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Adaptive Risk-Based Replanning for Human-Aware
Multi-Robot Task Allocation with Local Perception

Zeynab Talebpour and Alcherio Martinoli

Abstract—In this paper, we propose an adaptive risk-based
replanning strategy in the context of multi-robot task allocation
for dealing with limitations of local perception and unpredicted
human behavior. Our replanning method is based on the vari-
ations of social risk and human motion prediction uncertainty.
The performance of our method is studied through an extensive
suite of experiments of increasing complexity. Results obtained
using both a high-fidelity simulator and real robots confirm that
this strategy outperforms a non-adaptive replanning strategy in
all cases with respect to the chosen social metrics. The overall
performance of the team depends firstly on its replanning strat-
egy, and secondly on the available information about the humans.
Although an adaptive replanning strategy with global perception
leads to the best performance, it is computationally expensive
and infeasible in some real applications. Local perception shows
comparable results as long as updates of relevant human poses
affecting a task’s risk are available within the execution time
of that task. Conversely, the non-adaptive replanning strategy
is shown to have degraded results with global perception as
decisions in this case can be based on outdated information that
lead to invalid plans.

Index Terms—Multi-Robot Systems, Social Human-Robot In-
teraction, Planning, Scheduling and Coordination.

I. INTRODUCTION

RESEARCH in the area of socially-aware navigation has
received substantial attention in the recent years [1],

[2]. Despite the numerous applications of socially-aware mobile
robots as personal assistants at homes, robot tutors at schools,
and service robots at hospitals and nursing homes, research
in the human-aware navigation area focuses mainly on single
robots and the problem of cooperative human-aware navigation
for Multi-Robot Systems (MRS) is largely unexplored.

In this paper, we focus on a particular class of MRS
coordination mechanisms commonly known as Multi-Robot
Task Allocation (MRTA) [3] in social environments using a
market-based approach [4]. In such environments the number
of robots are often limited and the number of tasks are
usually moderate. The main difficulty for MRTA in such highly
dynamic and noisy environments is that plans are likely to
change or to be rendered invalid, particularly, if the robots are
planning for long periods of time. This is due to the highly
stochastic nature of the problem, uncertainty inherent to human
behavior, and limitations of robot perception. Additionally,
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robots are required to perform in a socially acceptable manner
in terms of navigation and interaction. This adds additional
constraints to the planning problem.

Social MRTA takes humans into consideration in planning
and coordination. Employing risk-based bids that have both
predictive and social components, is one solution to this
problem [5]. However, in real environments, global perception
of the human poses is often not available and accessible to
all robots. Hence, robots must rely on their local perception
for decision making and planning instead. Moreover, there can
be cases where the predictions are incorrect or not sufficiently
accurate since humans can have sudden behavioral changes.
Thus, the following questions need to be answered: i) how
should a robot or a team of robots deal with the new or lost
perceptual information that is inherent to local perception? ii)
how should a robot react to unforeseen behavior changes of
humans at the task planning level? We believe both of these
problems should be addressed with a similar strategy.

In other words, the main MRTA challenge to be addressed is
to endow a team of robots with an appropriate replanning
strategy that allows for facing high uncertainties mainly
generated by stochastic human-related information. In [6] such
dilemma is summarized as follows: “Is it more beneficial to
build a complex model that incorporates uncertainty, or is it
enough to build less well-informed plans and replan as often as
needed to quickly react to unexpected events?” We believe that
a hybrid approach can also be taken for tackling this problem.

We employ a Hoplites-based MRTA framework [7] as the
basis of our human-aware MRTA approach. The contributions
of this paper include proposing an Adaptive Risk-Based
Replanning (ARBR) strategy for handling i) new information
and ii) unpredicted human behavior, leveraging the concept
of risk-based bid estimation for human-aware coordination
introduced in [5] and human motion uncertainty. ARBR enables
the robots to modify their active plans by incorporating
the new relevant updated information about humans in a
distributed fashion. Furthermore, we perform an extensive
suite of experiments in simulation and reality to evaluate the
performance of the MRS employing this strategy. To the best
of our knowledge, MRTA with limited perception and adaptive
replanning in social environments has not been investigated in
the literature.

II. RELATED WORK

MRTA algorithms vary in design and application [6], but
their common objective is to find a mapping between robots
in a team and a set of “tasks” that must be accomplished in
order for the team’s “goal” to be completed. Among multiple
approaches proposed for MRTA, we are mainly interested in
distributed approaches that can be executed by a team of robots
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without the explicit need for a centralized entity outside the
team with perfect knowledge of the environment [8].

MRTA in social environments should ensure social accep-
tance as well as achieving good performances in terms of global
team objectives such as the traveled distance, mission time,
etc. In such environments, humans should be considered as
social beings and not solely as dynamic obstacles in navigation.
Respecting personal spaces, O-spaces and P-spaces [9] are
the common social behaviors considered in the literature of
human-aware navigation based on the concept of “proxemics”
[10]. In this work, proxemics-based social costs encoded
as costmaps similar to [11] along with a Fast Marching
Method (FMM)-based path planner constitute the human-aware
navigation components of the robots. FMM has been proven
to be successful in real domestic spaces with high complexity
[12]. There have previously been a number of research papers
addressing social path planning using FMM [13].

One key element of dynamic social environments is change.
A common solution for handling change in the literature of
MRTA is replanning. A list of changes impacting the solution
of MRTA can be found in [14]. The planning loop executed by
most MRTA methods comprises planning-execution-replanning
of tasks [6]. Replanning plays an important role in MRTA as
it is responsible for handling these changes in the environment
and maintaining some level of efficiency.

Typically, replanning occurs continuously or at predeter-
mined points in time. It can also be triggered based on a set
of events such as a robot accomplishing a task or arrival of
a new task. However, not all changes or uncertainties in the
environments can be captured efficiently using these strategies.
A proactive replanning strategy that predicts the problems
or opportunities in a construction assembly scenario using
a centralized planner is proposed in [15]. Consensus Based
Bundle Algorithm with Partial Replanning (CBBA-PR) is
introduced in [16] for allocating new tasks that appear online
during the solving of the task allocation problem. However,
the focus of replanning in these works is not the stochastic
changes in the cost of particular tasks or resolving the problem
of plan change as a result of new information. Moreover, there
is no human factor involved.

As social environments are very dynamic, the appropriate
use of information updates is key in having a good performance.
However, not every new update requires the robots to modify
their plans and only a subset of these updates are relevant to
the robot team. Having a replanning strategy that is activated
upon every arrival of new information is very suboptimal.
Replanning with a specified frequency is also prone to low
performance: if the frequency is chosen to be too low with
respect to the changing dynamics of the environment, the
robots might not be able to react to the changes in a timely
fashion; if the frequency is too high, this will result in a very
resource-consuming operation.

III. PROBLEM DESCRIPTION AND APPROACH

In this section, we define the MRTA problem and explain
the underlying market-based framework for robot coordination
as well as the replanning strategy previously adopted. Next,
we propose our adaptive risk-based replanning strategy.

A. Problem Description

Consider a team of nr robots {rj , j = 1, . . . , nr} and a set of
nt tasks {ti, i = 1, . . . , nt}, where each task is a location that
a robot has to visit. The team of robots should decide how to
efficiently subdivide these tasks using a local criterion in order
to optimize a global performance. This global performance
can be a function of time, distance traveled, etc. Tasks can be
identified locally by the robots through on-board perception or
can be broadcasted to all robots by an external source.

B. Social Multi-Robot Coordination

By means of a Hoplites-based coordination scheme [17]
comprised of two main concurrent types of coordination,
passive coordination and active coordination, the robots, which
are self-interested agents in pursuit of individual profit, can
evaluate each available task and decide whether to take it
or sell/buy it to/from another robot in a distributed manner.
Hoplites allows for coordinating plans, i.e., a sequence of tasks
instead of only a single task.

In passive coordination, each robot chooses its most prof-
itable plan and broadcasts it to other teammates without any
attempt to modify their plans. This information is then used
by other robots to reevaluate the expected profitability of their
current plans, update and broadcast the changes. However,
sometimes a robot’s best plan can only be marginally profitable
while a genuine team plan could result in a higher profit. This
suggests that modifying the plans of the robot’s teammates
would be an interesting option to pursue. Concretely, this
implies that the requesting robot asks its collaborators for
compensation price quotes and persuades them to engage in
a cooperative action. This process is ruled by a market-based
approach and constitutes the active coordination. For details
about our implementation of an Hoplites-based MRTA refer to
[18].

The decision of switching to the active coordination mode
is based on the evaluation of a local balance function. This
function is strongly problem-dependent and can contribute
to reaching the globally optimal solution at the team level
if chosen correctly. The local balance functions constitute
what is known as a bid in the context of the market. While
many formulations can be used for encoding the local balance
function of robots, operating in social environments calls for
including a social factor in bids. Additionally, a problem-
dependent global balance function is also required for team-
level evaluations.

Perfect prediction of the future for humans is not possible
because of the uncertainties inherent to uncontrolled social
environments. Therefore, we propose an abstraction that can
extract higher level information from perceptual data, by means
of risks [5]. Risk forms the basis of our human-aware decision
making and replanning, and is defined as the probability of
occupation of an area with social costs by the robot. Risk is
computed by means of expectation-based social costmaps [11]
that incorporate the uncertainty in the human pose reported by
a human trajectory predictor.

The local balance function of robot rj , for each task ti
belonging to a plan P at time step k is defined in the following.

Brj ,Pk
= Rrj ,Pk

−
(
Crj ,Pk

+
∑

ti∈Pk

f(γrj ,ti,k)

)
(1)
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Fig. 1: A scenario where multiple active coordination attempts are required.

R is the revenue of the plan, C is a generic cost function that
in this case is proportional to the length of the path planned
by the FMM to the tasks in a given plan P . γ is the risk
associated with ti for rj given the plan and f(.) is a user-
defined monotonically increasing function used to aggregate
the risk with revenue and cost terms.

The risk imposed by ti for rj consists of the risk at each
waypoint w in the robot’s trajectory W . By assigning costs
on the basis of social costmaps to the risk formulation, social
factors are further reinforced. Since the robot knows its planned
path to ti, it can compute the social risk at any w at time kw
by predicting where the humans (h ∈ H) will be at that time
step. This is done by convolving a 2D Gaussian function N
modeling the social costs, with ph, the probability distribution
of any human h being in the vicinity of that waypoint [5]. ph
is given by the human motion predictor and [xw, yw] indicates
the map coordinates of w.

γrj ,ti =
∑

w∈Wrj,ti

∑
h∈H

∫ ∫
N(xw − x, yw − y)ph(x, y)dxdy (2)

C. Non-Adaptive Replanning

The strategy adopted by the robots in the non-adaptive
Hoplite-based method is to replan when i) a task is accom-
plished and the robot is ready to take its next task, and ii)
for verifying the validity of a stored plan when a robot is on
its way towards a designated task. As long as an unfinished
task ti exists, robots perform replanning even if the remaining
task is assigned to another robot rj . If at any point in time
replanning results in another robot rg to be the best candidate
for accomplishing ti, active coordination is executed and ti is
delegated to the newly chosen robot rg. This can be seen in
Figure 1 where ti is initially assigned to rj at time step k as
rj plans first. However, as drg < drj and cti,rg < cti,rj , robot
rg will request active coordination in its turn. We note that the
human is initially static and starts moving after a while.

Regardless of the frequency at which replanning takes place,
in the original Hoplites framework there is a constraint imposed
by active coordination that prevents a robot from modifying
its plan in some cases. In fact, active coordination can only
be done once for a given task ti between two robots rj and
rg . When a robot accepts to participate in active coordination,
it is bound by contract to do as promised. This is part of the
Hoplites framework design to ensure that when the requesting
robot rg pays a compensation price to a robot rj engaged in
active coordination, an agreement is made based on which the
desired task ti will be assigned to the requesting robot rg . In an
environment with deterministic costs (e.g., static obstacle only),
this choice does not limit the robots. However, this limitation
must be addressed for stochastic environments. In the context
of our risk-based replanning, adopting this constraint can lead
to a deadlock since when rg senses the human motion, ARBR

is triggered and rg will stop and cancel ti. If rg is stopped
and knows rj should take ti but does not allow it, none of
the robots will progress and thus a deadlock occurs for as
long as cti,rj < cti,rg . We will address this problem by means
of identifying cases in which active coordination must be
permitted through risk monitoring. Our proposed risk-based
replanning procedure will be working along side the replanning
method previously available.

D. Adaptive Risk-Based Replanning
We would like to devise an adaptive replanning strategy

that avoids replanning when unnecessary while being able
to correctly identify when team plans should be revisited. In
addition to active coordination as in Section III C, this strategy
is realized by means of i) information sharing, ii) monitoring
the social risks, and iii) risk-based rebidding when necessary.

1) Information Sharing: As most robotic systems only have
limited and local perception in reality, they also have only a
partial view of the environment. However, when multiple robots
are distributed in different parts of a large social environment,
they can provide important information to other team members
about areas that may be out of their reach in terms of perception.

For estimating the stochastic component of costs in social
MRTA, the main information to be communicated to team
members is related to humans. For every perceived human h
this information must include the human pose lh. Other relevant
information such as human velocity vh, the interactions that
the human is involved in Ih, etc., can all be reconstructed
based on lh with sufficiently fast perception updates. In our
experiments, we implemented information sharing for a robot
as sending pose information of directly perceived human targets
to all team members and receiving pose information of human
targets only perceived by other team members. Extending the
perceptual domain of the team is not the only reason why
information sharing is vital. If robots are taking decisions
based on different assumptions to fulfill a collective goal, they
must make sure there are no discrepancies in the information
that forms the basis of their decisions. If such discrepancies
exist, suboptimal decisions will be taken and specifically in
our implementation of risk-based replanning, deadlocks can
occur. As an example assume Figure 1 with local perception.
Despite permitting multiple active coordinations, if rg stops
without communicating the increased social cost to rj , both
robots will remain idle. This leads to a deadlock for as long
as cti,rj < cti,rg and the human is only observed (and not
communicated) by rg .

2) Risk Monitoring: How do we decide if we should
stop, step aside or continue walking when moving towards a
destination in a crowded environment? We observe, predict
and take an action. If something unexpected happens we are
ready to adapt to the situation either by adjusting our path,
waiting, or completely changing our route. What motivates
us to modify our action at any point in time is the cost we
estimate in an uncertain situation. In the context of MRTA,
robots can take a similar approach by monitoring the social risk
and the human motion uncertainty affecting every unfinished
task in the environment locally.

We note that, for lost human targets who are no longer
perceived by the robot, we perform motion prediction based
on our human motion model to have a smooth transition in the
social risk, since we need a realistic estimation of costs induced
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by lost human targets despite not being able to perceive them.
There is a limited time for lost target tracking after which the
target is ignored since the uncertainty of prediction grows too
large to be meaningful with lack of information updates.

3) Risk-Based Rebidding: As only a subset of information
updates require the robots to revisit their plans, for identifying
when a robot should change its current plan, the corresponding
conditions must be defined. These conditions will be checked
for triggering a rebidding command.

In general, a robot should reconsider its plan upon arrival
of new information if risk estimation has a minimal level
of uncertainty and i) the risk of accomplishing the currently
active task is increasing, or ii) the risk of accomplishing another
task has largely decreased making it more profitable than the
currently active task. To formulate these conditions, we consider
how the risk associated to a task can vary over time and how
this change can affect the robot plan.

For a task ti and a robot rj , we denote the last time step that
a bid has been placed for ti prior to task allocation by kb,ti ,
the risk of ti for rj by γti,rj , the gradient of risk indicating
the rate of risk variation by γ̇ti,rj , the risk associated to ti in
the last bidding attempt by γb,ti , and the cost of accomplishing
ti for rj by cti,rj .

As the basis of risk monitoring is to react to change, we must
ensure that risk variation is large enough to truly indicate a
change. Additionally, with noisy perception and abrupt changes
in the environment we must make sure that the variation in the
risk trend is meaningful. Moreover, to avoid being too reactive
to risk variations and repeatedly triggering rebidding, there
must be a sufficiently large time window between rebidding
attempts. These constraints constitute the first set of conditions
written as follows:

|γf,ti − γb,ti | ≥ max(αγb,ti ,Γmin), (k − kb,ti ) ≥ K (3)

where γf,ti is the filtered risk signal and K is a parameter
indicating the minimum time interval between rebids. We
implemented a median filter and and average filter to remove
outliers and small local variations. Γmin is a minimum risk
value and α is introduced to adapt the minimum risk value
threshold in proportion to the risk magnitude.

Another key factor in risk-based rebidding is uncertainty.
We consider moving humans to have a fairly high level of
uncertainty associated to their trajectory prediction. However, if
the human trajectory can be estimated with sufficient certainty
due to lack of motion, then the variation of social risk would
only be due to the increased social cost of the robot approaching
a static human. In this case, γti,rj is only considered for
rebidding if a static human impacting cti,rj has been detected
for the first time. We define σti,rj as the social uncertainty
associated to ti for rj . It indicates the maximum velocity
among all human targets who impact the social risk γti,rj . The
minimum uncertainty level for ARBR is denoted as Σ. The
second set of constraints are defined as follows:

σti,rj > Σ, ∃h ∈ Dk ∧ γh,ti,rj > 0 (4)

where Dk is the set of newly perceived static humans for ti
at time step k and γh,ti,rj is the γti,rj considering only h.
The purpose of this condition is to include the risk of a static
human only once in rebidding computations.

The active state of rj and the assignment of ti to rj at time
step k can be defined as follows respectively:

srj ∈ {1, 0}, sti,rj ∈ {1, 0} (5)

Algorithm 1 Adaptive Risk-Based Replanning (ARBR) for robot rj with
a set of unfinished tasks T and a set of perceived humans H

1: procedure ARBR(T, H)
2: for ti ∈ T do
3: . Compute the path to the location of ti in an empty map
4: (Wti , Kti , dti )← PathPlanning(lrj , lti )
5: . Compute the risk and uncertainty of human motion for ti
6: (γti , UH,ti )← RiskEstimation(Wti , Kti , lti , H)
7: Γti,k ← γti
8: cti,k ← ComputeCost(γti , dti )
9: if Bti 6= ∅ and ta 6= ∅ then

10: Γf,ti ← FilterRisk(Γti )
11: if RBRT(Γf,ti , UH,ti , cti,k, ti) then
12: Stop( )
13: ActiveCoordination(ti)

Algorithm 2 Risk-Based Rebid Triggering (RBRT) for robot rj and task
ti given the filtered risk signal Γf,ti , perceived human uncertainties UH,ti ,
and the task cost cti,k at time step k

1: procedure RBRT(Γf,ti , UH,ti , cti,k, ti)
2: fv ← False, fi ← False, fa ← False
3: fc ← False, fh ← False
4: γf,ti ← Γf,ti,k

5: Γ̇f,ti ← ComputeRiskTrend(Γf,ti)
6: γ̇f,ti ← Γ̇f,ti,−1 . The latest risk variation rate
7: σti ← max(UH,ti )
8: . Note any newly perceived static human that results in risk for ti
9: if (∃h ∈ Dk ∧ γh,ti > 0) then

10: fh ← True . Human first encounter flag
11: if |γf,ti−γb,ti | ≥ max(αγb,ti ,Γmin)∧(k−kb,ti ) ≥ K then
12: fv ← True . Risk variation flag
13: else

return False
14: if ¬sti ∧ (γ̇f,ti < 0) ∧ (σti > Σ ∨ fh) then
15: fi ← True . Inactive task reconsideration flag
16: if stj ∧ (γ̇f,ti > 0) ∧ (σti > Σ ∨ fh) then
17: fa ← True . Active task reconsideration flag
18: if ¬sti then
19: fc ← (cti,k < cta,k) . Reduced cost flag
20: else
21: fc ← True

return fv ∧ (fi ∨ fa) ∧ fc . Final decision

If no task is allocated to a robot (srj = 0) or there is no
prior bid estimation (Bti,rj = ∅) for ti, there is no need for rj
to perform ARBR as there is no decision to be reconsidered.
For an active robot (srj = 1) however, the replanning decision
for ti depends on sti,rj .

In general, each robot tries to find a plan that minimizes cti,rj .
For a given ti this translates to minimizing γti,rj . Therefore, an
increasing risk (γ̇ti,rj > 0 ) is problematic if ti is the currently
active task (sti,rj = 1) and a decreasing risk (γ̇ti,rj < 0) is
interesting if ti is not assigned to the robot (sti,rj = 0) . In this
case, ti will replace the currently active task only if it has a
lower cost (cti,rj < cta,rj ), where ta is the currently active task.
The last set of constraints considered for triggering rebidding
can be written as follows:

sti,rj ∧ (γ̇f,ti > 0), ¬sti,rj ∧ (γ̇f,ti < 0) ∧ (cti,rj < cta,rj ) (6)

The adaptive replanning and rebid triggering algorithms are
detailed in Algorithm 1-2. We note that the subscripts indicating
the robot are omitted for brevity as each algorithm is running
locally on one robot.

IV. METRICS AND NAVIGATION

In this section, we will describe the evaluation metrics,
navigation method, the robotic platform and the simulation
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TABLE I: RBRT algorithmic parameters.

Parameter α Γmin K Σ
Value 0.1 5 2 0.05

tool used for our experiments.

A. Metrics
For the global balance function concerning MRTA, the total

traveled distance (M1) and the mission time (M2) are reported
for all experiments. For evaluating the performance of the MRS
in terms of social-awareness, the maximum accumulated social
cost (M3), the maximum time steps spent in areas associated
with social costs (M4) and the minimum distance to any human
throughout the experiment (M5) are reported among all robots.

B. Navigation
The navigation system is that of the MOnarCH project [19],

detailed in [12]. As input, it uses the pose estimates provided
by a standard Adaptive Monte Carlo Localization (AMCL)
self-localization system, given odometry, laser range finder
readings, and a static map. The navigation system is based
on the FMM for motion planning, together with a Dynamic
Window Approach (DWA) algorithm for guidance and obstacle
avoidance.

C. Robots
The robotic platform used in this work is called the

MBot [20]. This is an omni-directional drive robot with an
approximately round footprint of 0.65 m in diameter and a
height of 0.98 m, endowed with two RGB-D cameras on the
front with a conic FOV of 65◦ and 4 m of range. It is also
equipped with two laser range finders, on both the front and
the back, mounted 0.13 m above the ground, for providing
360◦ coverage with a range of 4 m.

D. Simulations
The use of high-fidelity simulators such as Webots is funda-

mental, especially when considering multi-robot systems. We
have developed models of the environments (see Figure 1-
4) for our experiments that enable simulations with similar
environmental richness to the real world experiments, as shown
in [18]. We rely on a pool of human trajectories with different
walking speeds that can be (i) manually generated based on
the knowledge of the designer (these trajectories can be very
diverse as any sequence of way-points can be used to construct
them), or (ii) automatically reproduced through the possibility
of playing back real ROS bags with recorded human trajectories
in a specific environment. In the risk calculation, a Kalman
Filter is used for human trajectory prediction and the predicted
human pose is a Gaussian distribution. Additionally, a constant
velocity dynamics model is assumed for the human motion.

V. EXPERIMENTS

This section details the set of test cases used for our
experiments. Each scenario has been repeated for ten runs.
Robots are relying on their self-localization for computing the
local balance functions. The evaluation metrics (M1 −M5)
have been obtained from ground truth values provided by
the simulation or a Motion Capture System (MCS) with

(a) (b)
Fig. 2: Placement of the robots and the task in the arena for test case R-I. a)
human walking trajectory, and b) snapshot of the initial state of the real robot
experiment.

(a) (b)
Fig. 3: Placement of the robots and the tasks for test case R-II. a) human
walking trajectories, b) snapshot of the initial state of the real robot experiment.

millimetric tracking accuracy in real robot tests. The social
metrics (M3−M5) have been computed for the moving robots
to avoid penalizing a static robot when a human decides to
approach it. Throughout runs we have introduced randomness
in human behavior by adding a random starting delay to
the motion of each human. The algorithmic parameters of
RBRT are shown in Table I. The local perception of the
robots is currently emulated by the MCS in order to meet
the specifications of the actual RGB-D camera mentioned
above.

A. Test Case R-I: Multi-Robot Single Human Real Tests
This test case is designed to show how, despite having global

perception, human behavior change can lead to a suboptimal
plan for the robots. This test case consists of one task, two
robots and one human shown in Figure 2. Four scenarios
are considered in this test case, Scenario NG, non-adaptive
replanning with global perception, Scenario AG, adaptive risk-
based replanning with global perception, Scenario NL, non-
adaptive replanning with local perception, and Scenario AL,
adaptive risk-based replanning with local perception.

B. Test Case R-II: Multi-Robot Multi-Human Real Tests
In this test case, three tasks must be accomplished by a

team of two robots in the presence of two walking humans that
cannot be initially perceived by the robots. As a result, the initial
risk-based bid estimations will not remain valid throughout
the experiment. This test case highlights how information
updates can be used to find better team plans. Figure 3
shows the simulated and real test environments of this test
case. Four scenarios are considered in this test case. Scenario
NG, non-adaptive replanning with global perception, Scenario
AG, adaptive risk-based replanning with global perception,
Scenario NL, non-adaptive replanning with local perception,
and Scenario AL, adaptive risk-based replanning with local
perception.

C. IPOL Simulations
In order to evaluate our method in more complex settings,

an extensive suite of experiments has been conducted in an
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Fig. 4: The simulated arena of a sample test case with 12 moving humans.
This snapshot shows the initial position of the robots and the trajectories of
the humans.

environment that faithfully replicates the pediatric ward of an
oncological hospital (IPOL)1. The number of robots, humans,
and tasks have been varied and different dynamics for the
human motion have been considered in these experiments.
Scenarios NG, AG, NL and AL have been tested for these
settings similar to the previous test cases with different human
motion dynamics.

VI. RESULTS

In this section the results of the test cases explained
previously will be discussed. Before going to the details
of the results, one emergent behavior observed during runs
should be explained. Robots displayed a waiting behavior when
confronted with increasing social costs for their currently active
task. What drives this behavior for a robot rj and an active
task ta is cta,rj :

cta,rj = ĉta,rj + f(γta,rj ) (7)

As rj progresses towards ta the deterministic part of the
cost ĉta,rj , is reduced and any increase in cta,rj would be due
to the increase in γta,rj . We note that f(.) is a monotonically
increasing function. For γ̇ta,rj > 0 there can be cases where
despite ARBR stopping the robot, rj would still be the best
candidate for ta as rj = argminr(cta,r). Thus, ta will be
assigned to rj again. Nonetheless, ARBR will stop rj once
again and the robot will be prevented from moving towards the
assigned task. This results in a waiting behavior for as long
as:

srj ,ta = 1 ∧ γ̇ta,rj > 0 ∧ rj = argminr(cta,r) (8)

The duration of the waiting period depends on how the
environment changes. These waiting periods increase the total
mission time by stopping the robot from performing a socially
risky motion. Consequently, this prevents accumulating social
costs and leads to a better performance with respect to social
metrics (but not necessarily M1 −M2) as shown in the rest of
the results section.

A. Test Case R-I: Multi-Robot Single Human Real Tests
In a human-free environment Robot1 initially takes the task

and when the human starts walking towards Robot1 the task is
delegated to Robot2 through active coordination. Upon behavior
change, non-adaptive replanning strategies cannot reassign the
task to Robot1 due to the constraint of single attempt of active
coordination, despite the replanning attempts. This happens
while Robot1 is aware that it is the best candidate for the task.

Figure 5 shows the performance of the four different
scenarios tested in reality. ARBR has superior performance
compared to its non-adaptive counterpart across all scenarios.
Similar social performance can be seen for the scenarios
adopting the adaptive replanning strategy. However, the distance

1Instituto Portugues de Oncologia de Lisboa (IPOL)

(a) M1 (b) M2 (c) M3

(d) M4 (e) M5

Fig. 5: Performance metrics for test case R-I obtained from 10 runs. The
central red marks indicate the median, and the bottom and top edges of the
box indicate the 25th and 75th percentiles, respectively.

and time (M1 −M2) for scenario AG are longer compared
to scenario AL. This is because global perception is faster to
detect the human and as a result, Robot2 is dispatched to the
task at an earlier time and travels a larger distance before it is
notified of the change and stops. As Robot1 has also stopped
earlier, the remaining distance between Robot1 and the task is
larger and requires more time to traverse. With local perception
however, Robot1 is stopped later and as a result, has traveled
a larger segment of its path to the task before resuming its
motion for the second time.

The task plan executed in each scenario can be seen in
Figure 6. We can observe that a different task assignment is
done for scenarios with adaptive replanning compared to their
non-adaptive counterparts. The waiting periods depicted in
the task plots (yellow blocks) for Robot2 occur since despite
the increasing risk of the task that is caused by the human
behavior change, Robot2 is still the best candidate to take it.
Nonetheless, the increasing risk forces the robot to stop and
thus, this waiting behavior emerges. Finally, the risk gets large
enough to notify Robot2 that Robot1 is the best candidate for
taking the task.

The risk variation for scenarios AG and AL is depicted in
Figure 7. We can see how the risk for the task initially increases
for Robot1 in both plots. Consequently, a rebid for Robot1
happens and the task is delegated to Robot2. Robot2 predicts
no risk for the task as long as the human is moving towards
Robot1. Once the human changes his walking direction, the risk
rises and rebidding occurs. As mentioned previously, multiple
rebids prevent Robot2 from moving to the task. Finally, the
risk is large enough to delegate the task to Robot1 by means
of active coordination.

B. Test Case R-II: Multi-Robot Multi-Human Real Tests
In this test case, given the problem configuration in an

empty arena, robot plans are as follows: Robot1 first takes
“Task1” and then “Task3”, and Robot2 takes “Task2”. The
challenging part of this test case is that Robot1 cannot observe
the two humans that are about to start walking in the arena.
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Fig. 6: Task assignment per robot over time for a sample run of test case
R-I for scenarios NG, AG, NL, and AL respectively. End of mission (M2) is
marked by the vertical dashed line. Yellow blocks indicate the waiting periods.
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Fig. 7: Risk plots over time for Robot1 and Robot2 in test case R-I for a)
scenario AG, and b) scenario AL.

(a) M1 (b) M2 (c) M3

(d) M4 (e) M5

Fig. 8: Performance metrics for test case R-II obtained from 10 runs.

Given the different delays introduced in the starting time of
each human’s walking motion, robots are faced with different
social costs. Additionally, different perceptual information is
available for decision making with local perception throughout
runs depending on how the humans are relatively positioned
with respect to the robots.

Fig. 8 shows the performance of the four different scenarios
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Fig. 9: Task assignment per robot over time for a sample run of test case
R-II for scenarios NG, AG, NL, and AL respectively. End of mission (M2) is
marked by the vertical dashed line.

tested. Similar to the previous test cases, adaptive replanning
has led to better performances with respect to social metrics
(M3−M5). For (M1−M2) however, scenario NG and NL are
performing better. We can also observe that global perception
has led to slightly better performance in scenarios with adaptive
replanning and contrarily, slightly worse performances in
scenarios with non-adaptive replanning.

Fig. 9 shows the robot plans for a sample run of each
scenario. We can see how the plans have changed when
adopting ARBR. Moreover, we can see how waiting periods
have been introduced to deal with increasing social costs. In
this test case, in scenarios AG and AL, Robot1 initially moves
to “Task1” it then stops when sensing the increased risk for
all tasks. Later on it moves to “Task3” and then to “Task1”. In
some runs where at least one human started to move after
a larger delay, we observed either Robot2 initially taking
“Task1” and then delegating it through active coordination,
or completing “Task1”. This explains the larger variation in
M1 − M2 for scenario AG and AL compared to scenarios
NG and NL.

C. IPOL Simulations
Table II summarizes the results of our simulation suite. The

columns of the table represent the number of robots (#R),
humans (#H), tasks (#T), the scenario and evaluation metrics,
respectively. Human motion dynamics have been added to
scenario labels. W stands for walking, S stands for static, and
A stands for an alternating back and forth motion.

Looking at Table II we can see how the adaptive replanning
method has led to a better performance with respect to social
metrics M3−M5, in all cases and furthermore, has succeeded
in avoiding social costs in most cases. Additionally, the adaptive
replanning method shows slightly better performance for M1−
M2. In general, this is not always the case, since avoiding
social risks can sometimes lead to plans that incur larger costs
in terms of distance and time.

To explain why ARBR performs better compared to its non-
adaptive counterpart, consider the example where a human
walks the width of a corridor with an alternating back and
forth motion. As the human is constantly changing his walking
behavior, the initial human motion prediction made by a non-
adaptive approach can be incorrect. Thus, it will lead to a
decision that is likely to be poor by the time the robot gets to
a close vicinity of the human.

Results show that for the adaptive method, global perception
has a better performance compared to local perception in the



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

experiments due to having a more accurate prediction of the
human trajectory based on updated perceptual information.
Robots with limited perception can only react to the human
once the human is observed within the FOV of one of the
robots. This typically, leads to later plan modification and
occasionally, minor violations of social constraints.

On the contrary, we can see that for the non-adaptive method,
local perception can performs better compared to global
perception in terms of social metrics (see Table II scenarios
A-NG and A-NL). The reason is that the replanning strategy
of scenario A-NG relies on incorrect predictions in most cases,
since the human behavior changes within the execution period
of the plan and is no longer what was expected to be at
the decision making time. Furthermore, due to having global
perception, A-NG is comparably more reactive to change.

VII. CONCLUSION AND FUTURE WORK

Adaptive risk-based replanning has shown to have superior
performance in terms of social metrics in all test cases studied
in this paper. This comes with the price of longer plans in
terms of traveled distance and time in some cases. Global
perception has shown to improve the performance of the robot
team that has an adaptive replanning strategy. However, without
adaptation to social risks and changes in the environment, global
perception can lead to worse performances compared to local
perception. ARBR with local perception shows comparable
performance to global perception. As the local perception gets
more restricted in a highly dynamic and stochastic environment,
the performance of ARBR strategy degrades. However, a
realistic conic FOV of 4 m range and 65◦ is shown to do
very well in our experiments with stochastic human behavior.
As the environment gets more dynamic and stochastic, ARBR
still performs significantly better compared to its non-adaptive

TABLE II: Summarized experimental results for IPOL simulations. The median
and mean are reported for each metric respectively. See text for legend.

#R #H #T Scenario M1 M2 M3 M4 M5

2 2 1 W-NL 15.42
15.93

36.01
36.89

0
105

0
3.6

1.12
1.02

2 2 1 W-AL 14.93
14.32

35
35.11

0
0

0
0

1.5
1.73

2 1 1 S-NG 18
19.51

46.07
47.52

0
433

0
28.2

2.63
2.14

2 1 1 S-NL 19.82
19.83

50.05
51.47

354
1865

10
68.14

0.64
0.71

2 1 1 S-AG 18.21
18.19

44.08
43.89

0
0

0
0

2.26
2.31

2 1 1 S-AL 18.48
18.45

50.07
49.14

0
0

0
0

2.27
2.29

2 12 1 W-NG 11.80
13.11

26.24
30.84

5800
7560

220
318

0.51
0.73

2 12 1 W-NL 14.22
14.35

38.57
38.64

18000
17212

605
598

0.46
0.38

2 12 1 W-AG 10.22
10.41

26.31
35.88

0
881

0
54

1.81
1.55

2 12 1 W-AL 10.11
13.02

31.18
45.54

4941
4774

201
188

0.68
1.07

3 1 5 A-NG 48.12
52.44

79.98
99.71

48
112

3
11.47

0.84
0.97

3 1 5 A-NL 44.87
47.55

75.11
81.73

0
72

0
12.66

1.87
1.17

3 1 5 A-AG 37.05
36.88

61.55
64.61

0
5

0
0.3

1.95
1.83

3 1 5 A-AL 40.21
40.24

77.37
71.48

0
31

0
7.1

2.01
1.92

counterpart but we can observe that social constraints are
violated from time to time.

For further improvements the following points can be
considered. The level of risk that a robot will take before
reconsidering its decision can give a conservative or risk-
taking character to the robot. This is a choice that should
be made based on the specific environment that the robots are
operating in, either by the designer or learned from available
data for different situations. Additionally, the risk formulation
can be improved by including spatio-temporal and map-based
information in the next steps.
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