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Coordinated control of spacecraft’s attitude and

end-effector for space robots

Alessandro M. Giordano1,2, Christian Ott2, and Alin Albu-Schäffer1,2

Abstract—This paper addresses the coordinated control of the
spacecraft’s attitude and the end-effector pose of a manipulator-
equipped space robot. A controller is proposed to simultane-
ously regulate the spacecraft’s attitude, the global center-of-
mass (CoM), and the end-effector pose. The control is based
on a triangular actuation decomposition that decouples the end-
effector task from the spacecraft’s force actuator, increasing fuel
efficiency. The strategy is validated in hardware using a robotic
motion simulator composed of a seven degrees-of-freedom (DOF)
arm mounted on a 6DOF base. The trade-off between control
requirements and fuel consumption is discussed.

Index Terms—Space Robotics and Automation, Motion Con-
trol, Dynamics, Compliance and Impedance Control

I. INTRODUCTION

C
ONCEPTUAL future orbital robotics systems envision a

manipulator mounted on a spacecraft equipped with actu-

ators. A typical configuration of spacecraft’s actuators used in

rendezvous scenarios includes at least thrusters, as they are the

only devices that allow actuation of the translation. Thrusters

are nonrenewable resources, as they rely upon the limited

amount of fuel which has been launched with the spacecraft.

Furthermore, their actuation capability is very small compared

to the driving torques of the manipulator and they can be

commanded at a consistently lower rate than the joints of the

manipulator. The operational lifetime is strongly limited by

the fuel limitation. Further, the manipulator performance is

limited by the thrusters’ saturation and, in coordinated control

designs, by the discretization of the thrusters. Considering the

above mentioned aspects, the derivation of intelligent control

strategies that try to limit the use of the thrusters is a key

point for the development of sustainable and high-performance

orbital robotic systems.

In the early control concepts, attention was given to the

possibility of completely turning off the spacecraft’s actuators,

resulting in a system for which the arm is commanded to

realize an end-effector task while the spacecraft is left free-

floating [1], [2], [3]. The free-floating idea was recently
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extended in the sense that the spacecraft’s actuators are not

completely turned off, but they are (minimalistically) used

to dump any accumulated linear and angular momenta from

the system [4] and stabilize the center-of-mass (CoM) of

the space robot [5], endowing the floating-base space robot

with the capability to resist contact. Although the advantages

of the free-floating control and its extensions are evident

in terms of fuel consumption, some missions may still re-

quire attitude pointing of the spacecraft. Possible reasons for

this might include the limited field-of-view of a spacecraft-

mounted sensor for relative navigation and antenna pointing

for telecommunication. To cope with such constraints, the

coordinated control of the spacecraft and of the arm end-

effector was developed in the literature. For this purpose, the

interesting strategy of fixed-attitude-restricted Jacobian control

[6] was proposed. In the strategy, the simultaneous attitude and

end-effector tasks are performed entirely by the manipulator

joints and no thrusters are used. However, the method requires

highly redundant robots and even in that case, the workspace

of the robot might be too limited. Other strategies exploit

the full actuation capability of a space robot [7], [8], [9]

given by the combined use of the spacecraft’s actuators and

joint drives. In [7], an adaptive scheme is proposed for the

control of the spacecraft’s attitude and the joints; in [8] a

feedback linearization scheme is proposed for the control of

the spacecraft’s attitude and the end-effector. However, in both

works the stabilization of the inertial translational motion is

not treated and the system may drift after contact. In [9], a

coordinated control strategy is developed to simultaneously

control the spacecraft translation, the spacecraft attitude, and

the end-effector, based on a transposed Jacobian strategy. The

method is effective in controlling both the spacecraft’s attitude,

the end-effector, and in stabilizing the inertial translational

motion. However, the additional task of rigidly controlling

the spacecraft’s translation, as well as the coupled actuation

structure resulting therein, lead to unnecessary activation of

thrusters during end-effector maneuvering.

In this paper, a controller is designed to regulate the

spacecraft’s attitude and the end-effector pose while leaving

the spacecraft free to translate. To stabilize the inertial motion

of the robot, the space robot’s CoM is controlled instead. One

feature of the proposed controller is its decoupled actuation

structure, i.e., the end-effector control input is decoupled from

the spacecraft’s force actuators. Thanks to this decoupling and

to the avoidance of control of the spacecraft’s translation, the

controller improves the fuel efficiency compared to full space-

craft control, as demonstrated in a simulation comparison. The

main contributions are:
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• the formulation of the dynamics in a transformed set of

coordinates, for which the end-effector control input is

decoupled from the spacecraft’s force actuators;

• the development of a coordinated control of spacecraft

attitude, global CoM, and end-effector pose, including a

stability proof;

• an analysis of the trade-off between control requirements

and fuel consumption for a space robot.

The paper is structured as follows: Section II introduces the

notation and the main equations. Section III describes the

dynamics transformation and introduces the new decoupled

control inputs. Section IV presents the proposed controller

and the stability analysis. Section V discusses the trade-off

between task requirements and fuel consumption. Section VI

presents the experimental validation.

II. PRELIMINARIES

A. Problem statement

A serial-link robot composed of n+1 bodies is considered,

where n is the number of joints of the arm. The spacecraft

is fully actuated, i.e., external forces and torques are exerted

on the spacecraft by means of the spacecraft actuators. The

operational scenario involves the maneuvering of the robot’s

end-effector with the requirement of attitude control of the

spacecraft but no requirement on the control control of its

position. This may include the tasks of capturing, inspecting,

or servicing a target object in orbit. The target object is

assumed to be stationary in the inertial space. No orbital or

environmental disturbances are considered, because they are

considerably smaller than the actuation forces. The problem

developed herein is the derivation of a controller that reg-

ulates simultaneously the robot’s end-effector pose and the

spacecraft’s attitude but leaves the spacecraft free to translate.

The control shall further regulate the position of the overall

CoM to ensure no inertial drift and a favorable location of the

workspace w.r.t. the target.

B. Main notation

Fig.1 shows a schematic representation of the system com-

ponents. The following frames are considered: a base frame

B attached to the spacecraft and placed on its CoM; an end-

effector frame E ; a frame T attached to the target object; a

frame C placed on the CoM of the space robot and whose axes

are nonrotating w.r.t. the inertial space; and a body frame J
attached to the general jth body and placed on its CoM. Note

that j = 0 corresponds to the base frame. The symbols fb and

τb denote the base force and torque about B acted upon by

the spacecraft’s actuators and expressed in the frame B. Let us

indicate with pxy ∈ R
3 and Rxy ∈ SO(3) the position vector

from a general frame X to a general frame Y expressed in the

frame X , and the corresponding rotation matrix, respectively.

The so-called Adjoint transformation [10] is used herein:

Axy =

[
Rxy [pxy]

∧Rxy

0 Rxy

]

∈ R
6×6, (1)

wherein the operator [ · ]∧ indicates the skew-symmetric matrix

of the vector argument. Let us generally denote as vxy ∈

B T

EC

J

pbj

pbc

Joint 1

Joint 2

Joint j

Joint j+1

Joint n

Spacecraft
Target object

Manipulator

Fig. 1: Schematic representation of the system.

R
3 and ωxy ∈ R

3 the linear and angular velocities of the

general frame Y relative to X expressed in Y , respectively.

νxy =
[
vT
xy ωT

xy

]T
∈ R

6 indicates the corresponding 6DOF

generalized velocity. The use of only one superscript, i.e., νy ,

indicates that the velocity is relative to the inertial frame T .

The symbol m(j) ∈ R denotes the mass of the jth body,

whereas I
(j)
j ∈ R

3 denotes its inertia around J expressed

in the frame J . The symbols 0 and E indicate the zero and

identity matrices of suitable dimensions, respectively.

C. Kinematics and dynamics

The velocity of the jth body can be expressed as a function

of the base velocity and of the joint velocities, as

νj = Ajb(q)

[
vb

ωb

]

+ Jνj (q)q̇, (2)

where q ∈ T
n and q̇ ∈ R

n are the joint angles1 and velocities,

respectively, and where Jνj (q) =

[
Jvj (q)
Jωj

(q)

]

∈ R
6×n is the

Jacobian matrix mapping q̇ into νj , with Jvj (q) ∈ R
3×n and

Jωj
(q) ∈ R

3×n being its linear and angular parts, respectively.

Note that for j = 0, it holds that Ajb(q) = E and Jνj (q) = 0.

Similarly, the end-effector velocity is expressed as

νe = Aeb(q)

[
vb

ωb

]

+ Jνe(q)q̇, (3)

where Jνe(q) ∈ R
6×n is the manipulator Jacobian matrix.

The dynamics of the space robot is described by





Mt Mtr Mtm

MT
tr Mr Mrm

MT
tm MT

rm Mm





︸ ︷︷ ︸

M(q)





v̇b

ω̇b

q̈



+

+





Ct Ctr Ctm

Crt Cr Crm

Cmt Cmr Cm





︸ ︷︷ ︸

C(q,vb,ωb,q̇)





vb

ωb

q̇



 =





fb

τb
τ



 , (4)

where M(q) ∈ R
(6+n)×(6+n) and C(q,vb,ωb, q̇) ∈

R
(6+n)×(6+n) are the inertia and Coriolis/centrifugal matri-

ces, respectively, and where τ ∈ R
n are the joint torques.

Henceforth, the functional dependence is dropped out.

1Tn = S× · · · × S
︸ ︷︷ ︸

n

is the n-torus.
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The sub-blocks of the inertia matrix are expressed as [5]

Mt = mE ∈ R
3×3, Mr = Ib ∈ R

3×3, (5a)

Mtr = −m[pbc]
∧ ∈ R

3×3, Mtm = mJ̄v ∈ R
3×n, (5b)

Mrm =

n∑

j=0

RT
jbI

(j)
j Jωj

+m(j)[pbj ]
∧RT

jbJvj ∈ R
3×n, (5c)

Mm =
n∑

j=0

m(j)JT
vj
Jvj + JT

ωj
I
(j)
j Jωj

∈ R
n×n, (5d)

where m =
∑n

j=0 m
(j) and Ib =

∑n

j=0 R
T
jbI

(j)
j Rjb +

m(j)[pbj ]
∧T [pbj ]

∧ denote the mass of the whole system and

its rotational inertia around B, respectively, and where

pbc =
1

m

n∑

j=0

mjpbj ∈ R
3, (6)

J̄v =
1

m

n∑

j=0

mjR
T
jbJvj ∈ R

3×n. (7)

The velocity of the CoM of the whole system is computed as

vc =
1

m

n∑

j=0

mjRcjvj . (8)

To simplify (8), the linear part vj is extracted from (2), as

vj = Rjbvb + [pjb]
∧
Rjbωb + Jvj q̇, (9)

where (1) has been used. Then, by inserting (9) into (8) and

using (6) and (7), vc can be expressed as a function of the

generalized velocities vb, ωb and q̇, as

vc = Rcbvb −Rcb [pbc]
∧
ωb +RcbJ̄v q̇. (10)

III. TRIANGULAR DYNAMICS

In the following, the motion of the end-effector is first

decomposed into a centroidal component plus a component

of motion around the CoM. Then, a dynamics transformation

is applied to identify a set of new control inputs that possess

special decoupling properties with respect to the actuators.

A. Circumcentroidal motion decomposition

Let us first rewrite (3) more explicitly in translational and

rotational base velocity and joint velocity components, as

νe =

[
Reb

0

]

vb +

[
[peb]

∧Reb

Reb

]

ωb + Jνe q̇, (11)

where (1) was used. The end-effector velocity in (11) can be

expressed as function of the CoM velocity by eliminating vb

from (10) and (11), obtaining2

νe = Gvcvc +Gωb
ωb + J⊕

νe
q̇, (12)

where:

Gvc =

[
Rec

0

]

∈ R
6×3, Gωb

=

[
[pec]

∧Reb

Reb

]

∈ R
6×3, (13)

J⊕

νe
= Jνe −

[
Reb

0

]

J̄v ∈ R
6×n. (14)

2The property R[p]∧RT = [Rp]∧ of the skew-symmetric matrices [10]
is used to obtain (12).

Note that J⊕
νe

is the generalized manipulator Jacobian obtained

by eliminating only the translational part of the base motion.

Thus, it differs from the generalized Jacobian used for free-

floating control [3], [5], which is obtained by eliminating both

the translational and rotational parts. The end-effector velocity

in (12) can be finally written as the sum of the motion of the

CoM and that around the CoM, as

νe = Gvcvc + ν⊕

e , (15)

where ν⊕
e ∈ R

6 refers to what in the following will be

called “end-effector circumcentroidal motion,” i.e., the motion

around the overall CoM. It endows the effects of both the

internal joint motion and the angular base motion, and it is

given by

ν⊕

e , Gωb
ωb + J⊕

νe
q̇. (16)

An interpretation of ν⊕
e can be given in terms of relative

motion of frames. More specifically, ν⊕
e is equivalent to the

body velocity νce ∈ R
6 of the end-effector frame relative

to the nonrotating frame C. In fact, given the velocity νc =
[
vT
c 0

T
]T

of the frame C, the body velocity νce ∈ R
6 of E

relative to C is [10, p.59]

νce = νe −Aecνc = νe −

[
Rec

0

]

vc, (17)

where (1) was used. Rearranging (15) and using (13), it is

ν⊕

e = νe −Gvcvc = νe −

[
Rec

0

]

vc, (18)

which is indeed equivalent to (17). In the following section it

is shown how ν⊕
e possesses special properties that are useful

to decouple the dynamics equations.

B. Dynamics transformation

A coordinates transformation Γ ∈ R
12×(6+n) can be defined

based on the circumcentroidal motion decomposition, as




vc

ωb

ν⊕
e



 =





Rcb −Rcb[pbc]
∧ RcbJ̄v

0 E 0

0 Gωb
J⊕
νe





︸ ︷︷ ︸

Γ





vb

ωb

q̇



 , (19)

where (10) and (16) have been used. The generalized forces

transform as 



fb

τb
τ



 = Γ
T





fc

τ⊕

b

w⊕
e



 , (20)

where fc ∈ R
3, τ⊕

b ∈ R
3 and w⊕

e ∈ R
6 are the new control

inputs. fc represents the total CoM control force, τ⊕

b is the

new base control torque and w⊕
e is the new end-effector

control wrench. Let us assume a nonredundant manipulator,

i.e., n = 6. For nonsingular J⊕
νe

it is possible to invert (19)

and transform (4) as [11, p.32]:





mE 0 0

0 M̆b M̆be

0 M̆T
be M̆e









v̇c

ω̇b

ν̇⊕
e



+

+





0 −CT
bc −CT

ec

Cbc C̆b C̆be

Cec C̆eb C̆e









vc

ωb

ν⊕
e



 =





fc

τ⊕

b

w⊕
e



 , (21)
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where M̆ =

[
M̆b M̆be

M̆T
be M̆e

]

∈ R
9×9 and C̆ =

[
C̆b C̆be

C̆eb C̆e

]

∈

R
9×9 are the inertia and Coriolis-centrifugal matrices, re-

spectively, associated to the attitude and end-effector system.

Notice that the CoM equation is inertially decoupled from the

rest of the system. Note that this energy decoupling does not

hold when using νe instead of ν⊕
e . Further simplifications of

(21) are done by considering that the Coriolis and centrifugal

vector terms can be shown to be zero for the centroid equation,

i.e., −CT
bcωb−CT

ecν
⊕
e = 0 (see Appendix of [4]). Then, (21)

simplifies to

mv̇c = fc, (22a)

M̆

[
ω̇b

ν̇⊕
e

]

+ C̆

[
ωb

ν⊕
e

]

+Ccvc =

[
τ⊕

b

w⊕
e

]

, (22b)

where Cc =

[
Cbc

Cec

]

∈ R
6×3. First, notice that the left-hand

sides of (22a) and (22b) have a triangular structure, wherein

Ccvc represents the perturbation of the CoM system into

the coupled base and end-effector system. By exploiting this

triangular structure it is possible to design controllers in a

cascaded fashion, using

[
τ⊕

b

w⊕
e

]

to control the base and the end-

effector in a coordinated way, and using fc to independently

control the CoM. Thanks to this triangular structure, the proof

of stability can be addressed in cascade, as shown in the next

section.

Second, remark that (22b) enjoys the fruitful property

[
ωT

b ν⊕T
e

] ( ˙̆
M − 2C̆

)[
ωb

ν⊕
e

]

= 0, ∀ωb,ν
⊕

e ∈ R
6. (23)

This property is an advantage of the machinery (19), (20), (21)

used to obtain (22). Indeed, while (22a) is a common result, the

advantage lies instead in (22b), for which (23) automatically

holds.

IV. COORDINATED CONTROL

The objective of the control is to regulate the pose of the

frame E , the position of C and the orientation of the frame B
w.r.t. the inertial frame T .

A. Control error definition

Given a desired CoM position ptcd ∈ R
3 fixed in T , a CoM

error x̃c ∈ R
3 is defined as x̃c = pccd = RT

tc(ptc − ptcd)
and its time-derivative is simply ˙̃xc = RT

tcṗtc = vc. Given

a desired frame Ed fixed in T , let us consider the po-

sition vector pted and the rotation matrix Rted from T
to Ed. Then, an end-effector pose error x̃e ∈ R

6 is de-

fined using a quaternion-based coordinates representation,

as x̃e =
[
pT
eed

2ǫTeed
]T

, where peed = RT
te(pte − pted) and

where ǫeed ∈ R
3 is the vector part of the unit quaternion

extracted from Reed = RT
teRted . Denoting by ηeed ∈ R its

scalar part, the time derivative ˙̃xe can be expressed as

˙̃xe = Jx̃e
νe, with Jx̃e

=

[
E 0

0 −ηeedE + [ǫeed ]
∧

]

, (24)

where Jx̃e
∈ R

6×6 is the so-called coordinates representation

Jacobian matrix. An advantage of the adopted representation

is that Jx̃e
is not affected by singularity, i.e., Jx̃e

cannot grow

unbounded, and that it is task-consistent [12, p.13]. Similarly,

given a desired frame Bd with axes fixed in T , let us consider

the rotation matrix Rtbd from T to Bd. Then, a base attitude

error x̃b ∈ R
3 is defined as x̃b = 2ǫbbd , with ǫbbd ∈ R

3

being the vector part of the unit quaternion extracted from

Rbbd = RT
tbRtbd . Denoting by ηbbd ∈ R the scalar part of the

quaternion, the time derivative ˙̃xb can be expressed as

˙̃xb = Jx̃b
ωb, with Jx̃b

= −ηbbdE + [ǫbbd ]
∧ ∈ R

3×3. (25)

For convenience, the base and end-effector errors (25) and (24)

are rewritten in a compact form, as

˙̃x = Jx̃

[
ωb

νe

]

, (26)

where x̃ =

[
x̃b

x̃e

]

∈ R
9 and Jx̃ =

[
Jx̃b

0

0 Jx̃e

]

∈ R
9×9. Then,

by inserting (15) into (26), ˙̃x can be factored as

˙̃x = Jx̃v̆ + Jx̃Ğvcvc, (27)

where v̆ =

[
ωb

ν⊕
e

]

∈ R
9 and Ğvc =

[
0

Gvc

]

∈ R
9×3.

B. Controller design

The CoM controller is defined as

fc = −Kcx̃c −Dcvc, (28)

where Kc ∈ R
3×3 is a symmetric, positive definite stiffness

matrix, and Dc ∈ R
3×3 is a positive definite damping matrix.

Then, the base controller is defined as

τ⊕

b = −JT
x̃b
Kbx̃b −Dbωb, (29)

where Kb ∈ R
3×3 is a symmetric, positive definite stiffness

matrix, and Db ∈ R
3×3 is a positive definite damping matrix.

The end-effector controller is defined as

w⊕

e = −JT
x̃e
Kex̃e −Deνe, (30)

where Ke ∈ R
6×6 is a symmetric, positive definite stiffness

matrix, and De ∈ R
6×6 is a positive definite damping matrix.

The controllers (28), (29), and (30) can be all interpreted as

springs and dampers in the inertial space actuated by control

inputs fc, τ
⊕

b and w⊕
e that are dual to the new space (19).

For the sake of compactness, the base and end-effector con-

trollers (29) and (30) are rewritten in the form

[
τ⊕

b

w⊕
e

]

= JT
x̃ K̆x̃+ D̆v̆, (31)

where K̆ = blkdiag (Kb,Ke) ∈ R
9×9 and D̆ =

blkdiag (Db,De) ∈ R
9×9.
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C. Controller properties

Writing (20) explicitly, the actuator commands can be

related to the new control inputs as:




fb

τb
τ



 =





RT
cb 0 0

[pbc]
∧RT

cb E GT
ωb

J̄v
T
RT

cb 0 J⊕T
νe









fc

τ⊕

b

w⊕
e



 . (32)

Notice that the actuation distribution has a triangular form.

More specifically, the base force fb is only activated to control

the CoM position and not to actuate either the end-effector or

the base attitude task. Conversely, the base torque τb and the

joint torques τ are affected by fc. One important feature of

this triangular structure is that the base force actuator is not

used to realize the end-effector task, but to realize the only task

that cannot be actuated by internal actuators, i.e., controlling

the inertial location of the CoM. This structure is a property

of the circumcentroidal velocity ν⊕
e and does not hold when

using the absolute velocity νe. In fact, in the latter case, it

would be:




fb

τb
τ



 =





RT
cb 0 P T

vb

[pbc]
∧RT

cb E P T
ωb

J̄v
T
RT

cb 0 JT
νe









fc

τ̄b
we



 , (33)

where Pvb ,Pωb
∈ R

6×3, and where τ̄b, we ∈ R
n are

control inputs dual to ωb, νe. Another important feature can

be concluded based on the special conserving properties of

the CoM task. After the CoM transient vanishes, the system

converges to a stationary situation in which the CoM remains

fixed in the inertial space. Therefore, during the entire time

of robot maneuvers that do not involve contact or CoM

relocation, it will remain x̃c = vc = 0 and in turn fb = 0.

Hence, with the proposed controller, all operations that do

not involve contact will require no base force. The base force

will be activated only when contact occurs, and its use will

be limited to restoring the CoM location for the workspace

need. In designs in which thrusters are used to actuate both

fb and τb, the above-mentioned features result in a consistent

improvement in fuel consumption, as will be shown in Section

V. In designs in which the thrusters are used to actuate only

fb, but the actuation of τb is accomplished by momentum

exchange devices (e.g., reaction wheels), the proposed control

would have the remarkable advantage of consuming exactly

zero fuel for contact-free end-effector maneuvering.

D. Stability analysis

The closed-loop dynamics is obtained by inserting (31),(28)

and (15) into (22), considering (27), and inverting (16), as:

m ¨̃xc +Dc
˙̃xc +Kcx̃c = 0, (34a)

M̆(q) ˙̆v + C̆(q, v̆, ˙̃xc)v̆ + D̆v̆ + JT
x̃ (x̃)K̆x̃

= −
(

Cc(q, v̆, ˙̃xc) + D̆Ğvc(q)
)

˙̃xc,
(34b)

˙̃x = Jx̃(x̃)v̆ + Jx̃(x̃)Ğvc(q) ˙̃xc. (34c)

q̇ = J⊕−1
νe

(q)Ğωb
(q)v̆, (34d)

where Ğωb
=

[
E −Gωb

]
∈ R

6×9. The state can be

partitioned as z =
[
zT
1 zT

2

]T
∈ D = R

24 × T
n, with z1 =

[
x̃T
c

˙̃xT
c

]T
∈ R

6 and z2 =
[
v̆T x̃T qT

]T
∈ R

18 × T
n.

Then, the dynamics (34) is in the cascade state-space form

ż1 = g1 (z1) , (35a)

ż2 = g2 (z1, z2) , (35b)

where g1 is obtained from (34a) and g2 from (34b), (34c)

and (34d). Notice that the dynamics of z1 is totally decoupled

from the rest of the state and, furthermore, is linear. Let us

define a region Ω that excludes the singularities of J⊕
νe
(q), as

Ω =
{
z ∈ D : σmin

(
J⊕

νe
(q)

)
> 0

}
, (36)

where σmin(·) indicates the minimum singular value of a

matrix. In the region Ω, the dynamics matrices M̆ , C̆ , and

Cc exist.

Proposition IV.1. The invariant set z̄ = {z ∈ Ω : x̃c = ˙̃xc =
0, x̃ = v̆ = 0} is asymptotically stable.

Proof. z̄ is compact because T
n is compact. Then, cascade

theorems for compact invariant sets [13] apply. The proof is

done in cascade, proving first the stability of (35a) and then

that of (35b) with z1 = 0.

1) The system (34a) is asymptotically stable, having chosen

Kc and Dc as positive definite. Therefore the subsystem

ż1 = g1 (z1) is asymptotically stable.

2) The stability of the subsystem ż2 = g2 (0, z2) is ad-

dressed using the Lyapunov function

V =
1

2
v̆TM̆v̆ +

1

2
x̃T K̆x̃ > 0, ∀z /∈ z̄, (37)

which is always defined in Ω. The time derivative along

the system trajectories is

V̇ = v̆TM̆ ˙̆v +
1

2
v̆T ˙̆

Mv̆ + v̆TJT
x̃ K̆x̃ =

1

2
v̆T

(
˙̆
M − 2C̆

)

v̆ − v̆T D̆v̆ = −v̆T D̆v̆ ≤ 0, (38)

where (34b) and (34c) were used with ˙̃xc = 0 and where

the property (23) was exploited. Applying LaSalle to

(34b), v̆ ≡ 0 implies x̃ = 0 and the asymptotic stability

of ż2 = g2 (0, z2) is thus proven.

From 1) and 2) then follows the asymptotic stability of the

closed-loop (35).

V. TRADE-OFF BETWEEN REQUIREMENTS AND FUEL

CONSUMPTION

To outline the advantage of the proposed control, a com-

parison is performed with two different strategies that enforce

different requirements on the base motion. A simulative com-

parison is performed under ideal conditions for the following

control methods:

1) Full base control [9]: the base translation and rotation

are controlled using base actuators.

2) Partial base control (proposed): the base attitude is

controlled and the base translation is left free. The space

robot’s CoM is controlled instead.

3) Floating-base control [5]: both the base translation and

rotation are left free. The space robot’s CoM and the

angular momentum are controlled instead.
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A representative end-effector maneuver in a capture scenario

is tested. The end-effector is commanded to reach a desired

target pose, while the base is commanded according to the

different requirements of the three different control meth-

ods. The end-effector command is generated using a smooth

trajectory, while the base (and system’s CoM) commands

are constant setpoints. No contact or initial momentum are

simulated. The simulated arm is a KUKA KR4+ lightweight

robot which weights approximately 17 kg. The dynamics pa-

rameters for the base are: mass m(0) = 150 kg, inertia I
(0)
0 =

blkdiag(21.8, 15, 18.88) kgm2. The three controllers are com-

pared in terms of functional behavior and fuel consumption.

The gains used are the same for all x,y, and z components and

are ke,trasl = 800 N m−1, ke,rot = 56 N m rad−1, kb,trasl =
1000 N m−1, kb,rot = 672 N m rad−1 and kc = 300 N m−1.

No thrust discretization or thrust distribution envelope are

considered. A simplified fuel-consumption model has been

considered for comparing the nominal differences between the

control strategies. The consumed fuel c = ctras + crot ∈ R is

calculated as

ctras = α

∫ tf

0

3∑

i=1

|fb,i|dt, crot = α

∫ tf

0

3∑

i=1

|τb,i|dt, (39)

where ctras ∈ R and crot ∈ R are the amounts of fuel

consumed by the thrusters for the translation and the rotation,

respectively, and where α ∈ R is a thruster-related coefficient.

Here α = 1 s m−1 is used for the sake of comparison.

Fig. 2 shows the end-effector position, the base position,

the base attitude, the overall CoM position and the angular

momentum for the three strategies. Fig. 3 shows the base force

and base torque. Fig. 4 shows the fuel consumption.

In Fig. 2, the main functional difference on base translation

and rotation among all strategies are recovered. The base

position is kept constant for the full base control but changes

and converges to new final values for the partial base and the

floating-base controls. Meanwhile, the CoM position is kept

constant for the partial base and the floating-base controls, but

changes for the full base control. This indicates that the full

base strategy displaces the system CoM during end-effector

maneuvering even if no contact is involved, resulting in fuel

inefficiency. On the other hand, for both partial base and

floating-base controls the CoM is not displaced and this comes

at no effort as the CoM automatically conserves due to the

natural decoupling of the CoM dynamics. This is confirmed by

the fact that for the partial base and floating-base strategies no

base force is commanded, as observed in Fig. 3b and Fig. 3c.

The base angles are kept constant for the full base and the

partial base controls but change and converge to new values for

the floating-base control. Conversely, the angular momentum

is kept at zero for the floating-base control, but changes for

the full base and the partial base controls. This indicates that

the full base and partial base strategies vary the total angular

momentum during end-effector maneuvering, and this results

in fuel consumption. On the other hand, for the floating-base

control, the angular momentum stays at zero and this comes

at no effort as the angular momentum automatically conserves

due to the natural decoupling of the angular momentum

dynamics. This is confirmed by the fact that for floating-base
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Fig. 2: Time-response for different control strategies.

control, no base torque is commanded, as shown in Fig. 3c.

The expected results regarding the fuel consumption are

confirmed in Fig. 4a. Therein, it is shown that the fuel

consumption of the full base control is all the time bigger than

that of the partial base and floating-base controls. Similarly,

the fuel consumption of the partial base control is all the time

bigger than that of the floating-base control, which is exactly

zero3. The total amount of consumed fuel is represented in

further detail in Fig. 4b, wherein the differences in rotation

and translation are highlighted. In the figure it is possible to

observe that the consumption can be greatly reduced when

the requirements on the base control during end-effector

operations are loosened. This improved fuel consumption is

one advantage of the proposed partial base control compared to

the full base control. Ideally, the consumption can be reduced

to zero when both position and attitude requirements are

loosened, as in the case of floating-base control. In scenarios

in which the attitude control is mandatory, one may use the

proposed partial base strategy instead of a full base control

as an intermediate solution to save at least the considerable

amount of fuel required for translation. The cost to pay is a

displacement of the base position after end-effector maneu-

vers.

VI. EXPERIMENTAL VALIDATION

The control method has been validated on the On-Orbit Ser-

vicing Simulator (OOS-Sim) hardware-in-the-loop facility [14]

3The small nonzero value in Fig. 4b can be explained as drift of the
simulation’s discrete integrator.
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Fig. 4: Fuel consumption for different control strategies.

at the DLR (see Fig. 5). The OOS-Sim is a robotic simulator

for space robots, which enables the testing of space arms on

ground before their actual deployment in orbit. The test arm is

mounted on a simulator arm in a micro–macro configuration.

The simulator arm reproduces the spacecraft’s dynamics based

on a real-time model integration. The test arm is a torque-

controlled KUKA KR4+ lightweight robot with seven degrees

of freedom and the simulator arm is a position-controlled

KUKA KR120 industrial robot. The microgravity conditions

in the test arm are replicated by actively compensating the

joint gravity torques based on an identified model. The space

robot controller runs at a 1 ms rate. With this system, the

space robot controller can be simulated taking into account

real dynamics, sensor noise, time delay, control discretization,

and model uncertainties of the test manipulator. Conversely,

Fig. 5: The On-Orbit Servicing Simulator at DLR RMC.

the spacecraft dynamics simulation is model-based. In the

experiment, the same parameters and gains described in Sect.V

are used.

A. Controller implementation

The controller requires a model of the inertia of the space

robot. The quantities pbc and J̄v required in (32) can be

extracted from the inertia matrix by using (5b). The state in

(28), (29), and (30) could be reconstructed as follows: x̃b, by

using a spacecraft-mounted LIDAR; ωb, by using a spacecraft-

mounted gyro; x̃e and νe, by using the forward kinematics of

the space robot or a camera mounted on the end-effector; vc,

from (10), wherein vb could be obtained by derivation of the

LIDAR position or by fusion with other sensors for better

performance. Finally, x̃c could be obtained from the LIDAR

position. In the present test, no LIDAR, gyro or cameras are

used and the states are simplistically reconstructed from the

forward kinematics of the test and simulation arms. Noise on

vc in (10) affects fc in (28) and in turn fb in (32), causing

unnecessary thrust activation. To cope with that, in the present

work a deadzone of 2N is used on the fb signal. As a final

remark, the proposed controller is subject to the singularities

of the Jacobian J⊕
e . At singularity the algorithm does not

fail computationally but only results in loss of actuation in a

singular direction.

B. Experimental results

A sequence of two representative end-effector maneuvers in

a grasping scenario was tested. For each maneuver, the end-

effector is commanded to reach a desired pose and then to

return to the initial position. In the second maneuver, a lateral

motion (y component) of the end-effector is commanded to

excite three-dimensional effects more pronouncedly. In both

maneuvers, the base attitude and the CoM were commanded

to hold desired setpoints. No contact or initial momentum were

simulated. In order to validate the statements regarding the de-

coupling properties of the proposed approach, the experiment

was performed first with the proposed decoupled actuation

(32). Then, the experiment was repeated with a control that

enforces exactly the same requirements but with the coupled

actuation (33).

Fig. 6 shows the time responses of the end-effector position,

the base attitude, and the CoM position. The end-effector

successfully converged to the desired position in both cases.

The base attitude was slightly displaced due to the robot

motion, but the control action successfully restored it after

the maneuver ended. With the decoupled actuation, the CoM

stayed in place4 and was not affected by the end-effector con-

trol. Conversely, with coupled actuation the CoM was excited

by the coupling term of the end-effector control input we in

(33) into the base actuator fb. Interestingly, for decoupled

actuation the base position returned to the initial position after

the maneuvers ended. Fig. 7 shows the commanded base force

and base torque. Therein, the main result of the proposed

4Small deviations from zero that can be explained as disturbances induced
by the hardware simulation facility.
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Fig. 6: Performance of the attitude-arm coordinated control.
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Fig. 7: Commanded actuators of the attitude-arm control.

decomposition is evident, namely, the base force was exactly

zero for decoupled actuation, in agreement with the observed

zero CoM error. In contrast, the base force was nonzero for

coupled actuation. This zero base force is the main property

that leads to improved fuel consumption. The experiments

were repeated three times:

1) The same trajectories were tested one more time for

repeatability. The same results were obtained and are not

shown for brevity.

2) The same path with a longer duration was commanded.

Similar results were obtained and are not shown.

3) The same trajectory was repeated with an additional dead-

zone of 2Nm on the τb signal. In Fig.8 the base angles

and commanded base torques are reported. Therein it is

shown that the deadzone avoided the steady oscillation on

the base torque observed in Fig.7 without inducing sta-

bility issues. Other plots showed no significant difference

and are not reported.

In conclusion, the experimental results validate the effective-

ness of the proposed control and prove the fuel-efficiency

advantages as a consequence of the decoupled actuation.
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Fig. 8: Test with deadzone on τb (decoupled actuator).

VII. CONCLUSIONS AND FUTURE WORKS

The problem of the simultaneous control of the base attitude

and the end-effector pose of a space robot has been addressed.

A dynamics decomposition has been proposed that decouples

the end-effector task from the base force actuator and reduces

the thrusters use. A simulation study has been conducted to

highlight the fuel-efficiency advantage of the proposed partial

control compared to full-base control. Hardware experiments

successfully validated the method. Future works may validate

it with real thrusters and sensors models and with a larger

set of grasping tasks, and may investigate the performance

increase due to reduced saturation.
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