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Abstract— Fusing data from LiDAR and camera is conceptu-
ally attractive because of their complementary properties. For
instance, camera images are higher resolution and have colors,
while LiDAR data provide more accurate range measurements
and have a wider Field Of View (FOV). However, the sensor
fusion problem remains challenging since it is difficult to find re-
liable correlations between data of very different characteristics
(geometry vs. texture, sparse vs. dense). This paper proposes an
offline LiDAR-camera fusion method to build dense, accurate
3D models. Specifically, our method jointly solves a bundle
adjustment (BA) problem and a cloud registration problem
to compute camera poses and the sensor extrinsic calibration.
In experiments, we show that our method can achieve an
averaged accuracy of 2.7mm and resolution of 70 points/cm2

by comparing to the ground truth data from a survey scanner.
Furthermore, the extrinsic calibration result is discussed and
shown to outperform the state-of-the-art method.

I. INTRODUCTION

This work is aimed at building accurate dense 3D models
by fusing multiple frames of LiDAR and camera data as
shown in Fig. 1. The LiDAR scans 3D points on the surface
of an object and the acquired data are accurate in range
and robust to low-texture conditions. However, the LiDAR
data contain limited information of texture (only intensities)
and are quite sparse due to the physical spacing between
internal lasers. Differently, a camera provides denser texture
data but does not measure distances directly. Although a
stereo system measures the depth through triangulation, it
may fail in regions of low-texture or repeated patterns. Those
complementary properties make it very attractive to fuse
LiDAR and cameras for building dense textured 3D models.

The majority of proposed sensor fusion algorithms typi-
cally augment the image with LiDAR depth. Then the sparse
depth image may be upsampled to get a dense estimation,
or used to facilitate the stereo triangulation process. How-
ever, we observe two drawbacks of these strategies. The
first one is that the depth augmentation requires sensor
extrinsic calibration, which, compared to the calibration of
stereo cameras, is less accurate since matching structural
and textural features can be unreliable. For example (see
Fig. 2), many extrinsic calibration approaches use edges
of a target as the correspondences between point clouds
and images, which will have issues: 1) cloud edges due to
occlusion are not clean but mixed, and 2) edge points are
not on the real edge due to data sparsity but only loosely
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Fig. 1: A customized LiDAR-stereo system is used to collect
stereo images (only left images are visualized) and LiDAR
point clouds. Our algorithm estimates the camera poses, gen-
erates a textured dense 3D model of the scanned specimen
and a point cloud map of the environment.

Fig. 2: An illustration of inaccurate edge extraction. Left:
The mixed edge point (green) has range error. Right: The
loose edge point (green) has angular error.

scattered. The second drawback is that the upsampling or
LiDAR-guided stereo triangulation techniques are based on
the local smoothness assumption, which becomes invalid
if the original depth is too sparse. The accuracy of fused
depth map is hence decreased, which may still be useful for
obstacle avoidance, but not ideal for the purpose of mapping.
For the reasons discussed above, we choose to combine a
rotating LiDAR with a wide-baseline, high-resolution stereo
system to increase the density of raw data. Moreover, we
aim to fuse multiple sensor data and recover the extrinsic
calibration simultaneously.

The main contribution of this paper is an offline method
to process multiple frames of stereo and point cloud data and
jointly optimizes the camera poses and the sensor extrinsic
transform. The proposed method has benefits that:

• it does not rely on unreliable correlations between
structural and textural data, but only enforces the geo-
metric constraints between sensors, which frees us from
handcrafting heuristics to associate information from
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different domains.
• it joins the bundle adjustment and cloud registration

problem in a probabilistic framework, which enables
proper treatment of sensor uncertainties.

• it is capable of performing accurate self-calibration,
making it practically appealing.

The rest of this paper is organized as follows: Section
II presents the related work on LiDAR-camera fusion tech-
niques. Section III describes the proposed method in detail.
Experimental results are shown in Section IV. Conclusions
and future work are discussed in Section V.

II. RELATED WORK

In this section, we briefly summarize the related work
in the areas of LiDAR-camera extrinsic calibration and
fusion. For extrinsic calibration, the proposed methods can
be roughly categorized according to the usage of a target.
For example, a single [1] or multiple [2] chessboards can be
used as planar features to be matched between the images
and point clouds. Besides, people also use specialized targets,
such as a box [3], a board with shaped holes [4] or a trihedron
[5], where the extracted features also include corners and
edges. The usage of a target simplifies the problem but is
inconvenient when a target is not available. Therefore target-
free methods are developed using natural features (e.g. edges)
which are usually rich in the environment. For example,
Levinson and Thrun [6] make use of the discontinuities of
LiDAR and camera data, and refine the initial guess through a
sampling-based method. This method is successfully applied
on a self-driving car to track the calibration drift. Pandey
et al. [7] develop a Mutual Information (MI) based frame-
work that considers the discontinuities of LiDAR intensities.
However, the performance of this method is dependent on
the quality of intensity data, which might be poor without
calibration for cheap LiDAR models. Differently, [8]–[10]
recover the extrinsic transform based on the ego-motion of
individual sensors. These methods are closely related to the
well-known hand-eye calibration problem [11] and do not
rely on feature matching. However, the motion estimation
and extrinsic calibration are solved separately and the sensor
uncertainties are not considered. Instead, we construct a cost
function that joins the two problems in a probabilistically
consistent way and optimizes all parameters together.

Available fusion algorithms are mostly designed for
LiDAR-monocular or LiDAR-stereo systems and assume the
extrinsic transform is known. For a LiDAR-monocular sys-
tem, images are often augmented with the projected LiDAR
depth. The fused data can then be used for multiple tasks.
For example, Dolson et al. [12] upsample the range data
for the purpose of safe navigation in dynamic environments.
Bok et al. [13] and Vechersky et al. [14] colorize the range
data using camera textures. Zhang and Singh [15] show
significant improvement on the robustness and accuracy of
the visual odometry if enhanced with depth. For LiDAR-
stereo systems [16]–[19], LiDAR is typically used to guide
the stereo matching algorithms since a depth prior could
significantly reduce the disparity searching range and help

to reject outliers. For instance, Miksik et al. [17] interpolate
between LiDAR points to get a depth prior before stereo
matching. Maddern and Newman [18] propose a probabilistic
framework that encodes the LiDAR depth as prior knowledge
and achieves real-time performance. Additionally, in the area
of surveying [20]–[22], point clouds are registered based on
the motion estimated using cameras. Our method differs from
these work in that LiDAR points are not projected on the
image since the extrinsic transform is assumed unknown. In-
stead, we use LiDAR data to refine the stereo reconstruction
after the calibration is recovered.

III. JOINT ESTIMATION AND MAPPING

A. Overview

Before introducing the proposed algorithm pipeline, we
clarify the definitions used throughout the rest of this paper.
In terms of symbols, we use bold lower-case letters (e.g. x) to
represent vectors or tuples, and bold upper-case letters (e.g.
T) for matrices, images or maps. Additionally, calligraphic
symbols are used to represent sets (e.g. T stands for a set
of transformations). And scalars are denoted as light letters
(e.g. i,N ).

As basic concepts, an image landmark l ∈ R3 is defined
as a 3D point that is observed in at least two images.
Then a camera observation is represented by a 5-tuple
oc = {i, k,u, d, w}, where the elements are the camera id,
the landmark id, image coordinates, the depth and a weight
factor of the landmark, respectively. In addition, a LiDAR
observation is defined as a 6-tuple ol = {i, j,p,q,n, w}
that contains the target cloud id i, the source cloud id j,
a key point in the source cloud, its nearest neighbor in
the target cloud, the neighbor’s normal vector and a weight
factor. In other words, one LiDAR observation associates a
3D point to a local plane and the point-to-plane distance will
be minimized in the later joint optimization step.

The complete pipeline of proposed method is shown in
Fig. 3. Given the stereo images and LiDAR point clouds,
we first extract and match features to prepare three sets
of observations, namely the landmark set L, the camera
observation set Oc and the LiDAR observation set Ol. The
observations are then fed to the joint optimization block
to estimate optimal camera poses T ∗c and sensor extrinsic
transform T∗e . Based on the latest estimation, the LiDAR ob-
servations are recomputed and the optimization is repeated.
After a number of iterations, the parameters converge to local
optima. Finally, the refinement and mapping block joins the
depth information from stereo images and LiDAR clouds
to produce the 3D model. In the rest of this section, each
component is described in detail individually.

B. Camera Observation Extraction

Given a stereo image pair, we firstly perform stereo
triangulation to obtain a disparity image using Semi-Global
Matching (SGM) proposed in [23]. The disparity image
is represented in the left camera frame. Then SURF [24]
features are extracted from the left image. Note that our
algorithm itself does not require a particular type of feature



Fig. 3: A diagram of the proposed pipeline. In the observation extraction phase (front-end), SURF features are extracted and
matched across all datasets to build the landmark set L and the camera observations Oc. On the other hand, point clouds are
abstracted with BSC features, and roughly registered to find cloud transforms Tl. Then point-plane pairs are found to build
the LiDAR observation set Ol. In the pose estimation and mapping phase (back-end), we solve the BA problem and the
cloud registration problem simultaneously. Here the Ol is recomputed after each convergence based on the latest estimation
Tc,Te and the optimization is repeated for a few iterations. Finally, local stereo reconstructions are refined using LiDAR
data and assembled to build the 3D model.

Fig. 4: Left: An example of extracted BSC features (red)
from a point cloud (grey). Middle: Registered point cloud
map based on matched features. Right: Comparison of rough
registration (top-right) and refined registration (bottom-right)
in a zoomed-in window.

to work. After that, a feature point is associated with depth
value if a valid disparity value is found within a small
radius (2 pixels in our implementation). Only the key points
with depth are retained for further computation. The steps
above are repeated for all stations to acquire multiple sets
of features with depth. Once the depth association is done, a
global feature association block is used to find correlations
between all possible combinations of images. We adopt
a simple matching method that incrementally adds new
observations and landmarks to Oc and L. Algorithm 1 shows
the detailed procedures. Basically, we iterate through all
possible combinations to match image features based on the
Euclidean distance of corresponding descriptors. L and Oc

will be updated accordingly if a valid match is found.
Additionally, an adjacency matrix Ac encoding the cor-

relation of the images can be obtained. Since the camera
FOV is narrow, it is likely that the camera pose graph is not
fully connected. Therefore, additional connections have to be
added to the graph, which is one of the benefits of fusing
point clouds.

C. LiDAR Observation Extraction

Although many 3D local surface descriptors have been
proposed (a review is given in [25]), they are less stable
and not accurate compared to image feature descriptors.

1of ,og are observation tuples filled with information from f and g.

Algorithm 1: SURF Feature Association

1 Given feature sets F1:N from N stations;
2 for i = 1 : N do
3 for j = i+ 1 : N do
4 for f in Fi do
5 find the best match g in Fj ;
6 if f and g NOT similar then
7 continue;
8 end
9 if f ,g both unlabeled then

10 create new landmark id k ← |L|;
11 label f ,g with id k;
12 add new landmark l with id k to L;
13 add new observations of ,og

1 to Oc;
14 else if f labeled, g unlabeled then
15 copy label from f to g;
16 add new observation og to Oc;
17 else if f unlabeled, g labeled then
18 copy label from g to f ;
19 add new observation of to Oc;
20 else
21 continue;
22 end
23 end
24 end
25 end
26 return Oc,L.

In fact, it is preferable to use 3D descriptors for rough
registration and refine the results using slower but more
accurate methods such as Iterative Closest Point (ICP) [26].
Our work follows a similar idea. Specifically, the Binary
Shape Context (BSC) descriptor [27] is used to match and
roughly register point clouds to compute the cloud transforms
Tl. As a 3D surface descriptor, BSC encodes the point
density and distance statistics on three orthogonal projection
plane around a feature point. Furthermore, it represents



the local geometry as a binary string which enables fast
difference comparison on modern CPUs. Fig. 4-left shows an
example of extracted BSC features. However, feature-based
registration is of low accuracy. As shown in the right plots of
Fig. 4, misalignment can be observed in the rough registered
map. As a comparison, the refined map of higher accuracy
obtained by our method is also visualized.

After the rough registration, another adjacency matrix Al

encoding matched cloud pairs is obtained. We use the merged
adjacency matrix Ac ∨ Al to define the final pose graph,
where ∨ means element-wise or logic operation.

To obtain Ol, a set of points are sampled randomly from
each point cloud as the key points. Note that the key points
to refine the registration are denser than the features. For
each pair of connected clouds in Al, the one with a smaller
index is defined as the target while the other one as the
source. Then each key point in the source is associated with
its nearest neighbor and a local normal vector in the target
within a given distance threshold. Finally, all point matches
are formatted as a LiDAR observation and stacked into Ol.

D. Joint Optimization

Given the observations Oc and Ol, we first formulate the
observation likelihood as the product of two probabilities

P (Oc,Ol|T ,L,Te) = P (Oc|T ,L)P (Ol|T ,Te) (1)

where T = {Ti|i = 1, 2, · · · } is the set of camera poses
with T1 = I4, and Te is the extrinsic transform. Assuming
the observations are conditionally independent, we have

P (Oc|T ,L) =
∏

oc∈Oc

P (oc|Ti, lk) (2)

P (Ol|T ,Te) =
∏

ol∈Ol

P (ol|Ti,Tj ,Te) (3)

where i, j are camera ids and k is the landmark id, which
are specified by observation oc or ol. The probability of one
observation is approximated with a Gaussian distribution as

P (oc|Ti, lk) ∝ exp

(
−1

2
woc(E

2
f + E2

d)

)
(4)

P (ol|Ti,Tj,Te) ∝ exp

(
−1

2
wol

E2
l

)
(5)

where woc
, wol

are the weighting factors of camera and
LiDAR observations. And the residual Ef and Ed encode
landmark reprojection and depth error, while El denotes the
point-to-plane distance error. Those residuals are defined as

feature: Ef =
||φ(lk|K,Ti)− u||

σp
(6)

depth: Ed =
‖ψ(lk|Ti)‖ − d

σd
(7)

laser: El =
nT (ψ(p|Tl,ij)− q)

σl
(8)

Here, u and d are observed image coordinates and depth
of landmark k. Tl,ij = (TeTi)

−1TjTe is the transform
from target cloud i to source cloud j. Function φ(·) projects

a landmark onto the image i specified by input intrinsic
matrix K and transform Ti. Function ψ(·) transforms a 3D
point using the input transformation. σp, σd and σl denote
the measurement uncertainties of extracted features, stereo
depths and LiDAR ranges, respectively.

Substituting (2)-(8) back into (1) and taking the negative
log-likelihood gives the cost function

f(T ,L,Te) =
1

2

∑
oc

woc

(
E2

f + E2
d

)
+

1

2

∑
ol

wol
E2

l (9)

which is iteratively solved over parameters T ,L,Te using
the Levenberg-Marquardt algorithm.

To filter out incorrect observations in both images and
point clouds, we check the reprojection error ||φ(lk|K,Ti)−
u|| and depth error ‖ψ(lk|Ti)‖ − d of camera observations
and check the distance error nT (ψ(p|Tl,ij)− q) of LiDAR
observations after the optimization converges. The observa-
tions whose errors are larger than prespecified thresholds
will be marked as outliers and assigned with zero weights.
The cost function (9) is optimized repeatedly until no more
outliers can be detected. The thresholds can be tuned by
hand and in the experiments we use 3 pixels, 0.01m and
0.1m respectively.

Similar to the ICP algorithm, the Ol is recomputed based
on the latest estimation of Tc,Te, while the Oc remains
unchanged. Once Ol is updated, the outlier detection and
optimization steps are repeated as mentioned above. The Ol

only needs to be recomputed a few times (4 times in our
experiments) to achieve good accuracy.

Additionally, the strategy of specifying the uncertainty
parameters is as follows. Based on the stereo configuration,
the triangulation depth error ed is related to the stereo
matching error ep by a scale factor as in ed = (d2/bf)ep,
where b is the baseline, f is the focal length and d is the
depth. Assuming the uncertainties of feature matching and
stereo matching are equivalent, we have σd = (d2/bf)σp.
Therefore, we can now set σp to be the identity (i.e. 1) and
set σd by multiplying the scale factor. On the other hand, the
value of σl is tuned by hand so that the total cost of camera
and LiDAR observations are roughly at the same magnitude.
In the experiments, setting σp = 1, σd = 5 × 103 and σl
between [0.02, 0.1] can generate sufficiently good results.

E. Mapping

With the camera poses estimated, building a final 3D
model could be simply registering all stereo point clouds
together. However, the stereo depth maps typically contain
outliers and holes due to triangulation failure. In order to
refine the stereo depth maps, we further perform a simple but
effective two-fold fusion of LiDAR and camera data for each
frame or station. In the first fold, the stereo depth is compared
with the projected LiDAR depth and will be removed if there
is a significant difference. In the second fold, LiDAR depth is
selectively used to fill holes in the stereo depth. Particularly,
we only use the regions that are locally flat (such that the
local smoothness assumption is valid), and well observed
(avoiding degenerated view angle). The curvature of the local



Fig. 5: An example of refining the stereo depth. The outliers
are first filtered out by limiting its difference to the LiDAR
depth within a maximum range threshold. Then the holes are
filled with the surrounding LiDAR depth only if the local
surface has a near-zero curvature.

surface is used to measure the flatness. And the normal vector
is used to compute the view angle. Fig. 5 shows an example
of refining the stereo point cloud. It can be observed that
holes lying on a flat surface can be filled successfully, while
the missing points close to the edges are not treated to avoid
introducing new outliers.

F. Conditions of Uniqueness

The proposed approach relies on the ego-motion of indi-
vidual sensors to recover the extrinsic transform Te, making
it possible that Te is not fully observable if the motion
degenerates. It turns out to be the same problem encoun-
tered in hand-eye calibration, where the extrinsic transform
between a gripper and a camera is estimated from two motion
sequences. Here we discuss conditions for a fully observable
Te by borrowing knowledge from the hand-eye calibration,
whose classical formulation is given by

TcTe = TeTh (10)

where Th,Tc represent the relative motion of the hand and
the camera w.r.t. their own original frames. Incorporating
multiple stations will result in a set of (10) and then Te can
be solved. According to [11], the following two conditions
must be satisfied to guarantee a unique solution of Te:

1) At least 2 motion pairs (Tc,Th) are observed. Equiv-
alently, at least 3 stations are needed, with one of them
to be the base station.

2) The rotation axes of Tc are not colinear for different
motion pairs.

In our case, the robot hand frame is substituted by the
LiDAR frame. Therefore, the configuration of each station
must also satisfy the above conditions of uniqueness. This
provides formal guidance to collect data effectively. From
our experience of deploying the developed system, an oper-
ator without adequate background knowledge in computer
vision, particularly in structure from motion, is likely to
miss the second condition and only rotates the sensor about
the vertical axis, which will make the extrinsic calibration
unobservable.

IV. EXPERIMENTS

A. The Sensor Pod

To collect data for experiments, we developed a sensor
pod (as shown in Fig. 6) which has a pair of stereo
cameras (global shutter, resolution 4112 × 3008, baseline

Fig. 6: The sensor pod developed for data collection.

Fig. 7: Built point cloud model of the T-shaped specimen.

38cm), a Velodyne Puck (VLP-16), an IMU and a thermal
camera. This work only uses the stereo image pairs and
LiDAR clouds for reconstruction. Particularly, the VLP-16 is
mounted on a continuously rotating (180◦ per second) motor
to increase the sensor FOV.

The calibration between the involved sensors are per-
formed separately. We use the OpenCV library [28] to obtain
camera intrinsic and extrinsic parameters. The transform
between the motor and the LiDAR frame is obtained by
placing the sensor pod in a conference room, and carefully
tuning the transform until the accumulated points on walls
and ceiling form thin surfaces in the fixed motor base frame.
From now on, we use the term LiDAR frame to denote
the fixed motor base frame instead of the actual rotating
Velodyne frame, and assume all point clouds have been
transformed into the LiDAR frame.

B. Reconstruction Tests

The first reconstruction test is carried out at the Shimizu
Institute of Technology in Tokyo to scan a T-shaped concrete
specimen that is under structural tests. In total, 25 stations
of data are collected around the specimen at a distance of
about 2.5 meters. Each station contains a stereo image pair,
a point cloud that accumulates scans for 20 seconds and
contains approximately 1.6 million points. For station 1-17,
the sensor pod is placed on a tripod and pointed to the
specimen. Station 18-25 are collected with the sensor pod on
the ground, tilted up to capture the bottom of the specimen.
Fig. 7 shows the reconstructed model and Fig. 8 visualizes
the camera poses and landmarks. In the lower plots of Fig.
8, correlations found between images (blue lines) and point
clouds (grey lines) are visualized. Since the cameras have
narrow FOV (48◦ horizontal), it is likely that adjacent images
don’t have enough overlap, which makes the pose graph not
fully connected. Fortunately, LiDAR clouds have much wider



Fig. 8: Top: Estimated camera poses (numbered in the order
of capture) and visual landmarks (blue points). We follow
the convention to define camera frame z (blue) forward,
y (green) downward. Bottom: Pose graph connections from
images (blue) and poing clouds (gray)

FOV and therefore guarantees a fully connected graph.
As to the computation statistics, we provide a rough

measure of the processing time of the major components.
On a standard desktop (i7-3770 CPU, 3.40GHz×8), it takes
less than 2min to remove vignetting effects and triangulate
a stereo pair (40-50min for the whole dataset). The feature-
based cloud registration takes about 15min in total and the
joint pose estimation and map refinement can be finished in
about 15min and 20min respectively.

In addition to the T-shaped specimen, we tested our
algorithm in different environments, where the shapes of
reconstructed objects vary from simple squared and cylinder
pillars to more complex bridge pillars (see Fig. 9). Table
I summarizes the model statistics. The averaged error is
obtained by comparing to a ground truth model and more
details are provided in Section IV-E.

TABLE I: Dataset and Model Statistics

Datasets Stations
(Frames)

# of LiDAR
points (×106)

# of stereo
points (×106)

Error
(mm)

T-shaped 25 32.4 78.4 N/A
squared 29 39.1 210.3 2.7
cylinder 54 66.5 111.7 N/A
bridge 32 38.6 168.7 3.9

C. LiDAR-Camera Calibration

In this section, we evaluate the accuracy of the recovered
extrinsic transform. As a comparison, we implemented a
target-free calibration method [6] which uses discontinuities
in images and point clouds to iteratively refine an initial
guess. The key steps of this method are shown in Fig. 10a-d.
Basically, the initial guess is perturbed in each dimension (x,
y, z, roll, pitch, yaw) separately and then moved towards the
direction that increases the correlation between image edges
and projected cloud edges. Eventually, a locally optimal
solution can be found if any further changes will decrease
the edge correlation.

Since it is difficult to get ground truth calibration, we
choose to compare the extrinsic parameters computed from
two methods. The extracted point cloud edges are projected
on to the image plane and the projection is visualized in Fig.

10e and 10f. However, the edges are both well aligned and
no obvious difference can be identified. We then compare
the overlay of LiDAR clouds and stereo clouds (see Fig.
11). It can be observed that with our results, the models are
aligned consistently while there exists an offset if calibrated
using [6]. Further investigation shows that the offset happens
along the camera’s optical axis, in which direction the motion
will generate less flow on the image. As a result, the total
correlation score becomes less sensitive to the motion of the
LiDAR along the optical axis. This observation suggests that
calibration methods using direct feature alignment, including
target-based and target-free, may require wide angle lenses.

D. Observability of Extrinsic Transform

The uniqueness conditions stated in Section III basically
requires the sensor pod to change its position and orientation
for different stations. In this section, we aim at providing
more intuition behind the formal statements. Specifically, the
conditions are experimentally demonstrated by perturbing the
extrinsic parameters around their optimal values. Three tests
are designed to clarify the situations of degeneration.

1) Rotation is fixed: In this case, the sensor pod is placed
at 3 different positions but keeps its orientation unchanged.
Specifically, station 1-3 are used for optimization. The total
cost after the perturbation is visualized in the left 2 plots of
Fig. 12. It can be seen that perturbing the translation won’t
affect the cost value at all, meaning unobservable. Besides,
since the 3 frames are almost collinear, the pitch angle is
also under-constrained (flat orange curve).

2) Rotation about one axis: In this case, stations 1-17 are
used, where the sensor pod is placed around the T-shaped
specimen and all rotations are about the camera’s y-axis. As
shown in the middle plots of Fig. 12, position y is under-
constrained.

3) Rotation about two axes: For reference, we show the
perturbed cost with all 25 available datasets in the right
plots of Fig. 12. In this case, the rotations can be about
x- or y-axis. As expected, the extrinsic transform is well
constrained.

E. Model Accuracy Evaluation

Since the ground truth data are not available during the
test in Tokyo, we evaluate the reconstruction accuracy on the
squared concrete pillar instead. A FARO FOCUS3D scanner
(see Fig. 13) with±3mm range precision is used to obtain the
ground truth. The comparison is performed by measuring the
point to plane distance between the reconstructed model and
the ground truth after precise ICP registration. Furthermore,
we compare the results of three models reconstructed using:
(1) stereo images only (standard stereo BA), (2) both LiDAR
and stereo data but extrinsic calibration is pre-calibrated
using [6], and (3) both LiDAR and stereo data with extrinsic
calibration being adjusted jointly (proposed in this work).
Comparisons (1) and (2) share the same cost function in (3).
However, in comparison (1) LiDAR observations are set to
have zero weights and Te is fixed, and in comparison (2)
only Te is fixed during optimization.



Fig. 9: From top to bottom, the results of three tests are visualized: a squared pillar (top), a cylinder pillar (middle) and a
bridge pillar (bottom). From left to right, we visualize the camera poses and landmarks (blue points), a sample of the image
data, complete LiDAR point cloud, overlaid LiDAR and stereo point cloud, dense stereo point cloud.

(a) Raw image (b) Edges (c) Edge score (d) Initialization

(e) Edge alignment after calibration using [6]

(f) Edge alignement after joint optimization

Fig. 10: (a)-(d) The key steps of [6]. (e)-(f) Comparison of
extrinsic calibration results from [6] (e) and ours (f). The
color of projected cloud edge points encodes the correlation
score: yellow means high while red means low.

Fig. 11: Cutaway view of the overlaid LiDAR clouds (white)
and stereo clouds (textured). Left: Jointly optimized. Right:
Calibrated using [6].

The error maps and histograms are visualized in Fig. 13.
It can be observed that fusing LiDAR data helps to reduce
the model error from 6mm to 2.7mm, which already lies
in the precision range of the ground truth. In fact, due
to the limited number of matches between some image
frames, the pure image-based model does not align well,
resulting in multiple layers of the surface. Compared with
the pre-calibrated case, jointly optimizing the calibration
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Fig. 12: Changes of cost values w.r.t. perturbed extrinsic
transform. From left to right, the three columns show the
cost changes in three tests: with rotation fixed, with rotation
about one axis, and with rotation about two axes. Within
each test, translation (top plots) and rotation (bottom plots)
perturbations are visualized separately.

improves the overall model accuracy and we also benefit
from the convenience of self-calibration. Additionally, since
our model is reconstructed from multiple sets of data and
each station is collected close to the wall (2-3 meters), it
measures about 70 points/cm2, which is much denser than
the ground truth (10-15 points/cm2). The evaluation results
are obtained using the CloudCompare software.

V. CONCLUSIONS

This paper presents a joint optimization approach to fuse
LiDAR and camera for pose estimation and dense recon-
struction. It is shown to be able to build dense 3D models
and recover camera-LiDAR extrinsic transform accurately.
Besides, the accuracy of the reconstructed model is evaluated
by comparing to a ground truth model and it shows our
method can achieve accuracy similar to a survey scanner.

The proposed method requires data to be collected station



Fig. 13: Comparing the reconstructed models with the ground
truth model built by the FARO scanner. On the left are
visualizations of the ground truth model and the distance
map of reconstructed models, where the color encodes the
distance error between two point clouds. On the right are the
distance histograms corresponding to each comparison and
the averaged errors are marked by the red vertical bar.

by station, which can be time consuming and inconvenient
if the viewpoint is difficult to access. For example, the I-
shaped beams supporting the deck of a bridge are usually
too high to reach. Therefore, future work will be focused
on handling sequential data with the sensor pod moving in
the environment. Micro Aerial Vehicles (MAVs) may also be
used to carry the sensor pod. Another thread of future work is
to improve the quality of stereo reconstruction. For instance,
given the LiDAR-camera extrinsic calibration obtained from
our method, probabilistic fusion methods such as [18] can
be applied to recover a dense local map.
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