λij |U) = 1.
As we only have two paths, we only have two equivalence
regions. Following our ordering of i and j, Ω∗ = Λij . Hence,
P(ŵ ∈ Ω∗|U) = 1, as nij → ∞ for a single, fixed pair of
paths P i and P j .
Finally, we extend the result to comparisons for multiple pairs.
Equation (5) expresses the probability of w∗ lying in a given
equivalence region. Notice that

⋂
j 6=iΛ

ij ⊆ Ω∗, as well as
lim
n→∞

P(w∗ ∈ Λij |U) = 1. As P(wbest ∈ Λij |U) → 1 for

all j 6= i, we have P(wbest ∈
⋂

j 6=iΛ
ij |U) → 1. Hence,

P(ŵbest ∈ Ω∗|U)→ 1 and the statement holds.

From Proposition 1 we conclude that Algorithm 1 always
elicits the true user weight if an asymptotically completely
informative sequence of paths is presented to the user for
feedback, and if the user’s accuracy with respect to our
model is greater than 1/2. However this does not include any
guarantees on the speed of convergence. In the next section
we derive a greedy approach to maximize convergence speed.

C. Greedy Policy

We now show how to find new paths in each iteration
of Algorithm 1, i.e., the function getNewPath. We notice
that computing the set of all equivalence regions for a given
problem instance is computationally intractable, a proof is
provided in Appendix A. Thus, the set can be of exponential
size in relation to the number of constraints. Because of this,

we propose a greedy algorithm for finding new paths. We
define q(w∗ ∈ Ω|U) as the unnormalized posterior, i.e., the
numerator of equation (5). As q is not a probability we refer
to it as the posterior measure. The decrease in the posterior
measure is captured as

f(Xn) = 1−
∑

Ωi∈O

q(w∗ ∈ Ωi|Un). (9)

Our primary motivating application is one in which the user
is ”on-the-loop”. We do not require them to constantly provide
feedback and already execute the current solution P curr [3].
Therefore, we keep the current best path and fix P curr to be
one of the two alternative paths comprising the next query
(Algorithm 1). Thus, our greedy algorithm returns the path
maximizing the posterior measure

P new
n = arg max

P j

E
[
f
(

(P curr, P j)
⋃
Xn−1

)]
. (10)

In this optimization we only need to consider one P j for
each equivalence region. In Appendix B we discuss the case
where two new paths are presented, i.e., we do not fix one
path in each query to be P curr. In this case it can be shown
that equation (10) is an adaptive submodular function. Finally,
we ensure convergence for our greedy approach.

Lemma 1 (Convergence of the greedy algorithm). The greedy
algorithm equation (10) returns an asymptotically completely
informative sequence of paths if the number of iterations goes
to infinity and thus the probability of the true user weight
converges to one almost surely.

Proof. To prove the statement we show two properties: 1) The
greedy algorithm eventually returns P ∗ and 2) if P curr = P ∗ it
eventually returns all paths necessary to constitute an asymp-
totically completely informative sequence. To show the first
statement let P curr 6= P ∗. If a path P j 6= P ∗ is returned we
either do not learn about P ∗ and the posterior of either Ωcurr

or Ωj decreases relatively to the posterior of Ω∗ (see equation
(3)). Otherwise, the comparison of (P curr, P j) contains infor-
mation about Ω∗ and thus is expected to increase the posterior
of Ω∗. While P curr 6= P ∗, the expected marginal reward of
presenting P ∗, i.e., E [f ((P curr, P ∗)

⋃
Xn−1)] − f(Xn−1),

increases monotonically, relatively to the reward of any other
path. Thus, P ∗ will eventually be the maximizer of equation
(10). Then, the greedy algorithm returns P ∗ and the user will
prefer P ∗ over the current P curr in expectation.

For the second statement, assume we already have P curr =
P ∗. Due to inaccurate user feedback another path P i becomes
P curr. However, as shown above, the algorithm eventually
presents P ∗ again. Consider the path P j where nj is minimal
among all paths (nj is defined in Definition 2). Case 1:
q(w∗ ∈ Ωj |U) is the maximizer of equation (10), thus P j is
presented and nj increments. Case 2: Some q(w∗ ∈ Ωr|U) is
the maximizer and (P curr, P r) is presented. If the correspond-
ing feedback contains information about P j , nj increments as
well. According to equation (3), if no information about P j

is obtained, q(w∗ ∈ Ωj |U) increases by a ratio of 0.5/(1−p)

(where p is the user accuracy) relative to all q(w∗ ∈ Ω′|U),
where Ω′ gets rejected by the feedback to (P curr, P r). As

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2019

this holds for all other paths and the number of paths is
finite, q(w∗ ∈ Ωj |U) increases relative to all other posterior
measures until, after a finite number of iterations, either
information about P j is obtained and nj increments, or case
1 applies. Hence, we are guaranteed to increment the minimal
nj and thus all nj must go to infinity.

Performing an exact greedy step is hard, as finding the
set of all equivalence regions O is intractable. In practice,
a polynomial sized estimate O′ can be found via sampling
which allows for an approximate greedy step.

IV. EVALUATION

To generate realistic simulations, we recruited users to
create specifications. Given the layout of a real industrial
facility, users defined constraints as described in [14]. To
systematically evaluate our approach, we simulate user feed-
back in the active learning. This allows us to pick different
ground truths w∗ and generate the user feedback with varying
accuracy levels. Figure 1 illustrates an example specification
with different possible solutions. Further, for an outdoor sce-
nario we conducted experiments using graphs generated by a
probabilistic method [19] and random specifications.

Our primary interest is how the posterior belief about w∗

evolves. In the evaluation we have two objectives: Showing the
robustness of our user model and comparing our work with [5].
We refer to their approach as the Maximum Volume Removal
(MRV) and name our approach the Maximum Equivalence
Region Removal (MERR) 1.

In our implementation of MRV, we modify the query selec-
tion: As we consider a discrete space, queries are found by
iterating over O′ rather then solving a continuous optimization
problem. To ensure comparability with our framework, we fix
one path in the pair that comprises a query as the current
path. Moreover, MRV requires a scaling of the features. The
user’s accuracy is modelled as an exponential function of the
difference in the cost of two paths [5]. Thus the user’s accuracy
depends on the scaling of the cost function. The model is
extended by a linear parameter β in [6] to describe different
levels of accuracy. However, as no restriction on the scale
of the features is made, these β values do not yield similar
results for different scenarios. In our experiments we manually
determined β for each scenario such that the user’s accuracy
is approximately 0.9.

To investigate the performance we used three different
specifications that vary in complexity. The first specification
consists of 26 constraints, covering 33% of the free space,
the second (shown in Figure 1) has 41 constraints covering
40% while the third consists of 52 constraints covering 73%2.
For each specification we varied between two start and goal
pairs and three randomly selected true user weights w∗. As
finding the set of all equivalence regions O is intractable, we
generate estimates O′ via sampling. The graph G′ for these

1Note: In both approaches neither volume nor equivalence regions are
removed, we rather assign a lower posterior probability to the rejected items.

2When a user specifies a road on the interface it counts as 2 constraints for
the planner: A reward for following the road, i.e., a constraint with a negative
weight, and a penalty for going against the direction of travel.

Fig. 3. Results for experiment 1. For different values of the posterior of the
optimal weight w∗ the left plot shows the percentage of trials that achieved
that value within 30 iterations. In the right plot we show median values of the
posterior over all 30 iterations together with violin plots of the distribution
of the posterior of w∗ at iterations 10, 20 and 30.

experiments is based on a grid layout and has of 5185 vertices.
MERR and MVR differ in three components: The model for
the simulated user feedback, the user model assumed by the
learning system and the strategy for presenting new paths, i.e.,
the query selection.

A. Performance of MERR and MVR query selections

Experiment 1: In the first experiment, we compare the
performance for the different active query selections - either
MVR or MERR - for a user following the MVR model. Figure
3 shows the result for a total of 180 trials (10 repetitions for
each configuration of user, start-goal pair and true user weight)
with a budget of 30 iterations.

The left plot of Figure 3 illustrates the percentage of trials
that achieved a given final posterior value for the true user
weight w∗ within the iteration budget. A critical threshold for
the posterior is 0.5, as then ŵbest = w∗ and ŵbest is the
unique maximizer of the posterior distribution. The MERR
query selection has a higher success rate: 70% of the trials
converge within 30 iterations, while only 40% do so for MVR
queries. Interestingly, both approaches always converge once
the posterior of w∗ surpasses 0.5. In the right sub plot we
illustrate the evolution of the median posterior of w∗ over the
iterations. Further, at iterations 10, 20 and 30 we show the
distribution of the data. We observe that between iterations
10 and 20 the MERR posterior median starts to increase
quickly, passing the 0.5 threshold at iteration 17 and getting
past 0.9 after 21 iterations. MVR shows a slower increase and
does not pass 0.2 within the 30 iterations. The violin plots
at three stages of the process illustrate a further detail: The
distributions are nearly bimodal. Both approaches succeed for
some instances very quickly while the posterior stays low for
harder instances. However, we observe that the low end of the
distribution shrinks more quickly for MERR and eventually
becomes completely bimodal. In some hard instances, the
algorithm takes longer to initially show P ∗ to the user and does
not learn about w∗ until then. However, once P ∗ is shown, the
belief about w∗ is maximized quickly, leading to the bimodal
distribution.

To explain the better performance of MERR, we recall that
equivalence regions vary drastically in volume. MVR often
proposes queries that reduce the integral of the posterior but

WILDE et al.: BAYESIAN ACTIVE LEARNING FOR COLLABORATIVE TASK SPECIFICATION USING EQUIVALENCE REGIONS 7

Fig. 4. Results for experiment 2. The same analysis as in Figure 3 is shown,
but for the MERR user two different values for accuracy, p = 0.9 and p =
0.8, are depicted.

do not significantly change the posterior of equivalence regions
and thus makes little progress.

Experiment 2: The second experiment focuses on the
performance of both query selection methods, assuming the
user generates responses according to the MERR model, i.e.,
equation (3). In Experiment 1 we simulated the user according
to [5], [6]. In that model, the accuracy depends on how
different the presented paths are and therefore is influenced
by the query selection. In order to ensure comparability with
our user model, we fixed the accuracy to the average of
Experiment 1, thus p = 0.9. Additionally, a second dataset
shows the results for lower accuracies of p = 0.8. Notice that
the range for meaningful values is (0.5, 1]; users with p = 0.5
act completely independently of our model. Further, p = 0.9
corresponds to 10% misleading feedback, p = 0.8 doubles the
error rate to 20% of cases. In Figure 4 we summarize the data
as done for Experiment 1.

In contrast to Experiment 1, both query selection methods
achieve a lower convergence rate for p = 0.9. MERR reaches
a posterior median of 0.6 in 80% of the trials, while with
MVR less than 45% of trials reach the 0.5 threshold. For
the lower accuracy of p = 0.8, both query selection methods
perform worse: MERR converges only in 42% and MVR 20%
of cases. The graphs illustrating the mean posteriors over
the iterations show a similar result for p = 0.9 compared
to Experiment 1. For p = 0.8, the median of the posterior
for MERR makes substantially better progress than MVR.
The distributions confirm this observation: MERR shrinks the
bottom lobe and gains on the upper end more quickly.

In summary, the first two experiments highlight the perfor-
mance benefit when maximizing the decrease in the posterior
summed over equivalence regions compared to the decrease
in the integral of the posterior (i.e., the removed volume),
irrespective of the user model.

B. Robustness of MERR
We further investigate how sensitive the proposed approach

is to knowledge of the user’s accuracy. We simulate the user
according to the MERR model with a constant accuracy p,
but the learning system only has access to an estimate p̂. We
fixed p = 0.7 and p = 0.85 and picked either p̂ = p, or
p̂ = p ± 0.1. The experiment is based on the smallest and
largest specifications with 26 and 52 constraints, respectively.
For each p, p̂ configuration we average over 20 trials.

Fig. 5. Experiment 3. Robustness of the MERR user model for two
specification (26 and 52 constraints) and different accuracies p in the simulated
user and different estimates p′ for the learning.

Figure 5 shows that an estimation error of 0.1 for the user
accuracy has very little influence on the performance. In all 4
plots the over- and underestimates behave similarly to when
the learner knows the user’s accuracy exactly. As expected, the
accuracy itself has an impact on the performance: For p = 0.7
the learning system performs worse for both specifications.
Especially for the large specification, there is only little
progress over the 20 iterations. In a more complicated setting
additional feedback is needed to elicit the true user weight,
the higher amount of inaccurate feedback then has a larger
impact. On the other hand, for p = 0.85 the final result is
relatively similar for both specifications. We conclude that a
richer specification has a smaller impact on the performance
when the user feedback is more accurate.

C. Extension to other scenarios

Finally, we applied the approach to a different setting: An
environment described by a graph based on a k-nearest proba-
bilistic roadmap (PRM) [19]. User specifications are generated
randomly by sampling polygons in the environment; for each
region a constraint is formulated over all edges incident with
a vertex in the region. Using the layout of the campus of the
University of Waterloo, we generated a PRM graph with 2000
vertices and k = 10, the number of sampled constraints is
50. In Figure 6 we show the map together with the generated
graph. Further, we compare the initial path of the learning
which does not violate any constraints, and the user optimal
path P ∗ that is learned through interaction. We conducted a
similar analysis as in Experiments 1 and 2, averaged for 20
different specifications. Overall 50% of the trials achieve a
posterior of at least 0.9 within 50 iterations. Moreover, after
15 iterations the median passes the 0.5 threshold, while 0.9 is
reached after 40 interactions.

V. DISCUSSION

User models: Generally, both models, MVR and MERR,
assume that the user evaluates paths based on a weighted
sum of features. In MVR the user’s accuracy depends on
how similar the presented paths are. This approach is well
motivated and promises good performance when the features
are adequate. On the other hand, it has disadvantages with the

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2019

(a) (b)

Fig. 6. Results for Experiment 4. (a) shows the outdoor environment
(buildings in black and freespace in white) with the generated PRM-graph.
Red indicates edges that belong to a randomly generated constraint, orange
shows the optimal path between a start and goal location of a task when not
violating any constraints. (b) shows the optimal path P ∗ and the updated
weights on the constraints – red indicates high and blue low weights.

scaling of features and lacks robustness when users do not
follow the model. In contrast, our approach generally models
inaccuracies as a random noise and is agnostic towards their
exact form. In the simulations we fixed p to a constant and
demonstrated the robustness. Therefore, our learning system
is less dependent on our user model exactly capturing the
real user behaviour. A limitation of the MERR user model
with constant accuracy values is that accurate user feedback is
potentially not exploited efficiently as the noise then is query-
independent. This approach is investigated in [9]. Moreover,
both learning models depend on sampling to perform the
greedy step. Even though the accuracy can be increased
arbitrarily with more samples, finding the optimal solution is
computationally intractable.

Performance in experiments: In the first two experiments
we showed data that was collected for different user weights
and different user specifications (and thus features). Both have
a direct influence on the algorithm’s performance. Usually,
more complex specifications have a larger set of equivalence
regions, which affects the convergence. Maybe surprisingly,
the true user preference w∗ can also influence the perfor-
mance, especially in the MERR model: The learning system
makes little progress if most of the hyperplanes learned from
a sequence of user feedback intersect Ω∗. Moreover, in single
trials both models can perform relatively poorly by random
chance. An inaccurate user feedback for a query containing
P ∗ leads to decrease in the posterior of w∗. Then, the learning
system might need multiple iterations to present P ∗ again and
thus elicit w∗. This effect is enhanced when the accuracy of
the user is low. Nonetheless, the MERR learning model is still
guaranteed to converge.

VI. CONCLUSIONS AND FUTURE WORK

We presented an interactive framework for robot task speci-
fication. Based on Bayesian active leaning we derived a greedy
algorithm for generating queries. Our approach exploits the

fact that different weights for constraints do not necessarily
lead to different optimal paths. Using equivalence regions
allows for a discrete Bayesian learning model that does not
require the user to always provide feedback consistent with
the assumed cost function. The probability of an inconsistent
user feedback is of a general form and scale-invariant. In
simulations, we demonstrated that our approach outperforms
a related state-of-the-art technique [5] and showed robustness
of our user model. One future work direction is to extend
the concept of equivalence regions to continuous spaces by
introducing a notion of path similarity. Further, the proposed
framework can be applied to more complex and realistic
scenarios including multiple start and goal locations and
additional features, potentially including dynamic data such as
traffic. Finally, user studies are required to show the practical
performance of the framework.

APPENDIX

A. Hardness of finding all non-equivalent paths

Proposition 2 (Hardness of finding all paths). Finding the
number of non-equivalent paths between vstart and vgoal on
the graph G is #P hard.

Proof. To prove the statement we reduce the S-T-paths prob-
lem to our problem. The S-T paths problem finds the number
of all paths from a start to a goal vertex on an unweighted
graph and is known to be #P complete [20]. Let (GST , S, T)
be an instance of S-T-paths where GST = (V ST , EST ,ΨST)
is a non-weighted graph without parallel edges and ΨST maps
a pair of vertices to each edge. We construct an instance of our
problem where G′ = (V,E,Ψ) with V = V ST , E = EST ,
Ψ = ΨST and vstart = S and vgoal = T . We choose ti for all
ei ∈ E such that G′ is metric. We then pick a user specification
consisting of |E| user constraints, each defining a weight for
exactly one edge such that each edge ei in E is associated
with a single hidden weight w∗i . We obtain a doubly weighted
graph G = (V,E,Ψ, t, w∗). Every path on GST then has a
corresponding path on G and vice versa. Moreover, any path
P between vstart and vgoal on G is a shortest path for some
realization of all wi as we can choose w∗i = 0 if ei ∈ P and
w∗j =

∑
k tk for all ej /∈ P and k = 1, . . . , |E| otherwise.

Hence, the number of equivalence regions of our problem
equals the number of all paths on G, which corresponds to
the number of S-T paths on GST . We conclude that a solution
to finding all equivalent paths solves S-T paths.

The complexity class of #P includes problems such as
counting the number of solutions of NP-hard problems; how-
ever, even for many problems solvable in polynomial time,
counting the solutions is nonetheless #P hard [20]. If a
polynomial time algorithm for solving a #P hard problem
exists, it would imply P = NP.

B. Discussion of adaptive submodularity

In Section III-C we proposed a greedy algorithm that
maximizes the reduction of an unnormalized posterior. The
objective of the algorithm is related to adaptive submodular
functions, introduced in [21]. A similar approach is presented

WILDE et al.: BAYESIAN ACTIVE LEARNING FOR COLLABORATIVE TASK SPECIFICATION USING EQUIVALENCE REGIONS 9

in the active learning framework of [5], where the objective
is the reduction of the unnormalized integrated posterior of
the weight space, referred to as the removed volume. The
authors show that this volume removal function is adaptive
submodular. In contrast, equation (9) sums over the posterior
measure of all equivalence regions. This indicates how the
belief over paths changes instead of over all weights. When P i

is not fixed to be P curr, our greedy objective function f(Xn)
can also be shown to be normalized, adaptive monotone,
and adaptive submodular. Adaptive monotonicity follows from
q(w∗ ∈ Ω|U) being multiplied with pij , 1− pij or 1/2 when
user feedback is observed. Further, adaptive submodularity
follows since the marginal reward of an element Xij , as
defined in [21], is smaller for a set Xm than for a set
Xn, where |Xm| ≥ |Xn as the decrease in the posterior
measure has an upper bound of q(w∗ ∈ Ωi|Un, U

ij). Adaptive
submularity provides strong performance guarantees for a
greedy approach: At any given iteration, the greedy solution
achieves 1− 1/e ≈ 0.63 times the optimal solution and is the
best polynomial time approximation [21].

REFERENCES

[1] V. Villani, F. Pini, F. Leali, and C. Secchi, “Survey on human-robot
collaboration in industrial settings: Safety, intuitive interfaces and appli-
cations,” Mechatronics, no. June 2017, pp. 1–19, 2018.

[2] M. C. Gombolay, R. J. Wilcox, and J. A. Shah, “Fast scheduling of
robot teams performing tasks with temporospatial constraints,” IEEE
Transactions on Robotics, vol. 34, no. 1, pp. 220–239, 2018.

[3] N. Wilde, D. Kulic, and S. L. Smith, “Learning user preferences in robot
motion planning through interaction,” in ICRA, 2018.

[4] C. Daniel, M. Viering, J. Metz, O. Kroemer, and J. Peters, “Active
Reward Learning,” RSS, vol. 10, no. July, 2014.

[5] D. Sadigh, A. D. Dragan, S. Sastry, and S. A. Seshia, “Active preference-
based learning of reward functions,” in RSS, 2017.

[6] C. Basu, M. Singhal, and A. D. Dragan, “Learning from richer human
guidance: Augmenting comparison-based learning with feature queries,”
in HRI 2018. ACM, 2018, pp. 132–140.

[7] V. T. Chakaravarthy, V. Pandit, S. Roy, P. Awasthi, and M. Mohania,
“Decision trees for entity identification: Approximation algorithms and
hardness results,” in Proceedings of the twenty-sixth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems. ACM,
2007, pp. 53–62.

[8] D. Golovin, A. Krause, and D. Ray, “Near-optimal bayesian active
learning with noisy observations,” in NIPS, 2010, pp. 766–774.

[9] R. Holladay, S. Javdani, A. Dragan, and S. Srinivasa, “Active compar-
ison based learning incorporating user uncertainty and noise,” in RSS
Workshop on Model Learning for Human-Robot Communication, 2016.

[10] B. Akgun, M. Cakmak, J. W. Yoo, and A. L. Thomaz, “Trajectories
and keyframes for kinesthetic teaching: A human-robot interaction
perspective,” in HRI 2012. ACM, 2012, pp. 391–398.

[11] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei,
“Deep reinforcement learning from human preferences,” in NIPS, 2017,
pp. 4299–4307.

[12] A. Wilson, A. Fern, and P. Tadepalli, “A bayesian approach for policy
learning from trajectory preference queries,” in NIPS.

[13] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning. ACM, 2004, p. 1.

[14] A. Blidaru, S. L. Smith, and D. Kulic, “Assessing user specifications for
robot task planning,” in RO-MAN, 2018.

[15] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algo-
rithms, 4th ed. Springer Publishing Company, Inc., 2007.

[16] K. G. Jamieson and R. Nowak, “Active ranking using pairwise compar-
isons,” in NIPS, 2011, pp. 2240–2248.

[17] L. Wasserman, All of Statistics: A Concise Course in Statistical Infer-
ence. Springer Publishing Company, Incorporated, 2010.

[18] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American statistical association, vol. 58, no.
301, pp. 13–30, 1963.

[19] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006.

[20] L. G. Valiant, “The complexity of enumeration and reliability problems,”
SIAM Journal on Computing, vol. 8, no. 3, pp. 410–421, 1979.

[21] D. Golovin and A. Krause, “Adaptive submodularity: Theory and
applications in active learning and stochastic optimization,” Journal of
Artificial Intelligence Research, vol. 42, pp. 427–486, 2011.

	I Introduction
	II Problem Formulation
	II-A Preliminaries
	II-B Problem statement

	III Probabilistic Learning
	III-A Bayesian Learning
	III-B Probabilistic Algorithm
	III-C Greedy Policy

	IV Evaluation
	IV-A Performance of MERR and MVR query selections
	IV-B Robustness of MERR
	IV-C Extension to other scenarios

	V Discussion
	VI Conclusions and Future Work
	Appendix
	A Hardness of finding all non-equivalent paths
	B Discussion of adaptive submodularity

	References

