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Abstract— The tendon-driven musculoskeletal humanoid has
many benefits that human beings have, but the modeling
of its complex muscle and bone structures is difficult and
conventional model-based controls cannot realize intended
movements. Therefore, a learning control mechanism that
acquires nonlinear relationships between joint angles, muscle
tensions, and muscle lengths from the actual robot is necessary.
In this study, we propose a system which runs the learning
control mechanism for a long time to keep the self-body
image of the musculoskeletal humanoid correct at all times.
Also, we show that the musculoskeletal humanoid can conduct
position control, torque control, and variable stiffness control
using this self-body image. We conduct a long-time self-body
image acquisition experiment lasting 3 hours, evaluate variable
stiffness control using the self-body image, etc., and discuss the
superiority and practicality of the self-body image acquisition
of musculoskeletal structures, comprehensively.

I. INTRODUCTION

The tendon-driven musculoskeletal humanoid [1]–[3] has
many benefits that human beings have, such as multiple
degrees of freedom (multi-DOFs), under-actuated structures
of the spine and fingers, variable stiffness control using
nonlinear elasticity and antagonism of muscles, and error
correction using redundant muscles. Therefore, the humanoid
is expected to move flexibly like human beings and work
in an environment with physical contact. At the same time,
its bone and muscle structures are complex, and there are
many problems which cannot be solved by conventional
model-based controls. In particular, unlike the tendon-driven
robot with constant moment arm [4], [5], the muscle route
modeling of the musculoskeletal humanoid is very difficult.

In order to solve these problems, various studies have
been conducted. There is the method which trains the neural
network of the joint-muscle mapping (JMM, the nonlinear
relationship between joint angles and muscle lengths) with
the actual sensor information [6], the method which trains
JMM using polynomial regression and estimates the current
joint angles from JMM [7], and the method which obtains the
Jacobian between the position and muscle length from vision
[8]. Also, we have developed an online learning method
of JMM using vision [9]. By extending it, we have also
developed an online learning method of the self-body image
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considering muscle-route changes caused by body tissue
softness [10].

However, because there is a large error in the joint-muscle
mapping between the actual robot and its geometric model in
the early stages of learning, muscle temperatures rise rapidly
due to unintended high muscle tensions, and the motors of
the muscles may burn out. Also, previous studies conducted
the online learning for only five minutes, and long-time
online learning sometimes proceeds in an unintended direc-
tion. So, we propose a mechanism to stably conduct long-
time self-body image acquisition. This mechanism includes
a simple online updater of the self-body image realized by
separating software elasticity and hardware elasticity, data
accumulation and augmentation of the actual robot sensor
information for online learning, and a safety mechanism
considering muscle tension and muscle temperature.

Also, previous studies have focused on the learning of the
self-body image itself, so there are few studies on control
methods using it. In this study, we develop the position and
torque control using the acquired self-body image. Addition-
ally, the musculoskeletal humanoid can conduct mechanical
variable stiffness control, using its redundant muscles and
the nonlinear elastic element of each muscle. Until now,
although model-based variable stiffness control systems such
as [11] have been developed, these control systems can be
used only when the moment arm and nonlinear elasticity of
muscles are modelized completely. Therefore, we propose an
estimation of mechanical operational stiffness using the self-
body image, and its control which enables the change of the
operational stiffness as intended. These proposed methods
will extend the range of application of musculoskeletal
humanoids.

This study is important for not only the tendon-driven
musculoskeletal humanoid, but also for the musculoskeletal
hand, such as the ACT Hand [12], the tensegrity robot [13],
soft robotics [14], etc.

In the following sections, first, we will state the overview
of the musculoskeletal structure. Then, we will explain the
detailed method of long-time self-body image acquisition
and control systems using it, while comparing with previous
studies. Finally, we will conduct several experiments of the
proposed methods, and state the conclusion.

II. Musculoskeletal Humanoid

In this study, we use MusashiLarm and Musashi [15]
(Fig. 1) developed as a musculoskeletal research platform
to succeed Kengoro [3].
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#1

Front Back

Number Muscle name

#1 Deltoid (rear)

#2 Deltoid (middle)

#3 Deltoid (front)

#4 Subscapularis

#5 Infraspinatus

#6 Triceps brachii

#7 Teres major

#8 Pronator teres

#9 Biceps brachii

#10 Brachialis

#11 Extensor carpi radialis

#12 Flexor carpi radialis

#13 Flexor digitorum (index, middle)

#14 Adductor pollicis

#15 Flexor pollicis

#16 Flexor digitorum (ring, little)

#17 Extensor carpi ulnaris

#18 Extensor digitorum

#2

#3

#4

#9

#10

#11

#12

#13

#18

#7

#5

#6

#8

#14

#15

#16

#17

Bone frame

Pulley

Tension measurement unit

Muscle wire (Dyneema)

O-ring

Pseudo Ball Joint Module

Muscle Module

Muscle Configuration

Muscle arrangement

MusashiLarm Musashi

Overview

Fig. 1. Overview of newly developed MusashiLarm and Musashi used in this study [15].
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𝒍𝑖𝑑𝑒𝑎𝑙 = 𝒇𝑖𝑑𝑒𝑎𝑙(𝜽)

𝒍ℎ𝑎𝑟𝑑 = 𝒈(𝜽, 𝑻)

(𝜽𝑟𝑎𝑛𝑑 , 𝒇𝑔𝑒𝑜(𝜽𝑟𝑎𝑛𝑑))

Muscle-Route Change Model (MRCM)

Ideal Joint-Muscle Model (IJMM)

𝒍𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝒍𝑖𝑑𝑒𝑎𝑙 + 𝒍ℎ𝑎𝑟𝑑
𝒍𝑡𝑎𝑟𝑔𝑒𝑡 = 𝒍𝑖𝑑𝑒𝑎𝑙 + 𝒍ℎ𝑎𝑟𝑑 + 𝒍𝑠𝑜𝑓𝑡

𝒍ℎ𝑎𝑟𝑑 = 𝑳𝒆 𝒍, 𝑻
(𝜽𝑟𝑎𝑛𝑑 , 𝑻𝑟𝑎𝑛𝑑 , 𝑳𝒆(𝒇𝑔𝑒𝑜,𝑎𝑏𝑠(𝜽𝑟𝑎𝑛𝑑 ), 𝑻𝑟𝑎𝑛𝑑))

𝒍𝑔𝑒𝑜 = 𝒇𝑔𝑒𝑜(𝜽)

𝒍𝑔𝑒𝑜,𝑎𝑏𝑠 = 𝒇𝑔𝑒𝑜,𝑎𝑏𝑠(𝜽)

Joint

Angle

𝜽𝑢𝑝𝑑𝑎𝑡𝑒 , 𝑻𝑢𝑝𝑑𝑎𝑡𝑒 , 𝒍𝑢𝑝𝑑𝑎𝑡𝑒 =

(𝜽𝑎𝑐𝑡𝑢𝑎𝑙 , 𝑻𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 , 𝒍𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝒇𝑖𝑑𝑒𝑎𝑙(𝜽𝑎𝑐𝑡𝑢𝑎𝑙))

𝜽𝑢𝑝𝑑𝑎𝑡𝑒 , 𝒍𝑢𝑝𝑑𝑎𝑡𝑒 =

(𝜽𝑎𝑐𝑡𝑢𝑎𝑙 , 𝒍𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝒈(𝜽𝑎𝑐𝑡𝑢𝑎𝑙 , 𝑻𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑))

Online Learning

(using actual robot sensor information)

Initial Training

(using man-made geometric model)

Fig. 2. Overview of self-body image acquisition.

A. Joint Structure

MusashiLarm has 3 DOFs of the shoulder, 2 DOFs of the
elbow and radioulnar joint, 2 DOFs of the wrist joint, and
the fingers have flexible and robust under-actuated structures
made of machined springs. Each joint is constructed by a
pseudo ball joint module which can measure joint angles
directly using the included potentiometers. While ordinary
musculoskeletal humanoids cannot include joint angle sen-
sors due to ball joints, by this configuration, we made the
experimental evaluation easy. Among these joints, we mainly
consider 3 DOFs of the shoulder and 2 DOFs of the elbow in
this study. Musashi is a simple extension of MusashiLarm,
and we use the dual arms of Musashi in several experiments.

B. Muscle Configuration

Each muscle is actuated by winding Dyneema using a
pulley and a brushless DC motor, as shown in the lower
center figure of Fig. 1. Also, each muscle is folded back by an
external pulley, is covered by a spring and a soft foam cover,
and an O-ring is inserted in the endpoint of the muscle as a
nonlinear elastic element. This configuration can realize the
nonlinear elasticity of muscles, and we can conduct variable
stiffness control and other controls for soft environmental
contact. MusashiLarm includes a total of 18 muscles, of
which 10 muscles are included to move the shoulder and
elbow, and 8 muscles are included to move the wrist and
fingers, as shown in the right figure of Fig. 1.

III. Long-time Self-body Image Acquisition

A. Overview of Self-body Image Acquisition

We show the overview of self-body image acquisition in
Fig. 2. We define “the state that can realize intended joint
angles” as the state of having a correct self-body image. This
definition is special and different from what is called body
image or body scheme in neuroscience, etc.

We express the self-body image by a network structure of
which the input is joint angles and muscle tensions and the
output is muscle lengths. Also, this self-body image has two
networks: the first network expresses the ideal relationship
between joint angles and muscle lengths in the case that there
is no muscle elongation or structure deformation (Ideal Joint-
Muscle Mapping, IJMM, fideal), and the second network
expresses the compensation model of muscle elongation and
muscle route changes by muscle tensions (Muscle-Route
Change Model, MRCM, g) as stated below,

l = fideal(θ) + g(θ,T ) (1)

where l is the measured muscle length, T is the measured
muscle tension, and θ is the measured joint angle. We are
able to express the self-body image as one simple neural
network, but the scales of the output muscle length of the two
networks differ greatly. So when we express the self-body
image as one simple network, the network cannot learn from
the actual robot sensor information well and the learning
sometimes proceeds in an unintended direction. Therefore,
we separate the self-body image into two models: IJMM
and MRCM.

As shown in Fig. 2, self-body image acquisition has
two processes: the first is an initial training of self-body
image using the geometric model, and the second is its
online learning using the actual robot sensor information.
The former initializes the weight of the neural network of
joint-muscle mapping, and the latter updates it online and
constructs the weight for the actual robot.

B. Comparison of Self-body Images

The network configuration expressing the self-body image
in previous studies [9], [10] and the one in this study are
different. As shown in Fig. 3, we define Θ as joint space,
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Self-body Image

Antagonism Updater

Online Updater

Vision Updater
Self-body Image

AR marker

AR marker

Fig. 3. Difference of the network configuration between previous study
[10] and this study.

Λ as muscle space, [Θ Λ]input as control input space, and
[Θ Λ]state as state space.

In previous studies [9], [10], the self-body image is the
network between joint state space Θstate and muscle input
space Λinput. The current joint angle Θestimated is estimated
from the self-body image and Λinput, and the actual current
joint angle Θstate = Θactual is estimated by compensating
for Θestimated using vision. There are two updaters: Antag-
onism Updater and Vision Updater. The former updates the
antagonism of muscles by learning the relationship between
Θestimated and Λstate, and the latter correctly introduces target
muscle lengths which realize the target joint angles by
learning the relationship between Θactual and Λinput, because
the information of muscle antagonism is included in Λstate

and we must calculate Λinput.
In this study, we express self-body image by the rela-

tionship between the joint state space Θstate and muscle
state space Λstate. Because the difference between Λinput

and Λstate can be calculated through the equation of muscle
stiffness control [16], we can calculate Λinput from Λstate.
Therefore, there is no need to use Antagonism Updater and
Vision Updater, and we need only a simple online updater
to learn the relationship between Λstate and Θstate. Thus,
the networks in previous studies express the software and
hardware elasticity, but the one in this study expresses only
the hardware elasticity and handles the software elasticity
separately.

This mechanism can not only integrate 2 updaters, but also
be generally applied to torque control by muscle tension, etc.,
because the network uses only the value of state space. In
the following sections, we introduce the detailed system of
this study.

C. Initial Training of Self-body Image Using a Geometric
Model

First, we train IJMM using the geometric model which lin-
early expresses muscle routes by the start point, relay points,
and end point (the right figure of Fig. 1). We move joints
of the geometric model variously in the range of the joint
angle limit, calculate relative muscle lengths from the initial
posture (all joint angles are 0 as shown in the right figure of
Fig. 1), and train IJMM using these pair data of joint angles

θrand and muscle lengths fgeo(θrand) (the upper right figure
of Fig. 2). Second, regarding MRCM, we approximate the
relationship between muscle tension and muscle elongation
Le with an exponential function using a test sample of one
muscle. Then we make a dataset of joint angles θrand, muscle
tensions Trand, and compensating value of muscle lengths
−Le(fgeo,abs(θrand),Trand) considering the elongation of the
Dyneema in proportion to the absolute muscle lengths, and
train MRCM (the lower right of Fig. 2). In these procedures,
fgeo calculates relative muscle lengths from the initial pos-
ture, and fgeo,abs calculates absolute muscle lengths, from
the geometric model. The current IJMM approximates the
muscle routes along bone structures linearly, and the current
MRCM cannot consider influences of muscle interferences,
the soft foam cover, structure deformation, etc., so we need
to update the self-body image using the actual robot sensor
information.

D. Online Learning of Self-body Image Using the Actual
Robot

First, the data used for the online learning of self-body
image is shown as below,

θvision = IK(θinitial = θest,Ptarget = Pvision) (2)
θactual = θpotentio or θvision (3)

(θupdate, lupdate) = (θactual, lm − g(θactual,Tm)) (4)
(θupdate,Tupdate, lupdate) =

(θactual,Tm, lm − fideal(θactual)) (5)

where lm(lmeasured) is muscle lengths measured by encoders
in muscle motors, Tm(Tmeasured) is muscle tensions measured
by loadcells in muscle modules, θvision is the estimated actual
joint angles using vision implemented in [9] (solve inverse
kinematics (IK) by setting the initial value θinitial as the
estimated joint angles θest and the target value Ptarget as the
position of AR marker attached to the end effector Pvision),
θpotentio is the joint angles of potentiometers in the joint
modules of [15], and {θ, T, l}update is the data used for the
online learning. We use θpotentio as θactual, because each joint
has potentiometers, which is one feature of Musashi used in
this study. However, when the humanoid has no joint angle
sensors like Kengoro [3], the online learning can be done
by using θvision. Because the self-body image in this study
describes the relationship of measured joint angles, muscle
tensions, and muscle lengths, the online updater in Eq. 4
updates IJMM, which is the ideal relationship between joint
angles and muscle lengths, by removing the influence of
MRCM, and the online updater in Eq. 5 updates MRCM,
which is the compensation value of muscle elongation and
muscle route changes by muscle tensions, by removing the
influence of IJMM. Also, this updater generates data for
online learning at 2 Hz when the current joint angles or
muscle lengths deviate from the previously learned data.

Next, we show how to accumulate and augment the actual
robot sensor information for the generation of minibatch for
online learning in Fig. 4. In procedure (a), the data from
the actual robot sensor information for the online learning



Construction of Minibatch for Online Learning

(b) Data server

Enqueue 𝑑𝑎𝑡𝑎(𝑎)Server

If 𝑛 > 𝐷𝑚𝑎𝑥

Dequeue Server

Batch for 

online learning

(d) Current Model Data
𝐷𝑎𝑡𝑎 =

(𝜽𝑟𝑎𝑛𝑑 , 𝐟ideal(𝜽𝑟𝑎𝑛𝑑))
or

𝐷𝑎𝑡𝑎 = (𝜽𝑟𝑎𝑛𝑑 , 𝑻𝑟𝑎𝑛𝑑 ,
g(𝜽𝑟𝑎𝑛𝑑 , 𝑻𝑟𝑎𝑛𝑑))

(c) Additional constraint
If model is IJMM

𝑑𝑎𝑡𝑎 = 𝟎, 𝟎
If model is MRCM

Pick up 𝑑𝑎𝑡𝑎𝑟𝑎𝑛𝑑from Server

𝑑𝑎𝑡𝑎 = 𝜽𝑎𝑟𝑜𝑢𝑛𝑑 , 𝑻𝑢𝑝𝑑𝑎𝑡𝑒 , 𝒍𝑢𝑝𝑑𝑎𝑡𝑒
𝜽𝑎𝑟𝑜𝑢𝑛𝑑 = 𝜽𝑢𝑝𝑑𝑎𝑡𝑒 + 𝑵𝑛(𝟎, 𝛿𝜽𝑑𝑖𝑣)

Online

updater

(a) Update data from the actual 
robot sensor information

𝜽𝑢𝑝𝑑𝑎𝑡𝑒 , 𝒍𝑢𝑝𝑑𝑎𝑡𝑒 or

𝜽𝑢𝑝𝑑𝑎𝑡𝑒 , 𝑻𝑢𝑝𝑑𝑎𝑡𝑒 , 𝒍𝑢𝑝𝑑𝑎𝑡𝑒

Server
𝑑𝑎𝑡𝑎1
𝑑𝑎𝑡𝑎2

⋮
𝑑𝑎𝑡𝑎𝑛

𝑑𝑎𝑡𝑎(𝑎)

Randomly

pickup
𝑑𝑎𝑡𝑎1

(𝑏)

𝑑𝑎𝑡𝑎2
(𝑏)

⋮

𝑑𝑎𝑡𝑎𝑁𝑏

(𝑏)
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𝑑𝑎𝑡𝑎1~𝑁𝑑

(𝑑)
𝑑𝑎𝑡𝑎(𝑎)

Fig. 4. Data accumulation and augmentation of the actual robot sensor
information for generation of minibatch for the stable online learning of
self-body image.

is extracted as shown in Eq. 4 – Eq. 5. After that, the
data obtained from (a) is accumulated in the data server
of (b). Procedure (c) generates the data which adds the
necessary limitation to the network structure of IJMM and
MRCM. In the case of IJMM, because the relative muscle
lengths are 0 when all joint angles are 0, (c) generates the
data (0,0). In the case of MRCM, because the nonlinear
elastic relationship between muscle lengths and muscle ten-
sions does not change greatly according to joint angles, (c)
generates the data (θaround,Tupdate, lupdate). {θ,T , l}update is
the actual robot sensor data extracted from the data server
of (b), and θaround is obtained by adding random values
following a normal distribution with an average of 0 and a
dispersion of δθdiv to θupdate. Procedure (d) generates data by
inputting θ,T randomly into the current model and obtaining
the output. The data is restricted by the fact that the data
space other than obtained sensor data should not change
from the current model. Finally, we extract one piece of
data from (a), Nb,Nc,Nd numbers of data from (b), (c),
and (d), respectively, and generate a minibatch for online
learning by compiling them together. In this study, we set
Nb = 10,Nc = 5,Nd = 5.

E. Safety Mechanism Considering Muscle Tension and Tem-
perature

In order to move the musculoskeletal humanoid for a
long time while acquiring self-body image, it is important
to prevent damage to the muscle motor by unintended high
muscle tension and burnout of the muscle motor by high
motor temperature. Therefore, we adjust the target muscle
length to suppress the unintended high muscle tension and
temperature as shown below,

δl =KT max(T − Tlim, 0) + KCmax(C −Clim, 0)
δlt+1 =δlt +max(−δllim,min(δllim, δl − δlt))
ltarget =ltarget + δlt+1 (6)

where ltarget is the target muscle length, δl is the ideal
relative change of ltarget, T,C are the current muscle tension
and temperature, KT ,KC are the gains that inhibit T and
C, respectively, Tlim,Clim are the threshold values for the
inhibition of the rise in T and C, δllim is the limitation
threshold of the change in relative muscle length for the
motor not to vibrate, and δlt+1 is the regulated relative

change of muscle length which is sent at the current step.
In this study, we set KT = 1.0 [mm/N], KC = 1.0 [mm/◦C],
Tlim = 200 [N], Clim = 60 [◦C], δllim = 0.01 [mm], and this
safety mechanism runs every 8 msec. This safety mechanism
can inhibit high muscle tension, and cope with the case in
which muscle tension is not high but the muscle temperature
rises gradually, though the tracking ability of joint angles
deteriorates to a certain degree.

IV. Position, Torque, and Variable Stiffness Control Using
Self-body Image

A. Position Control

First, we will explain position control using the self-body
image. In this study, we move Musashi using muscle stiffness
control [16] as shown below,

Ttarget = Tbias +max(0,Ksti f f (l − ltarget)) (7)

where Ttarget is the target muscle tension, Tbias is the bias
term of the muscle stiffness control, and Ksti f f is the software
muscle stiffness. In order to realize the intended joint angles,
we need to decide ltarget in Eq. 7, and this is done as shown
below,

lso f t(T ) = −(T − Tbias)/Ksti f f (8)
ltarget = f (θtarget,Tconst) + lso f t(Tconst) (9)
ltarget = f (θtarget,Tmeasured) + lso f t(Tmeasured) (10)

where f (θ,T ) is the self-body image, Tconst is constant mus-
cle tension, and lso f t is the compensation values of software
muscle elasticity from ltarget by muscle stiffness control. In
Eq. 9, we move the musculoskeletal humanoid using the
target joint angles and constant muscle tension. However,
although this movement can realize the target joint angles to
a certain degree, the robot cannot move to the target posture
completely because the target muscle tension is impossible
to realize. Then, in Eq. 10, when we set the current measured
muscle tensions to the target muscle tensions, they become
the necessary muscle tensions to approximately realize the
target joint angles. Ideally the robot can completely realize
the target joint angles by continuing the feedback of the
current measured muscle tensions, but in actuality, there is
an error between the self-body image and the actual robot,
so the current muscle tensions can diverge or converge to
minimum muscle tensions Tbias, which is not practical, if
we continue the feedback of Eq. 10. Also, although there
are many combinations of target muscle tensions which can
realize the target joint angles due to the redundant muscle
arrangements, by setting the Tconst to the minimum muscle
tension Tbias, the robot can realize the target joint angles by
minimum muscle tensions.

B. Torque Control

Next, by using this self-body image, we can conduct
torque control of musculoskeletal structures. The basic
method is the joint torque control using muscle tension [17].
By the acquisition of self-body image, the torque control [17]
becomes better, because a more accurate muscle Jacobian
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𝑑𝑻 = 𝐾𝑚𝑑𝒍

Linear Regression

Differentiate by Joint Angle

𝒍 = 𝒇𝑖𝑑𝑒𝑎𝑙 𝜽, 𝑻
𝐺 𝜽 = 𝑑𝒇𝑖𝑑𝑒𝑎𝑙 (𝜽, 𝑻)/𝑑𝜽

𝒍𝑖𝑑𝑒𝑎𝑙 = 𝒇𝑖𝑑𝑒𝑎𝑙(𝜽)

𝒍ℎ𝑎𝑟𝑑 = 𝒈(𝜽, 𝑻)

𝒍ℎ𝑎𝑟𝑑 = 𝒈 𝜽, 𝑻
𝑑𝑻 = 𝐾𝑚𝑑𝒍ℎ𝑎𝑟𝑑

Estimation of Operational Stiffness

𝐾𝑚

𝐺 𝜽

Operational 

Stiffness

Fig. 5. Estimation of operational hardware stiffness using self-body image.
Variable Stiffness Control

Variables:

𝐾𝑤 𝜽,𝑻 = 𝐽 𝜽 −𝑇𝐺 𝜽 𝑇𝐾𝑚 𝜽,𝑻 𝐺 𝜽 𝐽 𝜽 −1

𝝉 𝜽, 𝑻 = −𝐺(𝜽)𝑇𝑻
𝐸 𝜽,𝑻 = |𝐾𝑡𝑎𝑟𝑔𝑒𝑡

−1 𝐾𝑤 𝜽,𝐓 − 𝐼|

+α|𝝉 𝜽, 𝑻𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝝉(𝜽,𝐓)|
𝑻𝑡𝑚𝑝 = 𝑻𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑻𝑟𝑎𝑛𝑑

Sort by 𝐸

(𝐸(𝜽𝑡𝑎𝑟𝑔𝑒𝑡, 𝑻𝑡𝑚𝑝
1 ), 𝑻𝑟𝑎𝑛𝑑

1 )

(𝐸(𝜽𝑡𝑎𝑟𝑔𝑒𝑡, 𝑻𝑡𝑚𝑝
2 ), 𝑻𝑟𝑎𝑛𝑑

2 )

⋮

(𝐸(𝜽𝑡𝑎𝑟𝑔𝑒𝑡, 𝑻𝑡𝑚𝑝
𝑁𝑣1 ), 𝑻𝑟𝑎𝑛𝑑

𝑁𝑣1 )

Variable Stiffness Control

𝐾𝑡𝑎𝑟𝑔𝑒𝑡 , 𝜽𝑡𝑎𝑟𝑔𝑒𝑡 → 𝑻𝑡𝑎𝑟𝑔𝑒𝑡𝜽𝑡𝑎𝑟𝑔𝑒𝑡

Self Body Image

𝜽𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑻𝑡𝑎𝑟𝑔𝑒𝑡 → 𝒍𝑡𝑎𝑟𝑔𝑒𝑡𝜽𝑡𝑎𝑟𝑔𝑒𝑡

(𝐸(𝜽𝑡𝑎𝑟𝑔𝑒𝑡, 𝑻𝑡𝑚𝑝
1′ ), 𝑻𝑟𝑎𝑛𝑑

1′ )

(𝐸(𝜽𝑡𝑎𝑟𝑔𝑒𝑡, 𝑻𝑡𝑚𝑝
2′ ), 𝑻𝑟𝑎𝑛𝑑

2′ )

⋮

(𝐸(𝜽𝑡𝑎𝑟𝑔𝑒𝑡, 𝑻𝑡𝑚𝑝
𝑁𝑣1
′

), 𝑻𝑟𝑎𝑛𝑑
𝑁𝑣1
′

)

𝑻𝑏𝑖𝑎𝑠 =
1

𝑁𝑣2


𝑖=1

𝑁𝑣2

𝑻𝑟𝑎𝑛𝑑
𝑖′
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Top 𝑁𝑣2
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Fig. 6. Control of operational hardware stiffness using self-body image.

than the one of the geometric model can be obtained by
differentiating the self-body image. Also, the acquisition
of self-body image makes the joint angle estimation more
correct [9], [10], and the actual joint angles can follow the
target joint angles more accurately.

C. Variable Stiffness Control

1) Estimation of Self-body Stiffness: First, we estimate
operational hardware stiffness as shown in Fig. 5. In order
to estimate the operational stiffness, joint Jacobian J, muscle
Jacobian G, and muscle stiffness Km are necessary. First,
we can obtain the joint Jacobian from the geometric model,
as with ordinary axis-driven humanoids. Second, muscle
Jacobian can be obtained by differentiating the IJMM of the
self-body image by the joint angles. Third, muscle stiffness
can be obtained using linear regression between the change
in muscle tensions and the change in output of the MRCM.
Therefore, the operational stiffness can be estimated by
multiplying muscle stiffness by muscle Jacobian and joint
Jacobian.

2) Control of Self-body Stiffness: The basic system of
variable stiffness control is shown in the upper figure of
Fig. 6: we set the target joint angles and target operational
stiffness, calculate the target muscle tension using the method
we will propose in this subsection, calculate the target muscle
lengths from self-body image by inputting the calculated
muscle tensions, and send them to the actual robot. The
details of variable stiffness control is shown in the lower
figure of Fig. 6. First, we make Ttmp by adding Trand, which
is a random value within a certain range (−20 ∼ 20 [N]
in this study), to the current muscle tensions Tcurrent, and
accumulate Nv1 data pairs of Trand and evaluation value

E(θtarget,Ttmp) based on the equation as shown below,

Ttmp =Tcurrent + Trand

Kw(θ,T ) =J(θ)−T G(θ)T Km(θ,T )G(θ)J(θ)−1

τ (θ,T ) = −G(θ)TT

E(θ,T ) =|K−1
targetKw(θ,T ) − I|

+ α|τ (θ,Tcurrent) − τ (θ,T )| (11)

where Kw(θ,T ) is the calculated operational stiffness, Ktarget

is the target operational stiffness, J(θ) is the joint Jacobian,
G(θ) is the muscle Jacobian, Km is the muscle stiffness,
τ (θ,T ) is the joint torque, α is a weight constant, and
| · | expresses L2 norm. The evaluation value E(θ,T ) sums
up the values that express how the calculated operational
stiffness is close to the target operational stiffness when
T = Ttarget, and how the calculated joint torques are close
to the current joint torques when T = Tcurrent, by the weight
of 1 : α. We sort the accumulated data in ascending order
of the value E, and set Tbias as the average Trand of Nv2
(Nv1 > Nv2) data from the top. Then, we replace the Ttarget

by Tcurrent +Tbias, when the value E(θtarget,Tcurrent +Tbias) is
smaller than E(θtarget,Tcurrent). We repeat this step Nv3 times,
input the final calculated value of Ttarget into the self-body
image, and obtain the target muscle length. When Nv2 = 1,
this method is a hill climbing method, and when Nv2 > 1,
the stiffness search becomes more stable. In this study, we
set α = 0.02,Nv1 = 10,Nv2 = 2, and Nv3 = 50.

Although we change the operational stiffness in this sec-
tion, this method can also be applied to change the joint
stiffness.

V. Experiments

In all experiments, the neural networks have three layers:
input, hidden, and output layers. The number of units in the
hidden layer is 1000, and the activation function is Sigmoid.

A. Comparison of self-body image acquisition methods

First, we will conduct an experiment to compare the self-
body image acquisition methods of the previous study [10]
and this study. In the previous study, self-body image was
learned in a state without external force, and then was learned
in a state with external force. In this study, first, we set the
target joint angles θtarget randomly in the range of the joint
angle limits, set the Tconst as Tbias, and sent target muscle
lengths obtained by Eq. 9 to the robot over 5 sec. Second, we
sent the target muscle lengths obtained by Eq. 10 using the
same target joint angles over 2 sec. Third, we set Tconst as
the random value from Tbias to Tlim, and sent muscle lengths
obtained by Eq. 9 again using the same target joint angles
over 3 sec. By repeating these 3 steps, the space of joint
angles and muscle tensions of the self-body image is learned
efficiently. We used the 5 DOFs of the 3 DOFs shoulder and
2 DOFs elbow in Musashi for the evaluation, including a
total of 10 muscles (we express muscles by the numbers
#1 ∼ #10 shown in the right figure of Fig. 1, which include
1 polyarticular muscle). We applied the previous study to the
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Fig. 7. Comparison experiment of self-body image acquisition between
the previous study and this study.

right arm and applied this study to the left arm, and evaluated
at the same time.

We show the result in Fig. 7. RMSE is the Root Mean
Squared Error of the difference between the current and
estimated joint angles. When comparing the transition of
RMSEs and their linear regressions in these two studies, both
of the RMSEs decrease slowly, and the slope in this study is
larger than the one in the previous study. This is because the
two updaters of the previous study slightly compete and the
self-body image is adjusted to the current sensor information
too much due to lack of data accumulation. Also, we added
external force at 500 sec. There is no use of torque controller.
After that, by setting two different target joint angles, RMSE
in the previous study rose rapidly. This is because the self-
body image is adjusted to the current joint angles too much,
and so the joint angle estimation goes in an unintended
direction when moving to a great extent.

B. Long-time Self-body Image Acquisition

We conducted a long-time self-body image acquisition
experiment lasting 3 hours. We show the result in Fig. 8. In
the upper figure of Fig. 8, RMSE is the Root Mean Squared
Error of the difference between the current and target joint
angles, and the black line expresses the average RMSE of
4 minutes. We can see that the average RMSE gradually
decreased from about 0.3 rad to 0.08 rad until at about 40
minutes by the online acquisition of the correct self-body
image. Although the O-ring of muscle #6 ruptured at 42
minutes and the RMSE increased to about 0.2 rad, the RMSE
gradually decreased due to the redundancy of muscles and
the online learning of self-body image, expressing the benefit
of redundant muscles on the musculoskeletal structure well.
After that, muscles #2 and #3 ruptured at about 150 minutes,
the major muscles required to raise the shoulder in the roll
direction vanished, and RMSE increased rapidly. Regarding
the muscle temperatures, the temperature remained stable
under 70 ◦C due to the safety mechanism of Eq. 6. Also,
because we did not set self-collision avoidance, at 140
minutes, target joint angles were set to values that caused
the arm to sink into the self-body, and muscle temperatures
rose rapidly. However, due to the safety mechanism, the
robot could keep moving without exceeding the limit of
muscle temperature Cburn (90 ◦C) which is the limit for the
prevention of motor burnout.
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Fig. 8. Transition of Root Mean Squared Error (RMSE) of the difference
between target and current joint angles and muscle temperature in the long-
time self-body image acquisition experiment lasting 3 hours.

The main reason why the average RMSE did not fall under
about 0.08 rad is the hysteresis of muscles. MusashiLarm has
a complex muscle structure, large friction between muscles,
between muscle and bone, between muscle and pulley, etc.,
and the final joint angles change according to the direction
of movement.

C. Dumbbell Raise Experiment

We conducted a dumbbell (3 kg) raise experiment by
position control using the self-body image, while running its
online learning. We show the appearance in the upper figure
of Fig. 9, and show the transition of the dumbbell height in
the lower figure of Fig. 9. When raising the dumbbell several
times, the relationship of muscle lengths, muscle tension,
etc. of the dumbbell raise is incorporated into the self-body
image, so Musashi was gradually able to raise the dumbbell
to the target height of 730 mm.

D. Variable Stiffness Control Using Self-body Image

First, we conducted the evaluation of the variable
stiffness control. We set θtarget as (S r, S p, S y, Ep, Ey) =
(45, 0, 0,−90, 0) [deg], and conducted experiments to change
the operational stiffness as intended (S means the shoulder,
E means the elbow, and rpy means the roll, pitch, and
yaw rotation. These symbols are also used in subsequent
experiments). The result is shown in Fig. 10. Each stiffness
ellipsoid in the upper graphs of Fig. 10 represents the
operational displacement of the hand when |F | = 10 [N]. In
Sample 1, we set the target stiffness Ktarget (Target Value) as
a stiffness twice that of the current stiffness (Current Value),
and searched for target muscle tensions by the method
of Section IV-C. The transition of E(θ,T ) in Sample 1
when searching for target muscle tensions is shown in the
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lower graph of Fig. 10, showing that this method could
make the self-body stiffness close to the target stiffness,
while inhibiting the error between current and calculated
joint torques (in this graph, we display the value E if
E(θtarget,Tcurrent + Tbias) > E(θtarget,Tcurrent)). When we
move the actual robot using Ttarget, which realizes the final
stiffness (Calculated Value) calculated by the method, we
can observe the final current stiffness of the actual robot
(Actual Value). In Sample 1, Ttarget, which realizes the target
stiffness, could not be obtained, but this method succeeded
in making the current stiffness close to the target stiffness.
Also, the stiffness ellipsoids of Calculated Value and Actual
Value were almost the same, and it shows that the self-
body image was learned correctly. In Sample 2, we set the
target stiffness by changing the scale and slope of the current
stiffness ellipsoid. As a result of the search, the same scale
of the target stiffness ellipsoid was realized, but the slope
was not, because there was no solution to realize the target
stiffness and the method selected the best choice.

Second, we verified to what extent the theoretical stiff-
ness ellipsoid calculated by the method in Section IV-
C matches the actual stiffness ellipsoid. We set θtarget as
(S r, S p, S y, Ep, Ey) = (0, 30, 0,−60, 0) [deg], which is the
posture in which the body stiffness can be measured easily,
and created a state of low stiffness and high stiffness by
the method in Section IV-C. Then, we added 10 N force
to the end effector on the xy plane, while measuring the
value by a forcegauge, from 8 directions equally dividing
360 deg, and measured the displacement of the end effector
by potentiometers. The result is shown in Fig. 11. When the
body stiffness is low or high, we can see that the theoretical
and actual ellipsoid match to a certain degree. The error
between the theoretical and actual value is considered to
be due to the remaining difference between the acquired
self-body image and the actual robot, and the hysteresis by
friction as above.

E. Impact Correspondence Experiment

We conducted an impact correspondence experiment us-
ing variable stiffness control. The joint angles were set as
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(S r, S p, S y, Ep, Ey) = (−45,−30,−20,−60, 0) [deg], a 5 kg
ball was dropped from 1 m above and 0.15 m in front of the
elbow with the hands clasped together, and the transitions of
muscle tensions and joint angles between low stiffness and
high stiffness were compared. The movement of the dual arm
in this experiment is shown in Fig. 12, and the transitions of
muscle tensions and joint angles of the left arm are shown in
Fig. 13. From Fig. 12, we can see that the arms moved to a
great extent when the stiffness was low, and the displacement
of the arms was not as large when the stiffness was high.
Additionally, in the lower graph of Fig. 13, we can see that
both displacements of joint angles in Shoulder-p and Elbow-
p become small in the high stiffness state. Also, in the upper
figure of Fig. 13, although the evaluation of muscle tensions
is difficult because the initial muscle tensions are different
between low and high stiffness, the maximum muscle tension
is about 150 N in low stiffness and is about 250 N in high
stiffness, indicating that the low stiffness state can absorb
sudden impact.
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correspondence experiment with variable stiffness control.

VI. CONCLUSION
In this study, we proposed a method for long-time self-

body image acquisition, and position, torque, and variable
stiffness control using the self-body image. For long-time
self-body image acquisition, we considered simplifying the
online updater for stable learning, accumulating and aug-
menting the actual robot sensor information without wasting
it, and including a safety mechanism to inhibit high muscle
tension and temperature, and we succeeded in conducting
a 3 hour learning experiment. Also, by using the self-body
image, we realized position control using 2 stage feedback
of muscle tension, torque control using muscle Jacobian
calculated from the differentiation of the self-body image,
and variable stiffness control using hill-climb method.

In future works, we would like to propose further struc-
tures of self-body image considering the hysteresis of mus-
cles and dynamic movements.

References
[1] Y. Nakanishi, S. Ohta, T. Shirai, Y. Asano, T. Kozuki, Y. Kake-

hashi, H. Mizoguchi, T. Kurotobi, Y. Motegi, K. Sasabuchi,
J. Urata, K. Okada, I. Mizuuchi, and M. Inaba, “Design Approach
of Biologically-Inspired Musculoskeletal Humanoids,” International
Journal of Advanced Robotic Systems, vol. 10, no. 4, pp. 216–228,
2013.

[2] S. Wittmeier, C. Alessandro, N. Bascarevic, K. Dalamagkidis, D. De-
vereux, A. Diamond, M. Jäntsch, K. Jovanovic, R. Knight, H. G.
Marques, P. Milosavljevic, B. Mitra, B. Svetozarevic, V. Potkonjak,
R. Pfeifer, A. Knoll, and O. Holland, “Toward Anthropomimetic
Robotics: Development, Simulation, and Control of a Musculoskeletal
Torso,” Artificial Life, vol. 19, no. 1, pp. 171–193, 2013.

[3] Y. Asano, T. Kozuki, S. Ookubo, M. Kawamura, S. Nakashima,
T. Katayama, Y. Iori, H. Toshinori, K. Kawaharazuka, S. Makino,
Y. Kakiuchi, K. Okada, and M. Inaba, “Human Mimetic Musculoskele-
tal Humanoid Kengoro toward Real World Physically Interactive Ac-
tions,” in Proceedings of the 2016 IEEE-RAS International Conference
on Humanoid Robots, 2016, pp. 876–883.

[4] S. Hirose and S. Ma, “Coupled tendon-driven multijoint manipulator,”
in Proceedings of the 1991 IEEE International Conference on Robotics
and Automation, 1991, pp. 1268–1275.

[5] H. G. Marques, , C. Maufroy, A. Lenz, K. Dalamagkidis, and U. Culha,
“MYOROBOTICS: a modular toolkit for legged locomotion research
using musculoskeletal designs,” in Proceedings of 6th International
Symposium on Adaptive Motion of Animals and Machines, 2013.

[6] I. Mizuuchi, Y. Nakanishi, T. Yoshikai, M. Inaba, H. Inoue, and
O. Khatib, “Body Information Acquisition System of Redundant
Musculo-Skeletal Humanoid,” in Experimental Robotics IX, 2006, pp.
249–258.

[7] S. Ookubo, Y. Asano, T. Kozuki, T. Shirai, K. Okada, and M. Inaba,
“Learning Nonlinear Muscle-Joint State Mapping Toward Geometric
Model-Free Tendon Driven Musculoskeletal Robots,” in Proceedings
of the 2015 IEEE-RAS International Conference on Humanoid Robots,
2015, pp. 765–770.

[8] Y. Motegi, T. Shirai, T. Izawa, T. Kurotobi, J. Urata, Y. Nakanishi,
K. Okada, and M. Inaba, “Motion control based on modification of
the Jacobian map between the muscle space and work space with
musculoskeletal humanoid,” in Proceedings of the 2012 IEEE-RAS
International Conference on Humanoid Robots, 2012, pp. 835–840.

[9] K. Kawaharazuka, S. Makino, M. Kawamura, Y. Asano, K. Okada, and
M. Inaba, “Online Learning of Joint-Muscle Mapping using Vision
in Tendon-driven Musculoskeletal Humanoids,” IEEE Robotics and
Automation Letters, vol. 3, no. 2, pp. 772–779, 2018.

[10] K. Kawaharazuka, S. Makino, M. Kawamura, A. Fujii, Y. Asano,
K. Okada, and M. Inaba, “Online Self-body Image Acquisition Con-
sidering Changes in Muscle Routes Caused by Softness of Body Tissue
for Tendon-driven Musculoskeletal Humanoids,” in Proceedings of the
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2018, pp. 1711–1717.

[11] H. Kobayashi, K. Hyodo, and D. Ogane, “On Tendon-Driven Robotic
Mechanisms with Redundant Tendons,” The International Journal of
Robotics Research, vol. 17, no. 5, pp. 561–571, 1998.

[12] M. V. Weghe, M. Rogers, M. Weissert, and Y. Matsuoka, “The ACT
Hand: design of the skeletal structure,” in Proceedings of the 2004
IEEE International Conference on Robotics and Automation, 2004,
pp. 3375–3379.

[13] C. Paul, F. J. Valero-Cuevas, and H. Lipson, “Design and control
of tensegrity robots for locomotion,” IEEE Transactions on Robotics,
vol. 22, no. 5, pp. 944–957, 2006.

[14] R. Niiyama, S. Nishikawa, and Y. Kuniyoshi, “Athlete Robot with
applied human muscle activation patterns for bipedal running,” in
Proceedings of the 2010 IEEE-RAS International Conference on
Humanoid Robots, 2010, pp. 498–503.

[15] K. Kawaharazuka, S. Makino, X. Chen, A. Fujii, M. Kawamura,
T. Makabe, M. Onitsuka, Y. Asano, K. Okada, K. Kawasaki, and
M. Inaba, “Design of a Musculoskeletal Upper Limb with Pseudo
Ball Joint Modules for the Control of Redundant Nonlinear Elastic
Elements,” in 2017 JSME Conference on Robotics and Mechatronics,
2018, pp. 2A2–G09.

[16] T. Shirai, J. Urata, Y. Nakanishi, K. Okada, and M. Inaba, “Whole
body adapting behavior with muscle level stiffness control of tendon-
driven multijoint robot,” in Proceedings of the 2011 IEEE Interna-
tional Conference on Robotics and Biomimetics, 2011, pp. 2229–2234.

[17] M. Kawamura, S. Ookubo, Y. Asano, T. Kozuki, K. Okada, and
M. Inaba, “A Joint-Space Controller Based on Redundant Muscle
Tension for Multiple DOF Joints in Musculoskeletal Humanoids,”
in Proceedings of the 2016 IEEE-RAS International Conference on
Humanoid Robots, 2016, pp. 814–819.


	INTRODUCTION
	Musculoskeletal Humanoid
	Joint Structure
	Muscle Configuration

	Long-time Self-body Image Acquisition
	Overview of Self-body Image Acquisition
	Comparison of Self-body Images
	Initial Training of Self-body Image Using a Geometric Model
	Online Learning of Self-body Image Using the Actual Robot
	Safety Mechanism Considering Muscle Tension and Temperature

	Position, Torque, and Variable Stiffness Control Using Self-body Image
	Position Control
	Torque Control
	Variable Stiffness Control
	Estimation of Self-body Stiffness
	Control of Self-body Stiffness


	Experiments
	Comparison of self-body image acquisition methods
	Long-time Self-body Image Acquisition
	Dumbbell Raise Experiment
	Variable Stiffness Control Using Self-body Image
	Impact Correspondence Experiment

	CONCLUSION
	References

