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Stable Torque Optimization for
Redundant Robots using a Short Preview
Khaled Al Khudir Gaute Halvorsen Leonardo Lanari Alessandro De Luca

Abstract—We consider the known phenomenon of torque os-
cillations and motion instabilities that occur in redundant robots
during the execution of sufficiently long Cartesian trajectories
when the joint torque is instantaneously minimized. In the
framework of on-line local redundancy resolution methods, we
propose basic variations of the minimum torque scheme to
address this issue. Either the joint torque norm is minimized
over two successive discrete-time samples using a short preview
window, or we minimize the norm of the difference with respect
to a desired momentum-damping joint torque, or the two schemes
are combined together. The resulting local control methods are
all formulated as well-posed linear-quadratic problems, and
their closed-form solutions generate also low joint velocities
while addressing the primary torque optimization objectives.
Stable and consistent behaviors are obtained along short or long
Cartesian position trajectories, as illustrated with simulations on
a 3R planar arm and with experiments on a 7R KUKA LWR
robot.

Index Terms—Optimization and Optimal Control, Redundant
Robots, Motion Control, Dynamics.

I. INTRODUCTION

REDUCING the torque needed to execute a given robot
task is a common control objective where dynamics plays

a major role. When the desired Cartesian task is constraining
the robot end-effector to a m-dimensional trajectory and
the number of its actuated degrees of freedom is n > m,
the robot will be redundant with respect to the task. In
this case, the authors in [1] presented the first method for
torque optimization, obtaining the solution in closed form that
instantaneously minimizes the norm of the joint torque, while
executing a desired Cartesian trajectory. However, for longer
movements, this local optimization method often exhibits an
unstable behavior in the form of motion oscillations, growing
joint velocities, and sudden whipping torque effects with loss
of control in practice. The obvious countermeasure would be
to pursue a global torque optimization over the whole motion
trajectory [2], [3], but this implies the off-line numerical
solution of a two-point boundary value problem and the
availabillity of the entire desired task in advance.

Wishing instead to keep an on-line redundancy resolution
method, which is also suited for conversion into a sensor-
based feedback control scheme, local optimization alternatives
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have been further explored. The minimization of the infinity-
norm of the joint torque was proposed in [4], but the torque
explosion problem would still appear and extra inequality
constraints had to be added to the algorithm. A joint decompo-
sition formulation was presented in [5] for torque optimization,
with the aim of forcing a return to zero of the joint velocities
at the end of the motion task. The relevance of keeping the
joint velocity under control in order to address the instability
problem was pointed out also in [6]. Special attention was
given to the robot self-motion dynamics, providing also a
first explanation for the good torque performance experienced
in simulations when using a purely kinematic joint velocity
minimization scheme [7]. Based on this, a balancing between
the minimum velocity and the minimum torque solutions
was proposed in [8]. The instabilities that can occur when
redundancy is solved at the second-order level (in terms of
joint accelerations or torques) were analyzed in [9], relating
them to the smallest singular value of the task Jacobian and
to particular null-space accelerations that cause a quadratic
growth of joint velocities. In [10], a complete characterization
of the instability phenomenon was given, studying the self-
motion manifold in the case of robots with one degree of
redundancy. Interestingly, it was shown that simple damping
of joint velocities in the null space of the task may not prevent
large motion oscillations in the long run.

Unfortunately, the above mentioned local methods do not
provide conclusive answers: instability problems are still
encountered for longer movements, or they would fail for
certain tasks and initial conditions, or countermeasures were
proven to work only in relatively simple cases (i.e., when
n − m = 1). Last but not least, most papers on model-
based optimization of joint torques in redundant robots have
presented only simulation results on simple manipulators.
Among the few exceptions, there are [11] and lately [12],
[13], where, however, the issue of instability in local torque
minimization on long trajectories is not explicitly addressed.

In this paper, we introduce two basic variations to the
minimum torque norm (MTN) scheme of [1] that address
the issue of unstable joint motion in redundant robots. In
the first scheme, we propose the minimization of the joint
torque norm over two successive discrete-time samples us-
ing a short preview window (possibly, in the next sampling
instant). Suitable dynamic approximations are introduced in
the estimation of the future (proximal) robot state, so as to
keep a linear-quadratic (LQ) formulation for the problem, in
a way similar to [14]. Such a dynamic optimization scheme,
that we denote model-based preview (MBP), can be seen as a
compromise between local and global redundancy resolution
methods, trying to inherit the best of both worlds —real-time
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simplicity and stable behavior.
Because of the presence of a predictive window in the

future, MBP is similar to a model predictive control (MPC)
approach. However, most linear [15] and nonlinear [16] MPC
methods in robotics have not considered explicitly robot redun-
dancy or on-line task constraints. When real-time execution is
a must, different local approximations are being performed to
reduce the computational effort (e.g., using a linear inverted
pendulum predictive model in humanoid gait control [17]). A
main difference with respect to MPC is that MBP does not
need to compute/predict multiple system samples in a future
window. Rather, in its basic version our method uses just
a single preview state, which may be placed close in time
or further away from the current one, where the task-based
equality constraint is also imposed. Computational efficiency
is achieved even for a large number of degrees of freedom,
thanks to the closed-form solution of a linear-quadratic (LQ)
problem that is always guaranteed to be positive definite.
On the other hand, contrary to the common case in MPC,
bounds on the future state are not considered. While feasible in
principle, such extension is in fact not strictly needed because
of the nature of the problem addressed, i.e., stable optimization
of the motion torques.

In the second proposed control scheme, we choose the
command torque that realizes the Cartesian task and is closest
in norm to a desired torque, which is proportional to the
current generalized momentum of the robot. This induces a
natural dynamic damping of the joint velocities, preventing
their oscillations or growth, and we label the solution as
minimum torque norm with damping (MTND). The two pro-
posed modifications can also be combined, leading to a model-
based preview scheme with damping (MBPD). Again, these
schemes are formulated as well-posed LQ problems, providing
efficiently the solution in closed form. The performance of
the new controllers was tested in a large number of short and
long motions, always yielding a stable behavior under torque
optimization.

The rest of the paper is organized as follows. The general
formulation of the instantaneous torque optimization as a
LQ problem is reviewed is Sec. II. Section III presents the
derivation of the proposed optimization method with model-
based preview, as well as the damping extensions (Sec. III-A).
Sec. IV-A reports comparative numerical results for a 3R pla-
nar arm performing two-dimensional trajectories of different
length. Experimental results are reported in Sec. V for a 7R
KUKA LWR4 robot executing two exemplary positional tasks
(also shown in the accompanying video). Conclusions and
future work are summarized in Sec. VI.

II. INSTANTANEOUS MINIMUM TORQUE SOLUTION

Consider a robot manipulator with (generalized) joint coor-
dinates q ∈ Rn, described by the dynamic model,

M(q)q̈ + c(q, q̇) + g(q) = τ , (1)

with symmetric, positive definite inertia matrix M , Coriolis
and centrifugal terms c (with quadratic dependence on q̇),

gravity term g, and commanded joint torque τ . The compo-
nents ci(q, q̇), for i = 1, . . . , n, of vector c are given by

ci = q̇
TCi(q)q̇, Ci =

1

2

((
∂mi

∂q

)
+

(
∂mi

∂q

)T
− ∂M

∂qi

)
,

(2)
wheremi(q) is the ith column ofM and the elements Cijk of
matrix Ci are the so-called Christoffel symbols. A convenient
factorization of c is given by

c(q, q̇) = S(q, q̇) q̇ = col
{
q̇TCi(q)

}
q̇, (3)

in which matrix S yields skew-symmetry for Ṁ − 2S. In the
following, we will use also the compact notation

n(q, q̇) = c(q, q̇) + g(q) (4)

to denote all terms in (1) not depending on joint acceleration.
The robot should perform a task described by the variables

x ∈ Rm, with m < n, related to q by the task kinematics
x = f(q). The differential relations at the first- and second-
order level are given by

ẋ =
∂f(q)

∂q
q̇ = J(q)q̇, (5)

where J the m× n task Jacobian, and respectively by

ẍ = J(q)q̈ + J̇(q)q̇ = J(q)q̈ + h(q, q̇). (6)

Note that vector h has a quadratic dependence on q̇. The
redundancy of the robot with respect to the task can be re-
solved at the acceleration level by minimizing some (possibly,
weighted) norm of the joint torques. For this, a standard linear-
quadratic optimization problem can be defined as

min
q̈∗

H =
1

2
‖τ ∗‖2 =

1

2
q̈∗TQq̈∗ + rT q̈∗ + s (7a)

s.t. τ ∗ = Q
1
2 q̈∗ +Q− 1

2 r (7b)

b = Aq̈∗, (7c)

assuming that Q is a positive definite (weighting) matrix,
matrix A has full (row) rank, b ∈ Rn, r ∈ Rn, and s is
a scalar. All torque optimization problems in the paper can be
formulated as (7) for specific choices of Q, A, b and r (while
s is irrelevant). Equation (7c) represents the task (kinematic)
constraint, while (7b) simply provides the command torque
τ ∗ from the dynamic model equation (1) when the joint
acceleration solution q̈∗ is being used.

The unique solution to (7) is obtained with the method of
Lagrange multipliers [18] as

q̈∗ = A#
Q

(
b+AQ−1r

)
−Q−1r, (8)

with the weighted pseudoinverse

A#
Q = Q−1AT

(
AQ−1AT

)−1

.

Note that the solution (8) can be written also as

q̈∗ = A#
Q b−

(
I −A#

QA
)
Q−1r (9)

to emphasize the presence of a control action in the null-space
of the task matrix A, represented by the term Q−1r.
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Let a sequence of control instants tk = kTs, k = 0, 1, . . . ,
be given for a sampling time Ts > 0. Denote by qk = q(tk)
and q̇k = q̇(tk) the position and velocity (i.e., the current
state) of the robot at time t = tk. We can then select the
acceleration q̈k at tk (equivalently, the torque τ k) by solving
the problem

min
q̈k

H1 = 1
2 ‖τ k‖2

s.t. τ k =Mkq̈k + nk

ẍk = Jkq̈k + hk,

(10)

where we have used the shorthand notations

Mk =M(qk), nk = n(qk, q̇k),

Jk = J(qk), hk = h(qk, q̇k).

Problem (10) is in the form (7) with the substitutions

Q =M2
k, r =Mknk, s = 1

2n
T
knk,

A = Jk, b = ẍk − hk.
(11)

Thus, the optimal acceleration q̈∗ = q̈k is given by (8) and the
associated optimal torque τ ∗ = τ k is then obtained from (7b).
Using (9), we see that the null-space action that minimizes
the joint torque norm is given by M−1

k nk. This is indeed the
solution found in [1] and denoted here as MTN.

For a given Cartesian task x = xd(t), the direct use of
ẍk = ẍd,k = ẍd(tk) in the expression of b in (11) provides an
open-loop solution. In order to reduce the Cartesian tracking
error during motion, a stabilizing PD feedback control term is
inserted at the task level in b, obtaining

b = ẍd,k +KD(ẋd,k − ẋk) +KP (xd,k − xk)− hk (12)

with m×m (diagonal) gain matrices KD > 0 and KP > 0.

III. MODEL-BASED PREVIEW OF EVOLUTION

To prevent a long term unstable behavior of the solution that
instantaneously minimizes torque we will include an estimate
of the future robot state in the optimization process. At time
t = tk, consider a preview window T = pTs, for some integer
p ≥ 1. At the sampling instant tk+p = tk + T , we shall
associate a suitable approximation of the robot state. In the
following, we shall consider that T = Ts (or p = 1), but the
same formulas will be used also as an approximated model
for a larger T > 0. Suppose that a constant acceleration q̈k is
applied during a preview window T = Ts in the time interval
[tk, tk+1). The following discrete-time evolution holds then
exactly for the robot state

q̇k+1 = q̇(tk+1) = q̇k + q̈k T,

qk+1 = q(tk+1) = qk + q̇kT + 1
2 q̈k T

2.
(13)

We can indeed associate from (1) a unique τ k to any q̈k.
Similarly to (10), which is in fact the no preview solution

for T = 0, we formulate the following optimization problem

min
q̈k,q̈k+1

H2 = 1
2

(
ωk‖τ k‖2 + ωk+1‖τ k+1‖2

)
s.t. τ k =Mkq̈k + nk

ẍk = Jkq̈k + hk

τ k+1 =Mk+1q̈k+1 + nk+1

ẍk+1 = Jk+1q̈k+1 + hk+1,

(14)

where we have used the notations

Mk+1 =M(qk+1), nk+1 = n(qk+1, q̇k+1),

Jk+1 = J(qk+1), hk+1 = h(qk+1, q̇k+1).

For generality, we introduced in (14) also the two constants
ωk ≥ 0 and ωk+1 ≥ 0 (with ω2

k + ω2
k+1 6= 0) that relatively

weigh the torque norms at the current and preview instants.
When using (13) within the nonlinear dynamic terms

in (14), the formulation loses the original structure of a LQ
problem in the unknown joint accelerations. The constraints
in (14) will still be linear in the unknown q̈k+1, but become
nonlinear in the unknown q̈k. Moreover, the objective function
will no longer be quadratic in the q̈k. This makes problem (14)
impossible to solve in a closed form, as opposed to (10). On
the other hand, if one ‘freezes’ the dependencies of Mk+1,
Jk+1, nk+1, and hk+1 to their value at time t = tk, or
even removes the dependence of these terms from q̈k, the
formulation (14) would become separable in two independent
sub-problems, one depending only on q̈k, the other only
on q̈k+1. Thus, the benefit of linking the decision of the
optimal choice of the current joint acceleration to the resulting
effect and similar decision at the preview instant would be
completely lost.

As a result, for a more practical formulation that would lead
to an effective solution of a joint LQ problem, we shall:

1) keep the same constraints at the current instant, to
guarantee that q̈k realizes the task at t = tk;

2) preserve a forward coupling between the current accel-
eration and the data/command at the preview instant,
allowing a linear dependence of the constraints and a
quadratic dependence of the objective function on q̈k.

Consider again the task constraint (6). We approximate it at
time t = tk+1 as follows:

ẍk+1 = J(qk+1)q̈k+1 + J̇(qk+1)q̇k+1

≈ J(qk + q̇kT )q̈k+1

+
J(qk + q̇kT )− J(qk)

T
(q̇k + T q̈k)

= Jk+ q̈k+1 + (Jk+ − Jk) q̈k + hk+ ,

(15)

with the notation

Jk+ = J(qk + q̇kT ), hk+ =
Jk+ − Jk

T
q̇k. (16)

Next, consider the squared norm of the torque at t = tk+1.
Taking into account the factorization (3) of the quadratic
velocity terms, we proceed with the following approximation:

‖τ k+1‖2 = ‖M(qk+1)q̈k+1 + c(qk+1, q̇k+1) + g(qk+1)‖2

= q̈Tk+1M
2
k+1q̈k+1+ 2

(
ck+1 + gk+1

)T
Mk+1q̈k+1

+
(
ck+1 + gk+1

)T (
ck+1 + gk+1

)
≈ q̈Tk+1M

2
k+ q̈k+1 + 2

(
Sk+ q̇k+1 + gk+

)T
Mk+ q̈k+1

+ q̇Tk+1S
T
k+Sk+ q̇k+1 + 2 gTk+Sk+ q̇k+1 + g

T
k+gk+
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= q̈Tk+1M
2
k+ q̈k+1

+ 2 (Sk+ (q̇k + T q̈k) + gk+)
T
Mk+ q̈k+1

+ (q̇k + T q̈k)
T
ST

k+Sk+ (q̇k + T q̈k)

+ 2 gTk+Sk+ (q̇k + T q̈k) + g
T
k+gk+ ,

(17)

with the notation

Mk+ =M(qk + q̇kT ), gk+ = g(qk + q̇kT ),

Sk+ = S(qk + q̇kT, q̇k) = col{q̇TkCi(qk + q̇kT )}.

With these expressions at hand, the nonlinear optimization
problem (14) is replaced by the following LQ approximation:

min
q̈k,q̈k+1

H2 = 1
2

(
ωk‖τ k‖2 + ωk+1‖τ k+1‖2

)
s.t. τ k =Mkq̈k + nk

ẍk = Jkq̈k + hk

τ k+1 =Mk+ q̈k+1 + Sk+ (q̇k + T q̈k) + gk+

ẍk+1 = Jk+ q̈k+1 + (Jk+ − Jk) q̈k + hk+ .
(18)

In particular, replacing the expressions of the two torques τ k

and τ k+1 in the objective function, the latter takes the form

H2 = 1
2

(
q̈k q̈k+1

)T
Q

(
q̈k
q̈k+1

)
+rT

(
q̈k
q̈k+1

)
+s, (19)

with

Q =

(
ωkM

2
k + ωk+1T

2ST
k+Sk+ ωk+1TS

T
k+Mk+

symm ωk+1M
2
k+

)
,

(20)

r =

(
ωkMk(Skq̇k + gk) + ωk+1TS

T
k+ (Sk+ q̇k + gk+)

ωk+1Mk+ (Sk+ q̇k + gk+)

)
,

(21)
and a scalar s that is irrelevant for the optimization. Similarly,
the task-based constraints in (18) can be written in matrix form
as

A

(
q̈k
q̈k+1

)
= b,

where

A =

(
Jk 0

Jk+ − Jk Jk+

)
, b =

(
ẍk − hk

ẍk+1 − hk+

)
. (22)

Being Q in (20) positive definite (see Appendix) and provided
that matrix A has full (row) rank equal to 2m, problem (18)
is in the form (7) with the positions (20), (21) and (22). Thus,
its solution has the closed-form expression (8) with

q̈∗ =
(
q̈Tk q̈Tk+1

)T
,

‖τ ∗‖2 = ωk‖τ k‖2 + ωk+1‖τ k+1‖2.
(23)

This model-based preview solution will be denoted as MBP. In
the implementation, q̈k+1 is discarded and only q̈k from (23)
will be used at the instant t = tk. In this case, a feedback
control action in the form (12) will be added only inside the
term ẍk in (22), whereas we shall keep ẍk+1 = ẍd,k+1 for
the preview instant.

A. Inclusion of dynamic damping in the null space

In problems (10) and (18), the joint torque realizing the
Cartesian task is optimized so that its norm is the closest
possible to zero. On the other hand, one could minimize the
difference in norm with respect to a suitable desired target
torque. Define

τDk
= −DkMkq̇k, (24)

where Dk is a non-negative diagonal (damping) gain matrix
and Mkq̇k is the generalized momentum of the robot at t =
tk. When τ k = τDk

and the damping matrix is in the form
Dk = dI > 0, from (1) and (3), the joint acceleration q̈k
becomes

q̈k = −M−1
k (Skq̇k + gk)− dq̇k. (25)

Observing eq. (25), the effect of the desired torque (24) is
always to work against the current joint velocity, acting thus as
a damper on the joint motion of the robot. This will eliminate,
or at least reduce, whipping effects and oscillations that happen
when the joint velocity becomes too large.

Therefore, the objective function in (10) is modified as

H3 = 1
2 ‖τ k − τDk

‖2

= 1
2 ‖Mkq̈k + (Sk +DkMk)q̇k + gk‖2,

(26)

and the joint acceleration solution q̈∗ = q̈k will be obtained
from (8) by substituting

Q =M2
k, r =Mk((Sk +DkMk)q̇k + gk),

A = Jk, b = ẍk − hk.
(27)

This solution will be denoted as MTND (i.e., MTN with
damping). The only difference between the expressions (11)
and (27), respectively in the MTN and MTND solutions, is in
the r term, namely in an additional damping effect appearing
in the null space of the task Jacobian.

In case of torque optimization using model-based pre-
view (18), in place of (26) we consider the objective function

H4 = 1
2

(
ωk‖τ k − τDk

‖2 + ωk+1‖τ k+1 − τDk+ ‖2
)
, (28)

in which τDk+ = −Dk+1Mk+ (q̇k + T q̈k). The optimal

solution q̈∗ =
(
q̈Tk q̈Tk+1

)T
is given again by (8), using for

A and b the same substitutions (22) while replacing in the
expressions (20–21) the Sk term in r with (Sk +DkMk)
and each Sk+ in r and Q with (Sk+ + Dk+1Mk+). The
resulting solution is denoted as MBPD. A feedback control
action on the task error is included as in the undamped cases.

IV. SIMULATION RESULTS

A. 3R planar arm

To illustrate the comparison between the different solutions
for local torque optimization, we have considered a 3R planar
arm (n = 3) moving on a horizontal plane and the same
Cartesian trajectories xd(t) presented in [1]. The robot has
links of equal length l = 1 [m], uniformly distributed mass
ml = 10 [kg] and moment of inertia Il = mll

2/12. The
end-effector position (m = 2) should follow a linear path of
short length (L1 = 0.2828 [m]), or one four times longer
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Fig. 1: Stroboscopic motion of the 3R planar arm on a short [top] and a long [bottom] Cartesian path using different torque optimization
methods: (a-e) MTN; (b-f) MTND; (c-g) MBP; (d-h) MBPD. The desired linear paths are in black. Initial and final arm configurations are
shown in blue and green, respectively.

(L2 = 1.1738 [m]). The path is traced with a rest-to-
rest timing law having bang-bang acceleration of magnitude
A =

√
2 = 1.4142 [m/s2]. The robot starts with q̇(0) = 0.

The degree of robot redundancy is n−m = 1 in this case.
The methods have been implemented in MATLAB with a

fixed integration step Ts = 0.001 [s]. The MBP and MBPD
methods use equal weights ωk = ωk+1 = 1 in the objective
function. The joint damping matrix is chosen as Dk = 10 I ,
constant at all discrete times for both MTND and MBPD
methods. In all methods, the feedback gains on the Cartesian
task error were KP = 10 I and KD = I . The short preview
window can be chosen directly as the next sampling instant,
i.e., T = Ts. More in general, the optimization process can
be used to minimize instead the norm of the torques at the
current instant and at any other instant in the short future, i.e.,
T > Ts. For longer T , it is expected that the accuracy of
the robot state estimation decreases. When T = 0, the MBP
method collapses into the original MTN one.

Figure 1 shows stroboscopic views for the four addressed
methods along the short and the long path, respectively. In
this case, the preview window was T = 100Ts = 0.1 [s]
for the MBP and MBPD methods. All optimization methods
performed in the same way on the short path, with a rather
symmetric behavior with respect to the half-motion time1. All
methods completed the task with zero final joint velocities in
practice, although this was not an explicit constraint in the
optimization problem.

Figure 2 shows the norms of the joint velocity and torque

1The plots are not reported due to lack of space, but joint motions and
torques in the first half of the trajectory looks very similar to those of Fig. 2.

on the longer path for the different methods. While a common
behavior is found in the first half of the motion, i.e., until
Tm =

√
L2/A ≈ 0.91 [s], each method completes the task

in a different way during the deceleration phase. With the
MTN method, it is clear how the contentious increase of the
joint velocities leads to the sudden and high peak in the joint
torques near the end of the task. Using instead our proposed
methods this undesired behavior is eliminated, with the MBP
method having the minimum values for the joint torques norm.
The MTND and MBPD methods produced almost the same
behavior, with the joint velocities vanishing at the end of the
task. The Cartesian task error was in all cases negligible, in
the order of 10−4 [m].

Figure 3 shows the joint velocity and torque norms obtained
in multiple simulations on the long linear task, when using
the MBP solution with different preview values T . Too short
values, e.g., T = Ts = 1 [ms], had no practical effect and
returned the same bad behavior of the MTN method. For
an intermediate set of preview values, i.e., T ∈ [0.1, 0.9] s,
the robot loses the undesired torque peak and the behaviors
will be similarly good. For the MBP method, a preview of
T = 100Ts = 0.1 [s] gives the best result in terms of torque
norm, while T = 900Ts = 0.9 s gives the best result for the
joint velocity norm. In general, joint velocities become lower
and torques higher when increasing T , until a limit is reached
where the peaks appear back (here, for T = 1000Ts = 1 [s])
and robot motion is unacceptable again. Indeed, the best
choice for T will depend on the desired trajectory and on
the dynamics of the specific robot. Nonetheless, for a given
robot/trajectory pair, the existence of an interval of good
performance for the preview method appears to be robust.
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Fig. 2: Joint velocity norms [top] and torque norms [bottom] for the
3R planar arm using different solutions on the long trajectory.
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Fig. 3: Joint velocity norms [top] and torque norms [bottom] for the
3R planar arm on the long trajectory with the MBP method using
different preview windows T . Simulations run at Ts = 1 [ms]. The
torque norm for T = 1000Ts = 1 [s] is not shown being too large.

B. KUKA LWR robot

As a second case study, we considered a 7R KUKA LWR
robot and performed simulations using V-REP and our C++
code. In the integration routine, we used Ts = 10 [ms] as the
fixed step. This value is also the lowest refresh rate for V-

REP. The obtained results are not reported here because they
were almost identical to those obtained in the experiments of
Sec. V. In any event, plots of the relevant variables for the
different methods can be found in the accompanying video.

The simulation environment allowed us to test again the
performance of the MBP method for different preview win-
dows T . Figure. 4 shows in particular the behavior of the
joint velocity norm along a long linear path. As expected,
large oscillations are found for T = 0 (the MTN method).
Between T = Ts = 10 [ms] and T = 10Ts = 100 [ms],
the MBP method works fine. For T = 15Ts = 150 [ms] or
larger, the joint velocity norm becomes unacceptable again,
i.e., much larger and oscillatory in nature.
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Fig. 4: Joint velocity norm for the KUKA LWR robot with the MBP
method using different preview windows T (simulations in V-REP
with Ts = 10 [ms]).

V. EXPERIMENTS WITH A KUKA LWR ROBOT

For the 7R KUKA LWR 4 robot in our lab, we considered
as task the execution of two Cartesian trajectories defined for
the position of its end-effector flange center (m = 3). Since
the rotation of joint 7 has no effect on this task, the last
joint was frozen resulting in only n = 6 active dofs for the
robot, and a degree of redundancy n − m = 3. All model-
based computations were done using the accurate dynamic
model identified in [19]. The timing law prescribes a rest-to-
rest motion on the path with a trapezoidal speed profile. The
robot starts with q̇(0) = 0.

The different torque optimization methods were imple-
mented using C++. Experiments were performed using the
position control mode of the LWR through the KUKA FRI
library, feeding as reference the instantaneous motion obtained
from the torque optimization schemes, with a sampling time
Ts = 5 [ms]. The torques measured by the joint torque sensors
during task execution are used to assess the obtained perfor-
mance. Torque data have been processed through a low-pass
filter to eliminate measurement noise. The complete results are
shown in the experimental part of the video accompanying the
paper.

The first motion task is on a relatively short linear path
of length L = 0.5 [m] to be traced in Tf = 3.5 [s]. The
second task is longer and consists in following a circular path
of radius R = 0.2 [m] for an arc length Lc = 1.256 [m]
and a motion time Tf = 7.28 [s]. For both tasks, the desired
maximum Cartesian velocity and acceleration were chosen as
V = 0.2 [m/s] and A = 0.2 [m/s2], respectively.
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Fig. 5: Experiment along a linear path. Joint positions for the KUKA
LWR using the MTN and MBP methods.
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Fig. 6: Experiment along a linear path. Joint velocity norms for the
KUKA LWR using different optimization methods.
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Fig. 7: Experiment along a linear path. Joint torque norms for the
KUKA LWR using different optimization methods.

The weights in the objective function of both MBP and
MBPD methods were ωk = ωk+1 = 1. The damping matrix
was constantly Dk = 5 I for the MTND and MBPD methods,
while Dk+1 = I was used in the MBPD method. In all
methods, the feedback gains on the Cartesian task error were
KP = 300 I and KD = 50 I . The preview window in the
experiments was set to T = Ts = 5 [ms].

Figures 5–7 show the results obtained in the experiments
along the linear path. The fast oscillatory behavior of the joint
velocity norm generated by the MTN method during most part
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Fig. 8: Experiment along a circular path. Joint positions for the
KUKA LWR using the MTN and MBP methods.
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Fig. 9: Experiment along a circular path. Joint velocity norms for the
KUKA LWR using different optimization methods.
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Fig. 10: Cartesian error norm along the circular path in the KUKA
LWR experiments using different torque optimization methods.

of the motion is quite evident in Fig. 6. More specifically, this
instability appears mostly in the fifth joint position, but also
in the third and sixth joint profiles (see Fig. 5). It should be
noted that the evolutions of the torque norms in Fig. 7 differ
only slightly between the four methods, and the mean torque
norms over the entire motion, i.e., 1

Tf

∫ Tf

0
‖τ‖2 dt, are all very

similar (their numerical values remain all around 36.6 [Nm]).
In contrast, the proposed MBP and MBPD methods eliminate
any undesired behavior, both in the joint velocities and in the
torques. Both damped methods achieve better results in forcing

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/LRA.2019.2899667

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2019

the joint velocities toward zero at the end. On the other hand,
the MTND method has still some residual oscillations in the
joint velocity.

Figures 8–10 reports the results for the experiments along
the circular path. The third joint position in Fig. 8 experiences
the main oscillations in this case, while Fig. 9 shows a clear
increasing trend of these in the joint velocity norm when
using the MTN method. The MBP, MBPD and MTND methods
eliminate any undesired behavior. Similarly to Fig. 7, the
evolutions of the torque norms (not reported) differ again
very slightly between the four methods. In both tasks, joint
oscillations do not affect the execution of the desired Cartesian
trajectory, also thanks to the presence of the feedback control
action on the task error. The maximum of the Cartesian error
norm in Fig. 10 is about 7 × 10−4 [m] for the circular path
(and was even less for the linear path).

VI. CONCLUSIONS

Different torque optimization methods have been proposed
to address the instability issue in redundant robots when
the norm of the joint torque is instantaneously minimized.
The model-based short preview scheme MBP optimizes the
norm of the joint torque at the current and at a single future
but close instant, anticipating the possible dramatic growth
of joint torques. Alternatively, the introduction of a desired
momentum-damping joint torque in the null space of the task
can reduce the associated drift in joint velocities. These two
local control schemes can be used separately (MTND) or
in combination (MBPD), leading to robot behaviors that are
consistently stable in performing short and long task trajecto-
ries, without peaks or oscillations in torques or velocities. In
general, MBPD seems the best optimization method since it
generates smooth motion with lower residual joint velocity at
the end and with a similar torque demand of the other methods.
Despite the selection of a best preview instant is likely to
depend on the desired task and on the robot own dynamics,
we found in all cases a favourable insensitivity of the achieved
robot performance when the preview instant was chosen in a
non-vanishing intermediate range.

Future work will address an adaptive choice of the preview
window, as well as the use of different weights for the torques
at the two instants considered in the optimization scheme
with short preview. The preview concept and the momentum-
damping technique could be used also for other types of
dynamic optimization problems (e.g., minimum energy).

APPENDIX

We provide here a simple proof that the matrix Q in (20)
for the MBP method is always symmetric and positive definite.
The symmetry of Q follows immediately from its construction
and being the squared inertia matrix M2(q) itself symmetric.
A symmetric matrix Q is positive definite iff vTQv > 0,
∀v 6= 0. Splitting v 6= 0 in two parts v1 and v2 according to
the block matrix structure in (20), we have

vTQv =
(
vT1 v

T
2

)
Q

(
v1
v2

)
= ωk||Mkv1||2 + ωk+1||Mk+v2 + TSk+v1||2.

Since M(·) is positive definite for all its possible arguments,
then both Mk and Mk+ will be positive definite. Thus,
Mkv1 6= 0 and Mk+v2 6= 0 for all vi 6= 0, i = 1, 2. Now
consider the two cases:

• v1 = 0,v2 6= 0; then vTQv = ωk+1||Mk+v2||2 > 0,
since also ωk+1 > 0;

• v1 6= 0; being ωk > 0, the term ωk||Mkv1||2 > 0;
since ωk+1 > 0 and the norm of a vector is always non-
negative, then vTQv > 0 also in this case.

The same procedure can be used to prove the symmetry and
positive definiteness of the Q matrix in the MBPD method.
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