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Abstract—In this letter, we demonstrate a formulation for
optimizing coupled submodular maximization problems with
provable sub-optimality bounds. In robotics applications, it is
quite common that optimization problems are coupled with one
another and therefore cannot be solved independently. Specif-
ically, we consider two problems coupled if the outcome of
the first problem affects the solution of a second problem that
operates over a longer time scale. For example, in our motivating
problem of environmental monitoring, we posit that multi-robot
task allocation will potentially impact environmental dynamics
and thus influence the quality of future monitoring, here modeled
as a multi-robot intermittent deployment problem. The general
theoretical approach for solving this type of coupled problem
is demonstrated through this motivating example. Specifically,
we propose a method for solving coupled problems modeled by
submodular set functions with matroid constraints. A greedy al-
gorithm for solving this class of problems is presented, along with
sub-optimality guarantees. Finally, practical optimality ratios are
shown through Monte Carlo simulations to demonstrate that the
proposed algorithm can generate near-optimal solutions with high
efficiency.

Index Terms—Multi-Robot Systems, scheduling and coordina-
tion, coupled, submodular.

I. INTRODUCTION

It is common that multi-robot team objectives are intertwined
or coupled, with an especially interesting example being
objectives that operate sequentially over different time scales.
Consider, for example, an environmental monitoring application
where we first need to allocate a group of heterogeneous robots
to perform a set of tasks, e.g. , collecting samples or otherwise
interacting with the environment. This problem is well-known
as a multi-robot task allocation problem and occurs over a
short time scale. However, the critical factor considered in
this letter is that the tasks themselves may impact underlying
environmental dynamics, and thus future long-term objectives
will be influenced. Here we consider the future long-term
objective of multi-robot intermittent deployment, where we
ask: when is it appropriate to deploy a robotic team for long-
term monitoring? To account for the impact of short-term task
allocation on long-term monitoring, we formulate a general
coupled submodular optimization problem, which yields a
bounded sub-optimal solution for a provably hard problem.

Multi-robot task allocation problems have been studied for
a long time [1], [2]. In this letter, our focus will instead
be on the intermittent deployment problem and its coupling
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with task allocation. The idea of intermittence in robotics
applications can be either by design or intrinsic. In our
motivating example of environmental monitoring, we design
the system to intermittently deploy to reduce cost over the
long-term. In [3], the mobile robot networks are required to
be connected intermittently, which is achieved through a linear
temporal logic method. In [4], the robots can only communicate
periodically in predefined time steps. On the other hand, in
[5], the authors studied the convergence of Kalman filtering
when the measurement arrival time is intrinsically intermittent.
A similar application to our deployment problem without the
intermittent feature is the sensor scheduling problem [6], which
needs to schedule sensors sequentially to estimate a linear
system.

More generally, various multi-robot problems contain two or
more sub-problems coupled in some way. In multi-robot motion
planning applications, such as collaborative coordination [7],
the movement of one robot will impact the others. In the
environmental monitoring problem [8], different robots need to
work together to cover/explore the environment more efficiently.
In humanoid robot manipulation [9], the problem of finding an
optimal grasp position and the problem of reaching the object
is indeed strongly coupled. Thus, in general, it is necessary
to model problem couplings and seek efficient algorithms to
provide quality solutions. If the domain of a problem is discrete,
we need to consider methods for combinatorial optimization,
as we do in this work. For example, the sensor placement
problem [10] seeks to find locations for sensors from a discrete
location set to maximize the mutual information for estimating
the environment. The abstract task allocation problem seeks to
assign robots to tasks to maximize the reward [11]. Other
applications can be found in the target tracking problem,
the environmental monitoring problem, etc. Generally, these
problems are NP-hard [12] and cannot be solved optimally
by using a polynomial time algorithm. Moreover, if two or
more problems are coupled with each other, it is even harder
to have quality solutions. Therefore, previous work mainly
focuses on generating approximation methods which yield
sub-optimality bounds that are often used in practice. In
particular, the key focus of late is on greedy algorithms for
submodular function optimization. These greedy algorithms
usually come with a performance guarantee. The first provable
bound for submodular function optimization over general
matroid constraints is shown in [13]. Combining the modular
and the submodular result as a single result, submodular
curvature is used in [14]–[16] for proving optimality bounds.
A recently improved version of monotone submodular function
maximization over general matroid constraints by using a multi-
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linear relaxation scheme is shown in [17]. Also, [18] proposed
a multivariate version of submodular optimization using the
multi-linear extension. This work focuses on minimizing or
maximizing a single objective represented as a multivariate
function. In our work, the objective function includes two
sub-objective functions. For a comprehensive overview of
submodular optimization, the reader is referred to [19] for
additional details.

A common practice to solve coupled problems is to solve
each problem separately and combine solutions. In this letter,
we instead propose to solve coupled submodular optimization
problems with general matroid constraints. As an example of
such a problem, we couple a task allocation problem [11]
with an intermittent deployment problem [20] where robots
are optimally deployed to monitor an environment over time.

Contributions: In summary, the contributions of this letter
are as follows:

1) We formalize a modeling and solution method for coupled
submodular optimization problems with general matroid
constraints.

2) We demonstrate how to use matroids to model constraints
in robotic applications;

3) We provide a greedy algorithm with bounded optimality
for solving the general coupled optimization problem.
We demonstrate this by using a combination of the
task allocation problem and the intermittent deployment
problem to show the performance in an environmental
monitoring application.

Organization: The remainder of this letter is organized as
follows. We first introduce the preliminaries and the problem
formulation in Section II. In Section III, we present the details
about our running example: the multi-robot task allocation
problem and the multi-robot intermittent deployment problem.
Then, we generalize the properties of our coupled problem
formulation. In Section IV, we present a greedy algorithm with
provable performance bounds. In Section V, we demonstrate the
result of the proposed algorithm using Monte Carlo simulations.
Conclusions and directions for future work are stated in the
final section.

II. PRELIMINARIES AND PROBLEM FORMULATION

As the multi-robot task allocation problem and the multi-
robot intermittent deployment problems considered in this letter
are discrete in nature, we start with basic definitions related to
discrete optimization.

A. Submodular Function Optimization

A set function [21] f : 2V 7→ R is a function that assigns
each subset A ⊆ V a value f(A) ∈ R, where V is a finite
set called the ground set. If A = (a1, . . . , an) is a sequence
and f : 2V 7→ R, then f(·) is a sequence function. Note that
different sequences will generate different objective values. For
example, if A1 = (a1, a2) and A2 = (a2, a1), then f(A1) 6=
f(A2) when f(·) is a sequence function. In this letter, we only
consider the case of set functions and sequence functions with
finite ground sets. Next, we review set function properties.

Definition 1 ([21]): A set function f : 2V 7→ R with V as
the ground set is
• normalized, if f(∅) = 0.
• non-decreasing, if f(A) ≤ f(B) for all A ⊆ B ⊆ V .
• modular, if f(A) =

∑
a∈A f(a) for all A ⊆ V .

• submodular, if f(A)+ f(B) ≥ f(A∪B)+ f(A∩B) for
all A,B ⊆ V .

In this letter, we restrict our discussion to normalized
functions because an unnormalized function f : 2V 7→ R
can be normalized to f ′(A) as f ′(A) = f(A)− f(∅). Another
equivalent definition of submodular set function [21] is that
f(A ∪ {e}) − f(A) ≥ f(B ∪ {e}) − f(B) holds for any
A ⊆ B ⊆ V and e ∈ V \ B with V as the ground
set for the set function f : 2V 7→ R. This property is
called a diminishing return property since the marginal gain
f({e}|A) = f(A ∪ {e}) − f(A) becomes less when A is
replaced by a larger set B, i.e. , f({e}|A) ≥ f({e}|B).
Examples of non-decreasing submodular functions include:
• f(A) = maxi∈A wi with A ⊆ V and wi ≥ 0;
• f(A) = |

⋃
i∈A Si| with A ⊆ V and Si ⊂ V ;

• f(A) = min{
∑

i∈A wi, b} with A ⊆ V , wi ≥ 0, b ≥ 0.
In Definition 1, if we replace the set function with a sequence
function, we can define properties similar to the above.
Specifically, if the modularity or submodularity holds for a
sequence function, we call it a sequence modular function or
a sequence submodular function.

Definition 2 ([22]): A matroidM = (V, I) is a pair (V, I),
where V is a finite set (called the ground set) and I is a
collection of subsets of V , with the following properties:

i) ∅ ∈ I;
ii) If X ⊆ Y ∈ I, then X ∈ I;

iii) If X,Y ∈ I with |Y | < |X|, then there exists an element
x ∈ X \ Y such that Y ∪ {x} ∈ I.

A matroid constraint is a constraint that is represented by
admissible subsets of the ground set that satisfy the above
axioms. For example, given a ground set V , if I is a collection
of subsets of V that are at most size `, i.e. , I = {A ⊆
V : |A| ≤ `}, then M = (V, I) is a matroid constraint
as Definition 2 is respected. In multi-robot task allocation,
this simple matroid example could constrain each robot i to
choose at most ` tasks from a ground set. Examples of matroid
constraints M = (V, I) include:
• Uniform matroid: M = (V, I) where I = {A ⊆ V :
|A| ≤ `}. Examples can be found in resource limited
applications in robotics, control, etc. These resources
can be batteries, communication bandwidths, computation
resources, information about targets [23]–[25], etc.

• Partition matroid: M = (V, I) where I = {A ⊆ V :
|A ∩ Vi| ≤ `i,∀i = 1, . . . , n}, V =

⋃n
i=1 Vi, and Vi’s

are disjoint. Examples can be found in heterogeneous
systems with limited resources in robotics, control, etc.
For example, a robotic system with different types of
robots, sensors, batteries, payloads [26]–[29], etc.

The interesting aspect of a matroid is its ability to model
constraints that allow for efficiently computable solutions,
which is especially useful in robotic applications. We will



demonstrate examples and details when matroids are used in
our problem in the next section.

An important class of problems that combine submodularity
and matroid constraints is submodular maximization subject to a
matroid constraint. Specifically, in this problem, given a ground
set V and a matroid M = (V, I), we want to find a subset
S ⊆ V to maximize a submodular function f : 2V 7→ R such
that S satisfies all three matroid axioms, i.e. , S ∈ I . If there are
n matroid constraints, i.e. , Mi = (V, Ii),∀i = 1, . . . , n, that
need to be satisfied, we can write it as a matroid intersection
constraint M = (V, I) with I =

⋂n
i=1 Ii. The cardinality of

this matroid intersection is |M| = n.

B. Problem Formulation

Problem 1: The multi-robot task allocation problem coupled
with the multi-robot intermittent deployment is given by:

maximize
A⊆E

g(A) + max
B⊆V

f(A,B)

subject to A ∈ I1, B ∈ I2.

where A is a multi-robot task allocation chosen from the
finite ground set E with A satisfying the matroid intersection
constraint M1 = (E, I1), i.e. , A ∈ I1. The function g :
2E 7→ R is a utility function for the multi-robot task allocation
problem. B is a multi-robot deployment policy chosen from the
finite ground set V with B satisfying the matroid intersection
constraint M2 = (V, I2), i.e. , B ∈ I2. The function f :
2E×V 7→ R is a utility function for the intermittent deployment
problem, where E × V is the Cartesian product of E and
V . f(·) is a function of both A and B because we assume
that multi-robot task allocations (first phase, short-term) have
an impact on the multi-robot intermittent deployment action
(second phase, long-term). Then, the objective function is

m(A) = g(A) + h(A)

= g(A) + max
B⊆V

f(A,B).

In the following sections, we will detail how to build our
modular/submodular functions, how to use matroids to model
constraints, and how to solve Problem 1 efficiently.

III. COUPLED MULTI-ROBOT TASK ALLOCATION AND
INTERMITTENT DEPLOYMENT PROBLEM

Now, we present the details about each problem and then
give the properties of the problem formulation.

A. The Multi-Robot Task Allocation Problem

The multi-robot task allocation model comes from our
previous work [11]. Briefly, the formulation of this problem
with matroid intersection constraint is:

maximize
A⊆E

g(A)

subject to A ∈ I1,

where g : 2E 7→ R is the utility function and M1 = (E, I1) is
the matroid intersection constraint. The element of the ground
set E is represented by the triplet (r, d, e) for r ∈ R1, d ∈

D, e ∈ E , and (d, e) ∈ O. Here, R1 is the robot ground set.
O is the functionality-requirement ground set. (r, d, e) can be
read as “robot i performs functionality d for the requirement e”.
Each functionality-requirement pair (d, e) is a task. Therefore,
O can also be viewed as the task ground set. Each triplet
(r, d, e) forms an element of an allocation set A. The goal is to
allocate tasks from O to the robots in R1 to form an allocation
set A to maximize the utility g(A).

To make it more clear, let’s look at an example. In the exam-
ple, we define R1 = {1, 2}, which means there are two robots
available. Specifically, let’s consider the case that the first robot
is a ground robot and the second one is an aerial robot. Also,
if functionality-requirement set is O = {(d1, e1), (d2, e2)},
where (d1, e1) means flying ability (functionality: d1) for a long
distance package delivery (requirement: e1), and (d2, e2) means
moving/flying ability (functionality: d2) for data collection
(requirement: e2). Then, we can build constraints for these
two robots as follows. Specifically, the constraint for robot
1 is I1 = {{(1, d2, e2)}} and the constraint for robot 2 is
I2 = {{(2, d1, e1)}, {(2, d2, e2)}}. We construct these two
constraints due to the reason that the aerial robot 2 can
finish both (d1, e2) and (d2, e2) functionality-requirement pairs
while the ground robot 1 can only finish the pair (d2, e2).
This independence constraint M11 with two other constraints,
uniqueness constraint M12 and topology constraint M13, are
matroidal as shown in [11]. The uniqueness constraint requires
each functionality-requirement pair can only be allocated
no more than once. The topology constraint requires the
distance of adjacent elements of an allocation is less than
a threshold to ensure robots can communicate with each other.
The intersection of these matroid constraints forms the matroid
intersection constraint M1 of this problem. For the utility
function g(·), a simple example would be the sum of reward
for each element a of allocation set A, i.e. , g(A) =

∑
a∈A ua,

where ua is the reward of the allocation element a = (r, d, e).

B. The Multi-Robot Intermittent Deployment Problem

The idea of intermittently deploying a multi-robot system
is to render the system more efficient by asking: When is it
appropriate to deploy a robotics team? Which combination of
robots is suitable?

As we will deal with deployment constraints over time, we
first partition the ground set V of this problem into disjoint
sets V1, . . . , VK over a time horizon of K steps. The partition
at time k is Vk. Specifically, Vk = {(r, d)|r ∈ R2, d ∈ {0, 1}}
with R2 the set of robots for this problem and d the deployment
action, where 0 and 1 means not deploy and deploy, respectively.
To capture the idea of intermittent deployment, we require the
deployment policy to satisfy the following constraints:

1) No more than `k robots can be deployed at time k for
k = 1, . . . ,K. This is our constraint M21.

2) The number of times where there is at least one robot
deployed is less than or equal to `. This is M22.

3) Each robot can only be selected or not selected at every
time k for k = 1, . . . ,K. This is our constraint M23.

To satisfy 1), consider the constraint M21 = (V, I21) where

I21 = {B ⊆ V : |B ∩ Vk| ≤ `k}. (1)



robot 1

robot 2

robot r

k = 1 k = 2 k = 3 k = K

...
. . .

Fig. 1. An illustration of the intermittent deployment idea. r ∈ R2 and
k = 1, . . . ,K. At time k = 2, there is no deployment. The constraint 1) and
3) are applied vertically for robots in each time. The constraint 2) is applied
horizontally when viewing all robots as a group in each time.

To satisfy 2), consider the constraint M22 = (V, I22) where

I22 = {B ⊆ V :
K∑

k=1

1(|B ∩ Vk|) ≤ `}, (2)

and 1(·) is an indicator function that takes the form

1(|B ∩ Vk|) =

{
1 if |B ∩ Vk| ≥ 1,
0 if |B ∩ Vk| = 0.

To satisfy 3), consider the constraint M23 = (V, I23), where

I23 = {B ⊆ V : |Br ∩ Vk| = 1,∀r ∈ R2} (3)

In Fig. 1, we illustrate the intermittent deployment concept.
Finally, we must verify that the above constraints are indeed
matroidal.

Theorem 1: The constraints M21,M22 and M23 are
matroidal.

Proof: We only need to verify property ii) and iii) of
Definition 2 since i) holds by construction.

1) For constraint M21:
For property ii): Consider a set B1 ⊆ V and assume that

for every element (r, d) ∈ B1 it satisfies that |B1 ∩ Vk| ≤ `k,
i.e.B1 ∈ I21. Now, for any B2 ⊆ B1 and any element (r, d) ∈
B2, we know that if |B1 ∩ Vk| < `k then |B2 ∩ Vk| < `k. So,
if B2 ⊆ B1 ∈ I21, then B2 ∈ I21. The property ii) is verified.

For property iii): Now consider the case B1, B2 ∈ I21.
Without loss of generality, we assume that |B2| < |B1|, i.e. ,
B1 \ B2 6= ∅. Let’s assume that there exists no element e ∈
(B1\B2) such that B2∪{e} ∈ I21. Our assumption implies that
`k robots have been allocated in B2, which implies |B2| = `k.
However, since B1 ∈ I21, it implies |B1| ≤ `k, we have
shown the contradiction as |B2| < |B1|. So, if B1, B2 ∈ I22
and |B2| < |B1|, there exists a e ∈ (B1 \ B2) such that
B2 ∪ {e} ∈ I21. The property iii) is verified.

2) For constraint M22:
For property ii): Consider a set B1 ⊆ V and assume that

for every element (r, d) ∈ B1 it satisfies that
∑K

k=1 1(|B1 ∩
Vk|) ≤ `, i.e.B1 ∈ I22. For elements (r, d) ∈ B1, there exist
three cases: i) |B1 ∩ Vk| ≥ 1 holds for every (r, d) ∈ B1; ii)
|B1 ∩ Vk| = 0 holds for every (r, d) ∈ B1; iii) |B1 ∩ Vk| ≥ 1
for some (r, d) ∈ B1 and |B1 ∩ Vk| = 0 holds for the rest
of the elements in B1. Case i): if |B1 ∩ Vk| ≥ 1, then, either
|B2 ∩ Vk| ≥ 1 holds or |B2 ∩ Vk| = 0 holds. Therefore, we
know

∑K
k=1 1(|B2∩Vk|) ≤ ` holds. Case ii): If |B1∩Vk| = 0,

then |B2 ∩ Vk| = 0, which implies
∑K

k=1 1(|B2 ∩ Vk|) ≤ `
holds. Case iii): this case is a combination of the first two cases,
so

∑K
k=1 1(|B2 ∩ Vk|) ≤ ` still holds. So, if B2 ⊆ B1 ∈ I22,

then B2 ∈ I22 holds. The property ii) is verified.
For property iii): Now consider the case where we assume

B1, B2 ∈ I22 and |B2| < |B1|. In this case, we have that
B1\B2 is non-empty. Let’s assume that there exists no element
e ∈ (B1 \B2), such that B2 ∪{e} ∈ I22. This implies that the
number of times where there is at least one deployments for
B2 has been reached `. However, from the definition we know
that the number of times where there is at least one deployment
for B1 is at most `. So, we have shown a contradiction as
|B1| < |S2|. So, if B1, B2 ∈ I22 and |B2| < |B1|, then there
exists a e ∈ (B1 \B2) such that B2 ∪{e} ∈ I22. The property
iii) is verified.

3) For constraint M23: The verification is similar to the
verification for M21, and we omit it for brevity.

The intersection of the above constraints forms the matroid
intersection constraint M2 = (V, I2) of this problem with
I2 = I21 ∩ I22 ∩ I23. The matroid modeling method is
especially useful for robotics applications when constraints are
abstract [11]. Here we use M21, M22, and M23 as examples
to illustrate the idea of multi-robot intermittent deployment
constraints. Other constraints for this problem can also be
integrated easily into the problem formulation, e.g. , the number
of times for each robot that can be deployed or the composition
of the robot teams that are deployed.

It is straightforward to show that such constraints would
also obey the matroid properties.

C. The Submodularity of the Objective Function

After giving the details about each problem, we now
focus on the properties of the problem formulation in this
section. The second part of the objective function is h(A) =
maxB⊆V f(A,B), which takes the task allocation’s impact
into consideration when evaluating the subsequent multi-robot
deployment strategy. If we are interested in the best payoff a
robot can experience from the first phase to the second phase,
then we have that f(A,B) = maxa∈A s(a,B). To begin with,
we make some definitions as follows

B1 = argmax
B⊆V

f(X,B), B3 = argmax
B⊆V

f(X ∪ Y,B), (4)

B2 = argmax
B⊆V

f(Y,B), B4 = argmax
B⊆V

f(X ∩ Y,B). (5)

Following the definition h(A) = maxB⊆V f(A,B), we have

h(X) = f(X,B1), h(X ∪ Y ) = f(X ∪ Y,B3), (6)
h(Y ) = f(Y,B2), h(X ∩ Y ) = f(X ∩ Y,B4). (7)

Using these definitions, the properties of the objective function
is now formalized.

Theorem 2: If f(A,B) = maxa∈A s(a,B), the objective
function h(A) = maxB⊆V f(A,B) is non-decreasing and
submodular.

Proof: 1) Non-decreasing



For proving this property, we need to show, for any X,Y ⊆
E, if X ⊆ Y then h(X) ≤ h(Y ). When X ⊆ Y ,

h(Y )− h(X)

=f(Y,B2)− f(X,B1)

=(f(Y,B2)− f(Y,B1)) + (f(Y,B1)− f(X,B1)).

The first equality holds because of (6) and (7). Following the
definition of B2, it holds that f(Y,B2) ≥ f(Y,B1). Since X ⊆
Y and f(A,B) = maxa∈A s(a,B), it holds that f(Y,B1) ≥
f(X,B1). Therefore, h(Y )− h(X) ≥ 0.

2) Submodularity
For proving submodularity, we need to show that for any

X,Y ⊆ E, the following two hold

max(f(X,B1), f(Y,B2)) = f(X ∪ Y,B3), (8)
min(f(X,B1), f(Y,B2)) ≥ f(X ∩ Y,B4). (9)

Combining (8) and (9), we have f(X,B1) + f(Y,B2) ≥
f(X ∪ Y,B3) + f(X ∩ Y,B4). This is equivalent to h(X) +
h(Y ) ≥ h(X ∪Y )+h(X ∩Y ) and satisfies the submodularity
requirement for h(A). So, we only need to prove (8) and (9).

Part a: For proving (8)
Since any equality x = y can be proven by proving x ≤ y

and y ≤ x for any x, y ∈ R, we will prove (8) by proving:

f(X ∪ Y,B3) ≤ max(f(X,B1), f(Y,B2)), (10)
max(f(X,B1), f(Y,B2)) ≤ f(X ∪ Y,B3). (11)

Part a.1: For proving (10)
From the definition of B1, we have

f(X,B3) ≤ f(X,B1) ≤ max(f(X,B1), f(Y,B2))

These two hold because B1 = argmaxB⊆V f(X,B) and x ≤
max(x, y),∀x, y ∈ R. Similarly,

f(Y,B3) ≤ max(f(X,B1), f(Y,B2)).

We know from the definition that f(A,B) = maxa∈A s(a,B).
Then, f(X ∪ Y,B3) = maxa∈X∪Y f1(a,B3). Therefore, we
have f(X ∪ Y,B3) ≤ max(f(X,B1), f(Y,B2)) as described
in (10). This inequality holds because we know that a ∈ X∪Y
means a ∈ X or a ∈ Y . If a ∈ X , the first inequality holds.
If a ∈ Y , the second inequality holds.

Part a.2: For proving (11)
It holds that f(X,B1) ≤ f(X∪Y,B1) ≤ f(X∪Y,B3). The

first inequality holds because of the monotonicity of f(A,B) on
A ⊆ E for any B ⊆ V , and the second inequality holds because
B3 = argmaxB⊆V f(X∪Y,B). Similarly, f(Y,B2) ≤ f(X∪
Y,B3). Combining these two inequalities, we get the result
max(f(X,B1), f(Y,B2)) ≤ f(X ∪ Y,B3).

Part b: For proving (9)
It holds that f(X,B1) ≥ f(X,B4) ≥ f(X ∩ Y,B4). The

first inequality holds since B1 = argmaxB⊆V f(X,B). The
second inequality holds due to the monotonicity of f(A,B)
on A ⊆ E for any B ⊆ V . Similarly, f(Y,B2) ≥ f(X ∩
Y,B4). Combining these two inequalities, we get the result
min(f(X,B1), f(Y,B2)) ≥ f(X ∩ Y,B4).

Algorithm 1 The greedy method for solving the coupled
problem
Input: The inputs are as follows:
• matroid intersection constraints M1 and M2;
• functions g(·) and s(·).

Output: Set AG and set BG.
1: A← ∅;
2: for i← 0, . . . , |E| − 1 do . step i
3: B ← ∅;
4: for ∀a ∈ E \A and A ∪ {a} ∈ I1 do
5: B ← ∅; V ′ ← ∅;
6: for j ← 0, . . . , |V | − 1 do . step j
7: b′ ← argmaxb∈V \V ′ f(A ∪ {a}, B ∪ {b});
8: if B ∪ {b′} ∈ I2 then
9: B ← B ∪ {b′};

10: end if
11: V ′ ← V ′ ∪ {b′};
12: end for
13: B ← B ∪ {(a,B)};
14: end for
15: if B = ∅ then . no valid B
16: break;
17: end if
18: d(A ∪ {a}, B)← g(A ∪ {a}) + f(A ∪ {a}, B);
19: (a′, BG)← argmax{(a,B)}∈B d(A ∪ {a}, B);
20: A← A ∪ {a′};
21: end for
22: AG ← A.

Remark 3.1: If we are interested in the worst payoff that
a robot can experience from the first phase to the second
phase, we have f(A,B) = mina∈A s(a,B). Then, h(A) is
non-increasing on A.

It is worth mentioning that the purpose of this letter is to
find a method for solving coupled optimization problems in
the robotics field, and we use the multi-robot task allocation
problem and the multi-robot intermittent deployment problem
as examples to illustrate this idea. Other applications can also
be applied in this formulation.

IV. ALGORITHM ANALYSIS

Algorithm 1 shows the greedy algorithm for solving the
coupled problem when both g(·) and s(·) are set functions.
If either g(·) or s(·) are a sequence, we only need to
change the method slightly. Specifically, if s(·) is a sequence
function, we need to change the line 6 in Algorithm 1 to
(j ← 0, . . . , k . . . ,K − 1) where k represents the sequence
order. We refer to this as a modified version of Algorithm 1
for dealing with the sequence function case.

Theorem 3 (Performance & complexity): Let AG and A?

be greedy and optimal solutions, respectively. m1 = |M1|,
m2 = |M2|. Algorithm 1 has the following performance:

1) If g(·) is a non-decreasing modular or submodular set
function and
• if s(a,B) is a non-decreasing modular set function on
B for any a, then, m(AG) ≥ 1/(m2(m1 + 1))m(A?).



• if s(a,B) is a non-decreasing submodular set function
on B for any a, then, m(AG) ≥ 1/((m1 + 1)(m2 +
1))m(A?).

2) If g(·) is a non-decreasing modular or submodular set
function and s(a,B) is a non-decreasing sequence sub-
modular function on B, then m(AG) ≥ (m1 + 1)−1(1−
e−1/(m2+1))m(A?).

3) Algorithm 1 has time complexity O(|E|3 · |V |2).
Proof: 1) Let AG

i denote the greedy output for A at step
i. In order to get AG, we need to evaluate every a /∈ AG

i :
AG

i ∪ {a} ∈ I1 and incrementally add a′ to Ai in terms
of maximizing the objective value m(AG

i ). That is, Ai+1 =
Ai ∪ {a′}. In Algorithm 1, we omit the subscript and write
it as A← A ∪ {a′} for brevity. This omission also applies to
other variables. We cannot evaluate f(·) without knowing B
since f : 2E×V 7→ R and A ∈ E,B ∈ V . If we can get a B?

that gives the maximum objective function for each AG
i ∪ {a},

where a /∈ AG
i : AG

i ∪ {a} ∈ I1, then it’s easy to get a′. After
adding a into Ai, we can construct the greedy solution Ai+1

for A at step i, i.e.AG
i+1 = AG

i ∪ {a}. Here, B? is an optimal
solution with respect to every AG

i ∪ {a} in terms of objective
function value. Due to the intractability for getting B? for
every a /∈ AG

i : AG
i ∪ {a} ∈ I1, we propose to use another

greedy iteration to get BG for replacing B?.
Now, the only problem left is how to get BG. We construct

BG
j at step j for every a /∈ AG

i : AG
i ∪{a} ∈ I1 using a similar

greedy method. Notice that there is a BG corresponding to
every AG

i ∪ {a}, and the final BG is corresponding to AG
|E|.

If g(A) is non-decreasing and modular on A ⊆ E, then
g(AG) ≥ 1

m1
g(A?); if g(A) is non-decreasing and submodular

on A ⊆ E, then g(AG) ≥ 1
m1+1g(A

?) [13]. For the second
part of the objective function, it holds that f(AG, B?) ≥

1
m1+1f(A

?, B?) since h(A) = maxB⊆V f(A,B) is a sub-
modular function on A according to Theorem 2. Then,
• If g(A) is non-decreasing modular on A ⊆ E and we

also use the greedy output BG for B, then m(AG) ≥
1

m1
g(A?) + 1

m1+1f(A
?, BG).

• If g(A) is non-decreasing submodular on A ⊆ E and
we also use BG for B, then m(AG) ≥ 1

m1+1g(A
?) +

1
m1+1f(A

?, BG).
When s(a,B) follows the following property, we obtain
• If s(a,B) is non-decreasing modular on B ⊆ V for any
a ∈ A, then f(A?, BG) ≥ 1

m2
f(A?, B?).

• If s(A,B) is non-decreasing submodular on B ⊆ V for
any a ∈ A, then f(A?, BG) ≥ 1

m2+1f(A
?, B?).

Finally, combining one result regarding f(A,B) and one result
regarding m(A), we can get a corresponding result.

2) The analysis is similar to the analysis for the performance
1) except for a small change regarding how to get BG. When
considering M1 and M2, we can use the result from [30] for
analyzing the sequence submodular function s(·) and the above
analysis. Then, we have the bound as shown in the statement.

3) Computational complexity: To get AG, we need to
incrementally select an element a ∈ E for O(|E|) times. For
each a ∈ E, we need to evaluate its objective function value
O(|E|) times. Also, we need to compute BG corresponding to
A∪{a}. However, since f(A,B) = maxa∈A s(a,B), we need

O(|E| · |V |2) times for getting BG. The finally computational
complexity of Algorithm 1 is O(|E|3 · |V |2).

V. SIMULATION RESULTS

In this section, we will demonstrate the performance of the
intermittent deployment problem. We will also demonstrate
the performance of Algorithm 1 by using the combination of
the task allocation problem and the intermittent deployment
problem as a coupled example.

A. Simulation Setup

General Settings: The general setting is as follows. There is
a 2D Gaussian mixture (GMM) environment that needs to be
monitored. The task allocation problem and the intermittent
deployment problem will operate in this environment in the time
order. Different task allocation strategies will have different
impacts on the environment, which leads to different initial
conditions for the intermittent deployment problem.

The Task Allocation Problem: For this problem, we use
the modular objective function g(A) =

∑
a∈A ua, where a =

(r1, d, e) is an assignment and ua is the reward for robot r1 ∈
R1 finishing the task (d, e) ∈ O. For comparison, we set the
parameters as follows to make sure that we can get the optimal
solution. Specifically, we set the number of robot as |R1| ∈
{2, . . . , 6}, the requirements cardinality as |D| ∈ {2, . . . , 6},
and functionality cardinality as |E| ∈ {2, . . . , 6}. In simulation,
we use these parameters to generate a random problem instance
as our ground set E. The reward ua is generated randomly
for all a ∈ E before conducting the simulations. We use the
independence constraint M11 and the uniqueness constraint
M12 as the constraints. The problem size of this sub-problem
is defined as |S1| = |R1| · |D| · |E|.

The Intermittent Deployment Problem: For this problem, we
have |R2| robots available at each time k, k = 1, . . . ,K, for
monitoring this GMM environment along the time horizon K.
The evolution of the weights of the GMM is modeled as a linear
system. That is xk+1 = Axk +wk, where xk ∈ Rp is the state
of the GMM weight and wk ∈ Rp is the zero-mean Gaussian
noise. p is the dimension of the GMM that needs to be estimated.
The measurement model at time k is yk+1 = Ckxk+zk, where
zk ∈ Rq is the zero-mean Gaussian noise with noise covariance
Zk ∈ Rq×q. Different robots have different measurement
abilities, which forms different measurement matrices Ck. Now,
the intermittent deployment problem becomes how to select
robots from R2 to form the measurement matrix Ck ∈ Rq×p

at each time k to maximize the objective function f(A,B).
The robots should satisfy the constraints in Section III-B.
The objective function is a combination of covariance re-
duction and the reward. We use the objective function from
[6] since it has proven to be sequence submodular under
assumptions which will be stated in the following. Because
f(A,B) = maxa∈A s(a,B), we only need s(a,B). Specif-
ically, s(a,B) = log(det(P1(a))/ det(PK(a))) +

∑
b∈B ub,

where P1(a) is the GMM weight covariance at time k = 1.
P1(a) is the crucial connection between the task allocation
problem and the intermittent deployment problem. This is
because different task allocations result in different P1(a)



Fig. 2. The optimality ratio for the intermittent deployment problem. The
problem size is |S2| = |R2| ·K.

Fig. 3. The computation time ratio of the intermittent deployment problem.
The problem size is |S2| = |R2| ·K.

and P1(a) is also the initial condition for the intermittent
deployment problem. PK(a) is the GMM weight covari-
ance at time K. That is PK(a) = (A−>)KP1(a)A

−K +∑K
k=1(A

−>)K−kMtA
−(K−k) [6] where Mk = C>k Z−1k Ck.

ub is the reward associated with robot b. The assumptions
for s(a,B) to be sequence submodular is that [6] the state
transition matrix A is full rank and wt = 0. Also, A needs
to satisfy AP1(a)A

> � P1(a) and A>MkA � Mk. In the
simulation, we use A = Ip. In each simulation, both P1(a)
and the reward ub are also generated randomly for each b ∈ V
before starting the simulations. The dimension p is chosen from
the set {2, . . . , 5}. We set the time horizon as K = {2, . . . , 5}
and the number of robots as |R2| = {2, . . . , 4}. We then run
the simulation and greedily select robots in each time. Also, the
problem size of this sub-problem is defined as |S2| = |R2| ·K.

B. Simulation Performance

1) The Intermittent Deployment Problem Performance:
We first only evaluate the performance of the intermittent

deployment problem. To evaluate, we need to know A from the
task allocation to get the covariance matrix Pa. Here, we use
a random covariance matrix Pa as an initial condition. Then,
the optimality ratio of the greedy algorithm is shown in Fig. 2.
Also, we define the computation time ratio as t(BG)/t(B?),

TABLE I
STATISTICS OF THE OPTIMALITY RATIOS OF DIFFERENT METHODS

method mean covariance

greedy 0.89 0.018
heuristic 0.83 0.024
random 0.61 0.040

where t(GG) is the time for computing the greedy solution and
t(B?) is the time for computing an optimal solution. We then
compute the average computation time ratio for each problem
size as shown in Fig. 3. We see that the greedy method becomes
more efficient as the problem size increases.

2) The Coupled Problem Performance:
Comparison criterion: We evaluate the performance of the

coupled problem. Specifically, we compare the result from
the proposed greedy solution with an optimal solution, a
heuristic solution, and a random solution. The optimal solution
is calculated through the brute force method. A heuristic to
solve a coupled problem is to solve each problem separately.
We generate the heuristic result using this manner. The random
solution is used to demonstrate the effectiveness of the greedy
method. The simulation runs 500 times.

Optimality bound: To characterize the sub-optimality of
the proposed greedy algorithm, we calculate the optimality
ratio as m(AG)/m(A?). In the simulation, we evaluate the
independence matroid constraint M11 and the uniqueness
matroid constraint M12 for the multi-robot task allocation
problem. For the multi-robot intermittent deployment problem,
we use the constraint M23. As shown in Fig. 4(a), we observe
that the proposed algorithm can generate better optimality ratios
than the lower bound in most instances. At the same time, we
also plot the result from the heuristic solution in Fig. 4(b) and
random solution in Fig. 4(c). Further, it occurs often that the
optimal solution is found in many instances for the greedy
method. To make the comparison more clear, we also calculate
the statistics of the optimality ratios of different methods. We
calculate the mean and covariance of the optimality ratios for
the above three methods. As shown in Table I, the greedy
method has a better performance on average. For the coupled
problem, we define the problem size as |S1| · |S2|. Because
the complexity of coupled problems increases exponentially as
the ground sets size increase, we also observe that even with
moderate settings the problem size goes up to 600, necessitating
efficient methods like those proposed in this work.

VI. CONCLUSIONS AND FUTURE WORK

In this letter, we presented a method for optimizing coupled
problems by using submodular optimization. We demonstrated
how to solve the proposed coupled problem by using the task
allocation problem and the intermittent deployment problem
as motivating examples. From the constraint perspective,
we illustrated how to model general constraints as matroid
constraints. From the objective function perspective, we
demonstrated under which conditions the objective function
is (sub)modular, which indicates the existence of an effective



(a) Optimality ratio: greedy / optimal. (b) Optimality ratio: heuristic / optimal. (c) Optimality ratio: random / optimal.

Fig. 4. Monte Carlo simulation performance comparisons: (a) the optimality ratio for the greedy method. (b) the optimality ratio for the heuristic method. (c)
the optimality ratio for the random method. The problem size of this coupled problem is |S1| · |S2|.

greedy algorithm. At the same, we analyzed the performance
and computational complexity of our algorithm. In the end,
Monte Carlo simulations demonstrated the effectiveness of the
proposed algorithm. A direction for future work is to exploit
more efficient algorithms with tighter bounds because most
of the results achieve better performance in practice than the
theoretical optimality bound.
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