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A Cerebellar Internal Models Control Architecture
for Online Sensorimotor Adaptation of a Humanoid

Robot Acting in a Dynamic Environment
Marie Claire Capolei1, Nils Axel Andersen1, Henrik Hautop Lund1, Egidio Falotico2, and Silvia Tolu1

Abstract—Humanoid robots are often supposed to operate in
non-deterministic human environments, and as a consequence,
the robust and gentle rejection of the external perturbations
is extremely crucial. In this scenario, stable and accurate be-
havior is mostly solved through adaptive control mechanisms
that learn an internal model to predict the consequences of
the outgoing control signals. Evidences show that brain-based
biological systems resolve this control issue by updating an
appropriate internal model that is then used to direct the muscles
activities. Inspired by the biological cerebellar internal models
theory, that couples forward and inverse internal models into the
biological motor control scheme, we propose a novel methodology
to artificially replicate these learning and adaptive principles into
a robotic feedback controller. The proposed cerebellar-like net-
work combines machine learning, artificial neural network, and
computational neuroscience techniques to deal with all the non-
linearities and complexities that modern robotic systems could
present. Although the architecture is tested on the simulated
humanoid iCub, it can be applied to different robotic systems
without excessive customization, thanks to its neural network-
based nature. During the experiments, the robot is requested to
follow repeatedly a movement while it is interacting with two
external systems. Four different internal model architectures are
compared and tested under different conditions. The comparison
of the performances confirmed the theories about internal models
combinatory action. The combination of models together with
the structural and learning features of the network, resulted in a
benefit to the adaptation mechanism, but also the system response
to nonlinearities, noise and external forces.

Index Terms—Biomimetics, Neurorobotics, Model Learning for
Control, Learning and Adaptive Systems, Control Architectures
and Programming.

I. INTRODUCTION

MODERN robots are often mechanically complex, and
are embedded in unstructured non-deterministic envi-

ronments [1]. The accurate and stable motor control of such
systems is often challenging due to the unreliability of the
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hand engineered modeling strategies, which are too strict to
describe all the complexities and nonlinearities.

In this manuscript, we propose an online learning and
control algorithm to dynamically adapt the movements of a
robotic system acting in an uncertain non-deterministic envi-
ronment. In the design process, we assumed that: the Jacobian
poorly describes the actual robotic condition; one or more
unmodeled external objects interfere with the movement; the
state space system is multivariable and not fully observable;
the action/state space is continuous and high-dimensional. In
this view, the controller should improve the tracking accuracy
of each actuator, and minimize the effects of noise through
force-based control input.

Traditionally, uncertain systems were learned by estimat-
ing open parameters of structured mathematical models [2].
Although this approach has been used for several years in
system identification and adaptive control, fitting the parame-
ters of fixed structure with training data can lead to different
drawbacks, such as: physical inconsistency [3]; unmodeled
behavior; persistent excitation issues [4]; and unstable reaction
to high estimation error.

In the last decades, due to the advancement in artificial
intelligence, a large number of non-parametric approaches
have been proposed to solve the aforementioned problems [5],
[6], [7], [8], [9], [10]. For instance, the introduction of artificial
neural networks (ANNs) into nonlinear dynamical systems
adaptive control were advantageous for reducing the effects
of nonlinearities and uncertainties, and for handling high di-
mensional and continuous state space systems [11], [12], [13],
[8], [14]. Although the structural versatility that distinguishes
ANNs, the continuous interaction within the robotic system
and the non-deterministic environment can be constrained by
the off-line training of the neural network.

The Autonomous Mental Development (AMD) theorists
claim that robots should learn and evolve their processing
through real-time interaction with the environment [15], [16].
In this view, model learning is not seen anymore as a summa-
tion of off-line learned experiences but as an online develop-
ment of the current knowledge of the system [17], [18]. These
theories have their foundation in studies of biological systems,
such as humans, especially infants. The advanced mechanisms
exploited by biological systems to explore their relation with
the surroundings, and control their own movements, motivated
several scientists towards a better understanding of the biolog-
ical motor control.

James S. Albus was the first person to propose a robotic
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control architecture enhanced by an artificial neural network
based on evidence of the central nervous system (CNS): the
”cerebellar model articulation controller” (CMAC) [19]. The
CMAC module was mainly inspired by the David Maar’s
theory [20] that depicts the cerebellum, a neural structure
located at the back of the brain, as ”language translator
between data in the cerebrum, and command sequences needed
by the muscles” [21].

In the last decades, several scientists have been attracted
by the fascinating mechanisms and functional roles of the
cerebellum in motor and cognitive tasks [22], [23], [24], [25],
[26], [27]. Among all the hypotheses, the scientific community
is highly supporting the involvement of the cerebellum in the
acquisition and maintenance of the internal models, mapping
the correlation within the body and the environment [28],
[29], [30], [31], i.e., forward and inverse models [32], [33]. If
confirmed, these assumptions would explain several complex
mechanisms underlying the neural control of movements [34].

The inverse model elaborates the motor command that leads
the system from the current state to a desired one [35]. Its
contribution enables fast and coordinated limb movements,
that are not achievable with pure feedback control, due to the
biological system dynamics [32]. Evidences show that some
of the motor deficits caused by cerebellar dysfunction, e.g.,
quick ballistic limbs movements and impaired muscle coordi-
nation [36], are due to the lack of feed forward contribution
in motor control, or rather the neural control loop is affected
by slow reaction time and sensory delay [34]. Although it is
controversial [37], [38], scientists argued that integrating the
efference copy signal of the delayed sensory feedback could
overcome these CNS transmission problems [39]. Different
prototypes of cerebellar control architecture based on the
inverse model theory has been proposed, such as: adaptive
filter models [40], [41]; spiking neural networks [42], [43];
combination of parametric adaptive control and machine learn-
ing techniques [44], [45].

The forward model describes the causal relationship be-
tween the outgoing motor command and system state. This
model results beneficial to predict those state transitions that
are not directly accessible [46]. Electrophysiological stud-
ies [47], [48], computational theories [28], [29], imaging and
lesion data [49], [50] suggest that the forward model could
explain pivotal cerebellar functions, such as error correction
and learning. Moreover, robotics experiments proved that
the forward model could play an important role in action
prediction, sensory discrepancy minimization, and noise can-
cellation [51], [52].

Inspired by the theory of coupled internal models [53], [54],
[55], [56], [57], [58], we propose a novel methodology to
replicate and exploit artificially the cerebellar internal models
learning and corrective action. In particular, we designed a
neural network that, through the combination of machine
learning, artificial neural network, and computational neu-
roscience techniques, replicates the functionality, learning,
modularity, and morphology of the cerebellar-circuit. This bio-
mimetic network is embedded in a feedback robotic control
architecture, and is intended to minimize modeling errors and
to constrain the effects of noise, uncertainties, and external dis-
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Fig. 1: Robotic plant: a) the humanoid iCub holding the
table-ball system in the Neurorobotics Platform; b) the three
controlled wrist joints: 1 pronosupination, 2 yaw, 3 pitch.

turbances. The network weights are defined by non-linear and
multidimensional learning functions that mimic the cerebellar
synaptic plasticities, as proposed by [59], [42]. The manuscript
presents the comparison of four adaptive control architectures
based on the cerebellar internal models theories. The control
system is tested on the virtual humanoid robot iCub [60]
embedded in the Neurorobotics Platform (Fig.1.a)[61], [62].
The architectures performance are evaluated under different
noise and external perturbation conditions. The study con-
firmed that the forward and inverse internal model coupling
shows improved performance respect to the independent in-
ternal models action. Moreover, the biologically plausible
weighting kernel together with the layered structure of the
cerebellar networks resulted beneficial to constrains the effects
of external perturbations and nonlinearities.

The structure of the paper is as follows: in section II we
describe the overall control architecture, giving special focus to
the cerebellar-like component; in section III, the experimental
set up and results are presented. The manuscript concludes
with the discussion of the main findings in comparison with
the literature and future directions.

II. MATERIALS AND METHODS

The robotic system, or rather Agent (Fig.2.a), consists of: a
Planner, which generates the Qr

N×1,Q̇
r

N×1 reference motors
angular positions and velocities (where N is the number of
controlled joints), that are sent to the controller; the Controller,
which elaborates the τ tot

N×1 torque commands needed to move
the actuators to the Qr

N×1,Q̇
r

N×1 desired states; the Robotic
Plant, which includes the actuators and the proprioceptive
sensors employed to read the Q and Q̇ actual angular positions
and velocities respectively. The Agent interacts with two
external systems, which in this manuscript are represented by
a table and a rolling ball (Fig.1.a).

A. Robot Plant

The humanoid iCub is a 53 degree of freedom (dof)
robotic system equipped with several type of sensors, such
as: encoders, accelerometers, gyroscopes, F/T sensors, digital
cameras. For the sake of simplicity, the overall system actuates
seven motors of the right arm: four motors are kept constant
to keep the arm upwards (i.e. elbow, shoulder roll, shoulder
yaw and shoulder pitch), and N = 3 motors are controlled by
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the proposed controller (namely wrist pronosupination, wrist
yaw and wrist pitch, Fig.1.b). The n-th actual motor state is
read by the encoders and saved in the qn ∈ QN×1 angular
position and q̇n ∈ Q̇N×1 angular velocity process variables.

B. Planner

The Planner plans the qnr ∈ Qr
N×1, q̇rn ∈ Q̇

r

N×1 reference
trajectories, or rather it generates oscillator movements,

qrn = An · sin(2πft+ ϕn) , (1)

q̇rn = 2πfAn · cos(2πft+ ϕn) , (2)

with fixed temporal frequency f = 0.25Hz, An amplitude
and ϕn phase,

A1×N =
[
A1, A2, A3

]
=
[
0.1727, 0.1363, 0.0345

]
rad

ϕ1×N =
[
ϕ1, ϕ2, ϕ3

]
=
[
0.5π, 0.5π, 0.0

]
rad.

C. Controller

The Controller once received the Q, Q̇ actual robot states
computes the τntot ∈ τ tot

N×1 torque command to move each
actuator to the qrn,q̇rn desired state. This subsystem is consti-
tuted by a static module based on classical control methods,
and by two decentralized cerebellar-like neural networks (sec-
tion II-D): inverse and forward models (blue boxes Fig.2.b).
The inverse cerebellar-like module adds ∆τ cn ∈ ∆τ c

N×1

feed-forward corrective torque command to the τfbn ,∈ τ fb
N×1

feedback controller motor input [63], [64], while the forward
module applies ∆q̇cn ∈ ∆q̇c state-specific adjustment to the
feedback loop [65], [66], [58]. In this initial design, the

AGENT
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+
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qPF
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Fig. 2: Control architecture scheme for N actuated joints: a)
main components communication, and b) controller block.

forward model corrective term is narrowed to the angular
velocity, which is the feedback controller input.

In the details of Fig.2.b, the closed-loop computes the efbn ∈
efbN×1 feedback angular velocity error of the n-th motor,

efbn = q̇rn − q̇n . (3)

This quantity is corrected by the forward cerebellar-like
module which predicts the consequence of the outgoing motor
command and adds ∆q̇cn contribution to minimize the efbn
feedback error. The etot total error,

etotn = efbn + ∆q̇cn, (4)

it is then employed by both the feedback controller to
compute the feedback torque command τfbn , according to
the proportional-integrative-derivative (PID) independent joint
control law, and by the inverse cerebellar-like model to com-
pute the corrective torque ∆τ cn ∈∆τ c

N×1, that minimizes both
the etot and the εn ∈ ε angular position error,

εn = qrn − qn. (5)

The total control input sent to the motors is the result of a
feed-forward compensation [40],

τ tot = τ fb + ∆τ c . (6)

On a final note, the PID regulator K gains are tuned to
weakly operate in linearized conditions which exclude the
disturbance of the ball and sensory noise,

KP =
[
KP

1 , K
P
2 , K

P
3

]
=
[
2.9000, 2.3000, 2.3500

]
KI =

[
KI

1 , K
I
2 , K

I
3

]
=
[
1.9400, 1.9000, 1.9000

]
KD =

[
KD

1 , K
D
2 , K

D
3

]
=
[
0.0050, 0.0001, 0.0004

]
.

D. Cerebellar-like Network

The cerebellum is constituted of several micro-zones that
plausibly correspond to the minimal ulm unit learning ma-
chine (Fig.3) [63]. Each ulm presents similar internal micro-
circuitry, but it differs from the others in terms of external
connectivity. There are two main type of axons that connect
each ulm to the outside: the mf mossy fibers (in magenta
Fig.3), which project signals regarding the position, velocity
and direction of the limbs movements [68]; the climbing fibers
(in red), that project from the io inferior olive nucleus the
signal encoding the error [47], [69]. These axons transmits
the information to two main groups of cells: the Gr granule

ulm n
ccm N

ccm 1

Mossy Fibers
(Inputs)

DCN

Corrective Action
(Output)

Parallel Fibers

GrGrGr Gr
io

Pc
io

Pc

Fig. 3: Canonical cerebellar circuit in analogy with [67].
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Fig. 4: Cerebellar-like neural network scheme: (a) structural
modular partition of the inverse and forward module; (b)
details of the networks.

cells, that in Marr’s opinion encode combinations of mossy
fibers inputs [20]; the pc Purkinje cells (in green Fig.3), that
modulated by the inferior olive axon and excited by the pf
parallel fibers (in violet) projecting from the granule cells,
they influence the activity of the dcn deep cerebellar nuclei
(in blue). The dcn is inhibited by the pc and excited by both
the io and mf, and it is responsible for the final processing of
the signal that is sent outside the cerebellar circuit.

In the proposed model (Fig.4.a), each ulm (light blue box)
processes the information of the n-th controlled object (where
n=1,...,N). Accordingly, the dcn of the n-th ulm outputs the
∆q̇cn and ∆τ cn cerebellar corrections. Each ulm is divided
into M sub-modules representing the ccm canonical cerebellar
microcircuit (yellow boxes in Fig.4.a). Each ccm encodes kine-
matic and/or dynamic features of the n-th controlled object,
such as angular position and velocity. The N ulm together
compose the MCC Modular Cerebellar Circuit mapping the

inverse and forward models of the robotic system (green boxes
in Fig.4.a).

Hereafter for the sake of simplicity, the variable x gen-
erally recalls the signals q̇n and τn propagating inside the
two separated networks, and w generally recalls the specific
network weight. The mossy fibers of the inverse MCC transmit
information about the actual and reference angular velocity of
all the controlled joints,

MFinv
2N×1 =

[
mf inv1 , ... , mf inv2N

]T
=

=
[
q̇r1, ... , q̇

r
N , q̇1, ... , q̇N

]T
,

(7)

while the mossy fibers of the forward MCC project the
signal encoding the reference angular velocities and the latest
control inputs (6),

MFfrw
2N×1 =

[
mffrw1 , ... , mffrw2N

]T
=

=
[
q̇r1, ... , q̇

r
N , τ

tot
1 (t− 1), ... , τ totN (t− 1)

]T
.

(8)

The mossy fibers signals are then mapped and exploited to
predict the τ tot control input (inverse MCC) and q̇ system
state (forward MCC). As proposed by [44], the granule layer
is represented by the Locally Weighted Projection Regression
algorithm (LWPR) [70]. The LWPR is a fast on-line nonlinear
function approximation algorithm suitable for the reduction of
high dimensional state space system. To replicate the efference
copy theory [39], [71], the LWPR uses a copy of the outgoing
τ tot (inverse MCC) and actual q̇ (forward MCC) as modulatory
signals (in cyan Fig.4) to create and train on-line G local linear
models, or rather Grg granule cells (where g=1,...,G). These
models are employed by the algorithm to make τ̂grn,g , ˆ̇qgrn,g local
predictions of the control input (inverse MCC) and angular
velocity (forward MCC) respectively. The final output of the
granular-parallel fibers layer (in violet Fig.4.b) is the weighted
mean of all the linear models ( refer to [70] for the complete
set of formulas),

x̂pfn =

∑g=G
g=1 w

gr
n,g · x̂grn,g∑g=G

g=1 w
gr
n,g

. (9)

The wpf−pc [42] synaptic strengths of the pf-pc parallel
fibers-Purkinje cells connections (Table I) is modulated by the
io inferior olive transmitting the error signals (3,4,5) (in red
Fig.4.b),

ioinvn =
[
ioinvn,1 , io

inv
n,2

]T
=
[
εn, e

tot
n

]T
, (10)

iofrwn =
[
iofrwn,1 , io

frw
n,2

]T
=
[
εn, e

fb
n

]T
. (11)

The Purkinje cell output signal (in green Fig.4.b) is the
result of the x̂pf modulated LWPR prediction (9),

xpcn,m = wpf−pc
n,m (t, ion,m) · x̂pfn . (12)

Respect to [44], [52], both the MF mossy fibers input
vectors and the xpc Purkinje cells signals are reformulated:
the xpf is represented by the final LWPR prediction and not
by the linear combination of the network weights; the xpc is
the result of a biologically plausible learning rule function of
the error (10,11), instead of the direct proportion of the error
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signal; the inferior olive transmits the angular position and
velocity error instead of the τfb [72].

The pc signal transmitted to the dcn (in green Fig.4.b) is
scaled by the wpc−dcn

n,m synaptic weight [42], which is function
of both the pc and dcn activities,

xpc−dcn
n,m = wpc−dcn

n,m (t, xpcn,m,∆x
c
n) · xpcn,m. (13)

In the proposed scheme, the mossy fibers (in magenta
Fig.4.b) project to the dcn deep cerebellar nuclei a copy of
the τ totn outgoing control input (6) (inverse MCC) and the q̇n
actual angular velocity (forward MCC). The mf contribution
to the dcn activity is highly influenced by the pc Purkinje
cells [42],

xmf−dcn
n,m = wmf−dcn

n,m (t, xpcn,m) · xn, (14)

while the strength of the inferior olive input to the deep
cerebellar nuclei is determined by the io itself [73],

xio−dcn
n,m = wio−dcn

n,m (t, ion,m) · ion,m. (15)

The final corrective action of each cerebellar-like net-
work (in blue Fig.4.b) is function of the excitatory activity
of mossy fibers and inferior olive, and the inhibitory action of
the Purkinje cells,

∆xcn = +k(k(
M∑

m=1

xmf−dcn
n,m ) + k(

M∑
m=1

xio−dcn
n,m )+

−k(
M∑

m=1

xpc−dcn
n,m )),

(16)

where the nonlinear activation function k(y) is defined as,

k(y) =
2

1 + e−2y
− 1 . (17)

III. RESULTS

Four architectures that differ in terms of internal models
contributions are compared: (I) feedback controller; (II) feed-
back controller combined with inverse cerebellar-like network;
(III) feedback controller combined with forward cerebellar-
like network; (IV) feedback controller combined with inverse
and forward cerebellar-like networks. Each architecture has
been tested in the presence of table-ball disturbances (case
A), and extra uniformly distributed noise U(−0.1, 0.1) added
to the process variables read by the sensors (case B). Hereafter,
we use the notation ”architecture number+A/B” (for instance
IIA) to recall a specific test.

The software is based on the ROS messaging frame-
work [74] integrated in the Gazebo-based simulation envi-
ronment Neurorobotics Platform (NRP) [61]. The three wrist
joints are controlled in effort through the Gazebo service
ApplyJointEffort. The encoders information are sampled at
fsamp = 50 Hz. The computer used for the test has the
Ubuntu 16.04 Operating system (OS type 64− bit), the Intel
CoreTM i7−7700HQ CPU@2.80GHz×8 processor, and the
GeForce GTX 1050/PCIe/SSE2 graphics card. The tests
are performed 20 times per experiment. Due to the stochastic

nature of the experiments, the recorded data are expressed as
µ mean value and σ standard deviation of the 20 tests. The
oscillation (1,2) period is T = 4sec which corresponds to one
k trial, or rather iteration. The ball is launched from above
when the table is parallel to the floor (1st trial). Due to some
simulator problems that cause initial jerky movements of the
robot, the cerebellar-like networks initiate the learning after the
5th trial, and are enabled to send correction after 2 more trials.
This procedure is generally not necessary and is tailored to the
simulator. The paper focuses on the angular position tracking
performances of each experiment, which are measured in terms
of MAE mean absolute error evolution computed for the εn
angular position error of each joint,

maeqn(k) =

∑t+T
i=t |eqn(i)|

T
for n = 0, ..., N. (18)

Fig.5 reports the MAE evolution obtained for the three
controlled joint during the 20 tests. From the analysis, the
IV architecture (in magenta) resulted to correct larger errors
faster with respect to the two networks used independently.
This reactive behavior also appears in the III scheme (in cyan),

Angular position MAE

A

𝜇 
± 

3𝜎
 [r

ad
]

⎼⎼ I-pid     ⎼⎼ II-pid+inverse     
⎼⎼ III-pid+forward     ⎼⎼ IV-pid+inverse+forward

Trials (4 sec period)

B
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3𝜎
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± 

3𝜎
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]

n = 1

n = 2

n = 3

Trials (T=4 sec period)

n = 1

n = 2

n = 3

Fig. 5: Control architectures performances. The evolution of
the MAE mean absolute error shows how the system is
improving its tracking accuracy over the oscillations period.
The plot shows the results of the 20 tests in terms of µ mean
value (solid line) and 99.7% confidence interval (colored area).
The vertical green line represent the moment the cerebellum
starts adding contributions to the feedback loop (k = 8 trial).
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TABLE I: Weighting kernel parameters for [ccm1, ccm2] [42], [59]: LTP long-term potentiation, LTD long-term depression,
MTP potentiation modulating term, MTD depression modulating term, α decaying factor.

PF-PC PC-DCN
Forward Inverse Forward Inverse

n LTP LTD α LTP LTD α LTP LTD α LTP LTD α
1 [10−2, 10−3.3] [10−2, 10−3.3] [800, 170] [10−2, 10−3] [10−2, 10−3] [300, 70] [10−4, 10−4] [10−4, 10−4] [2, 2] [10−4, 10−4] [10−4, 10−4] [2, 2]
2 [10−2, 10−3.3] [10−2, 10−3.3] [800, 170] [10−2, 10−3] [10−2, 10−3] [300, 70] [10−4, 10−4] [10−4, 10−4] [2., 2] [10−4, 10−4] [10−4, 10−4] [2., 2]
3 [10−2, 10−1] [10−2, 10−1] [800, 170] [10−2, 10−3] [10−2, 10−3] [500, 70] [10−4, 10−4] [10−4, 10−4] [2., 2] [10−4, 10−4] [10−4, 10−4] [2., 2]

IO-DCN MF-DCN
Forward Inverse Forward Inverse

n MTP MTD α MTP MTD α LTP LTD α LTP LTD α
1 [10−3, 10−4] [10−4, 10−5] [1000, 100] [10−3, 10−4] [10−4, 10−5] [100, 100] [10−4, 10−4] [10−4, 10−4] [2, 2] [10−4, 10−4] [10−4, 10−4] [2, 2]
2 [10−3, 10−3] [10−4, 10−4] [600, 100] [10−3, 10−3] [10−4, 10−4] [100, 200] [10−4, 10−4] [10−4, 10−4] [2., 2] [10−4, 10−4] [10−4, 10−4] [2., 2]
3 [10−4, 10−4] [10−5, 10−5] [300, 1000] [10−4, 10−4] [10−5, 10−5] [500, 200] [10−4, 10−4] [10−4, 10−4] [2., 2] [10−4, 10−4] [10−4, 10−4] [2., 2]

but it is highly boosted in IV by the feed forward correction
of the inverse model, thanks to the reduction of the loop de-
lays affecting the feedback controller. Although the feedback
controller is highly perturbed by the propagation of noise in
the system (IB in green Fig. 5), the biomimetic architectures
do not present evident consequences. In particular, thanks to
the forward model action, architectures III and IV robustly
reduce the effect of noise as suggested by [51].

In about 5 trials, architecture IV rapidly corrects the feed-
back controller performance leading to an extra drop of 12%
(joint 1) and 90% (joint 2) with respect to architecture I (in
green). Moreover, architecture IV is the only one able to
correct rapidly the deviation of joint 3 between trials 8 and
15. It is worthwhile to mention that the feedback controller
of the first joint is highly affected by the table weight, which
slowly leads the joint towards the correct reference.

As we expected, the number of Gr granule cells of each
ulm (LWPR receptive fields) created during the test case B
are larger respect to the not noisy test (Table II), especially
for architecture III and IV that resulted to act more robustly
against noise. Moreover, We believe that the large numerical
difference between the Gr of the two MCC is due to the update
of the forward MCC before the inverse MCC that solve the
one-to-many mapping issue of the inverse model [55].

IV. CONCLUSIONS
Thus far, we have presented, tested, and compared four con-

trol architectures based on a versatile and real-time modeling
structure that replicates the cerebellar internal models individ-
ual and combinatorial theories. In particular, we introduced a
novel bio-mimetic learning and control cerebellar network that
combines computational neuroscience, machine learning, and
artificial neural network methods. The biomimetic controllers
are tested on a humanoid robot acting in a perturbed non-
deterministic environment.

The experiments confirmed the theories about the inter-
nal model independent and combinatorial contribution. In
particular, the forward model resulted to act rapidly and
efficiently against any noise and external perturbation in
the early adaptation period, while the inverse model highly

TABLE II: Receptive fields created by the LWPR.

Architecture II III IV
Case A B A B A B

Inverse MCC 8 14 - - 11 16
Forward MCC - - 78 146 436 510

boosted the feedback controller action through the adaptive
feed forward compensation that helped to reduce tracking error
and loop delays in the post adaptation period. Finally, the
combination of the internal models into a feedback control
scheme merged the models strengths and guaranteed improved
tracking accuracy, adaptation, high robustness to perturbations
and filtering of noise.

In the details of the biomimetic neural network, the granule
cells-parallel fibers layers are artificially interpreted with the
LWPR. The algorithm has been employed differently with
respect to the past experiments [75], [44], both in terms
of input, training, and output signals (the details are listed
in Section II). The algorithm resulted an efficient tool for
the online mapping of high dimensional input space, and
prediction of complex non-linear functions. Although high
estimation errors can lead the LWPR to jerky prediction, the
stratified structure of the network and the application of non-
linear functions largely damped any over-reactive behaviors.

Most of the artificial cerebellar model do not employ
biologically plausible learning and frequently miss the dcn
deep cerebellar nuclei layer [76], [51], [44]. In the proposed
model, the learning rules that iteratively update the network
weights are based on synaptic plasticities derived from com-
putational neuroscience studies [42], [59]. At some extend,
this learning approach makes the network conceptually closer
to the spiking models presented in the literature [42], [57],
[77] but still not comparable due to the different codification
of the signals propagating inside the networks. Moreover with
respect to [57], we embedded the networks into a feedback
control scheme where the MCCs are combined in a ”tandem
model” [55], in order to solve the one-to-many mapping prob-
lem affecting the inverse model. Although the high number
of synaptic plasticities includes a large number of learning
parameters, the network does not required excessive tuning,
and no adjustment were necessary between experiments: the
tuning resulted to work robustly even in highly noisy con-
ditions (experiments B). For the scope of this manuscript,
we did not focus on the optimal tuning, but we believe,
as in most neural network case, that a modeling algorithm
could help assetting the best combination of parameters. An
additional difference with respect to the literature, is the
internal modularity of each uml unit learning machine, which
is divided in specialized compartment encoding kinematics
or dynamical features. This modular and layered structure of
the network significantly reduced the effects of nonlinearities,
sensor noise, high feedback and prediction (LWPR) errors.
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Despite the novelties with respect to past models, at the
current state the cerebellar network can not generalize all the
possible conditions. The model itself replicate only a small
component of a wider and modular structure that is under
investigation. The biological cerebellum is composed by a
large number of canonical circuits working in parallel. It is
not clear how different circuits operate together towards a
more general and complete learning and control action, but
it is our intention to analyze these motor dynamics employing
the proposed component as main building block. Moreover,
the cerebellum is just one of the central nervous system area
involved into the neural control of movements. We believe
that the full exploitation of the cerebellar potentialities is only
possible if the circuit collaborates with other generalized and
biological plausible control structures.
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