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Personalized Telerobotics by Fast Machine Learning
of Body-Machine Interfaces

Matteo Macchini, Fabrizio Schiano, and Dario Floreano

Abstract—Human-Robot Interfaces (HRIs) can be hard to
master for inexperienced users, making the teleoperation of
mobile robots a difficult task. The development of Body-Machine
Interfaces (BoMIs) represents a promising approach to making
a user more proficient, by exploiting the natural control they
can exert on their own body motion. Since human motion
presents individual traits due to several factors, including
physical condition, age, and experience, generic BoMIs still
require a significant learning time and effort to reach adequate
ability in teleoperation. In this work, we present a novel
approach which provides a Body-Machine Interface tailored on
the specific user. Our method autonomously learns from the
user their preferred strategy to control the robot, and provide a
personalized body-machine mapping. We show that the proposed
method can significantly reduce the duration of the training
phase in teleoperation, thus allowing faster skill acquisition.
We validated our approach by performing both simulation and
real-world experiments with human subjects. The first involved
the teleoperation of a fixed-wing simulated drone, while the
second consisted in controlling a real quadrotor. We used our
framework to extrapolate common and peculiar features of
movements among individuals. Observing reoccurring strategies,
we provide insights on how humans would naturally interface
with a distal machine.

Index terms — Telerobotics and Teleoperation, AI-Based
Methods, Learning and Adaptive Systems, Wearable Robots

Supplementary video: https://youtu.be/ssLa75f1y2Y

[. INTRODUCTION

The term telerobotics, derived from the greek tele (distant),
refers to a system with a human-in-the-loop operator, control-
ling a robot situated in a separate environment [1]].

Telerobotics finds relevant uses in fields where human cog-
nition and decision-making capabilities cannot be substituted
by machine intelligence, including exploration, supervision
and maintenance in risky environments, such as nuclear plants
[2] or during search and rescue missions [3]]. Robotic systems
can also be employed in tasks where augmenting the operator’s
perception and accuracy is needed, as in the case of minimally
invasive surgery [4].

These applications require the design and implementation of
control interfaces that are sufficiently powerful and intuitive
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Fig. 1: Human user (A) teleoperates a quadrotor (B) in first-person
view (C) by body motion.

also for inexperienced users. A telerobotic system is defined
as a dual architecture where the controlled element (the robot)
executes commands issued by the operator though a certain
control device [1]. The control device normally consists of a
hardware interface such as a joystick, or a steering wheel.

A subdomain of HRIs is represented by body-machine
interfaces (BoMlIs), which collect information from the human
body, and translate them into commands for an external device
[5]. Body movements have been largely employed as a source
of information for teleoperation as they find foundation in
the intuitiveness of a person’s control over their own body
motion. Here, the control device of the telerobotic system
is the user’s body itself. When robot and control device are
kinematically similar, the HRI is said to be “homologous”
[6]. There are several examples in literature on the control of
complex systems as humanoid robots or human-like robotic
limbs from human movement [7], [8], [9]. In this case, the
kinematic homology between the two elements allows for a
straightforward mapping definition. Nonetheless, the imple-
mentation of intuitive BoMIs for nonhomologous architectures
comes as a greater challenge.

Three major characteristics of human motion are of interest
in the implementation of an intuitive body-machine mapping
Firstly, human motion involves several degrees of freedom
(DOFs) and is achieved through redundant kinematics [10],
[L1]], [S], often requiring preliminary feature selection and
dimensionality reduction methods to extract meaningful in-
formation. A common approach consists in the adoption of
motion synergies : functional sensory-motor modules exploit-
ing the combination of several motion units [12]]. Popular tools
for the identification of motor synergies are signal compression
algorithms such as principal component analysis (PCA) and
linear discriminant analysis [[13], [14]. Secondly, even common
human actions like gait and planar reaching arm movements
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present significant differences among individuals [15], [L6],
and cannot be easily generalized. Therefore, a personalized
mapping could improve user’s ability in teleoperation. Finally,
movement is characterized by state-dependent nonlinearities in
space, [17], [18], thus linear methods might not be sufficient
to explain its complexity.

Among mobile robots, the aerial robotics field is undergoing
a significant period of growth in industrial, security and re-
search applications [[19], [20]]. Motion control paradigms have
been proposed for the control of mobile robots using devices
based on stereo vision for tracking motion of the operator’s full
body [21]], [22] or portions of it such as face and hands [23],
[24], [25]. A common feature of these interfaces is the fact that
they consist of a predefined, discrete set of control commands,
such as “take off”, “go left”. This approach to telerobotics
is known as supervisory control [26]]. Despite alleviating the
user form the task of finely regulating each DOF of the
robot, supervisory control does not allow fine and accurate
maneuvering of the system. Moreover, the command set is
normally defined in an arbitrary fashion or considering cor-
respondences between human and robotic morphologies [27],
thus not taking into account the specific operator’s preferences.
Data-driven body-machine interfaces have gained increasing
attention over the last decade in a multitude of fields. Recent
works investigated the natural interaction strategy of humans
controlling drones through behavioral experiments [28]], [29],
to determine common mapping strategies, yet with a supervi-
sory control paradigm. User-specific mapping functions have
been proposed for anthropomorphic manipulators [16], [30]
and ground robots [31]. Nonetheless, the first case is limited
to homologous systems, while the second does not investigate
the effect of such a method on learning and usability.

In a previous study, we focused on the implementation of
an intuitive body-machine mapping for a fixed-wing UAV
[6]. A study on human subjects led to the identification of
two instinctive interaction behaviors: one consisting in torso
movements, and a second one including arm motion. The
two emerging behaviors were then tested in both simulation
and hardware teleoperation, showing increasing proficiency
compared to a remote controller. For the purpose of the project,
a dedicated wearable hardware interface, the "FlyJacket™ [32]],
was designed. The previously implemented mapping strategy
is derived from a limited set of users, and individual prefer-
ences are not taken into consideration. Despite the definition
of a general method is desirable for several applications, it
represents a suboptimal approach as it requires each person to
adapt to the predefined interface.

In this article, we aim at reducing this effort by mini-
mizing the difference between the mapping and the instinc-
tive interaction behaviors of each individual, thus allowing
a faster skill acquisition. We propose a novel framework
capable of autonomously generating a user-adapted body-
machine mapping function for robot operation (see Fig. [I)).
We apply machine learning methods to identify meaningful
motion synergies from body movement and translate them into
optimal commands for a drone. To compensate for motion
errors, we investigated both linear and nonlinear methods.
We assessed the framework capabilities through a pilot study,

showing that personalization and nonlinearity are features able
to improve mapping accuracy. Subsequently, we generated
personalized mappings for a set of participants and allowed
them to teleoperate a virtual fixed-wing drone through a 3D
path by using this custom interface. We additionally ana-
lyzed their motion to provide insight over humans’ instinctive
teleoperation strategies. Finally, we conducted a test on the
teleoperation of a real drone to confirm the transferability of
the generated mapping to a real-world scenario.

II. MAPPING LEARNING FRAMEWORK

In this section, we present the proposed framework and
its application to the mapping definition between a human
operator and a fixed-wing drone. The process is structured
into four main steps, outlined in Fig. Q First, kinematic data
from a subject and a predefined trajectory from a simulated
drone are acquired, while the user imitates the robot flight
with arbitrary body motion. In a second step, relevant motion
features are selected based on their correlation with robot
behavior. Then, the features subset is further compressed into
motion synergies, one per each available robot command.
Finally, the identified synergies are transformed in commands
for the drone through supervised regression.

Data acquisition and preprocessing: the user wears a head-
mounted display (HMD) where a continuous flight trajectory
is visualized in first-person view (FPV), corresponding to the
frontal view of the simulated drone. The flight of the vehicle
consists of eight subsequent segments: two roll (¢) maneuvers
(lateral turns, right and left), two pitch () maneuvers (vertical
turns, up and down) and four mixed ones, where pitch and roll
vary at the same time. ¢ and # commands present the same
shape for each maneuver, following: A(1— (cos(t27f)) (7w/2)
with A = 0.5, T = 8 s and f = 1/T. This particular list of
maneuvers was chosen to cover the widest possible range of
inputs that might be provided during the teleoperation of such
robot. To make the trajectory easier to predict and follow, a
red beam is visualized to show the future position of the drone
in a 0.6 s time window, as shown in Fig. 3] (left). During this
phase, the user has no control over the robot trajectory, and
they are asked to move in an instinctive way, as if they were
controlling the flight direction with their body. This approach
is similar to the ones seen in [30], and [31]. During this phase,
the human pilot is sitting on a stool. Indeed, subjects did
not show a clear preference between a standing, sitting or
lying position in our previous work [6]]. Synchronously, we
record the attitude of the UAV, expressed through roll (¢)
and pitch (0) values, at a sampling frequency of 300Hz. A
schematic view of the scenario can be appreciated in Fig. [3]
The participant’s upper body is represented as a concatenation
of nine different kinematic links interconnected by means of
spherical joints: torso, shoulders, arms, forearms and hands,
arranged in the kinematic chain displayed in Fig. [3] (left).
We record 27 kinematic variables, corresponding to the Euler
angles describing the orientation of each considered rigid body.
We decided to track joint angles for simplicity, as they are in
principle sufficient to reconstruct the limbs’ positions, and to
allow portability to wearable sensors such as inertial motion
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Fig. 2: Schematic overview of the framework. After the acquisition of the preset trajectory from the simulator (Y') and human movements
(X), the most informative features are identified through a feature selection step, and further compressed into meaningful motion synergies.
Supervised regression is employed to define a personalized mapping for the user.

units (IMUs), notably better suited for tracking angular than
linear quantities. For the acquisition, the user is provided with
a set of 25 reflective markers installed on a wearable velcro
vest and tracked by a motion capture system. We denote with
x = {z1,...,2n} € RN the set of kinematic variables
acquired at each time step, and with y = {y1,...,ynm} the
robot attitude H Moreover, we denote with X = Xq,..., Xy
and Y = Yi,...,Yy the set of time series respectively
associated to x,y. All time series are normalized to have zero
mean and unit variance. We perform one acquisition for each
subject.

The human subject’s visual perception delay during the
observation of UAV trajectories could lead to time shifting
between the kinematic variables and the robot attitude. Since
our goal is to correlate these two datasets, time-shifting needs
to be removed, as it deteriorates correlation. A first option
would be to compensate for an average delay, corresponding
to ~ 200—300 ms [33]], which however would not be efficient
in the case of intra-subject variability. Instead, we compress
the kinematic time series X and the robot actions Y into the
first component of a PCA, use it to compute the time shift by
matching the maximum value and the rise time and apply this
shift to all X.

Feature selection: Since we make no assumptions on
the user’s instinctive motion, an automatic feature selection
functionality has been implemented in order to extract the most
relevant kinematic variables. For this purpose, we compute a
quality metric for each kinematic variable z;. The metric is
given by two elements: the cross-correlation of each kinematic
time series with the robot’s roll and pitch and its signal-to-
noise ratio (SNR). Firstly, we want to choose the kinematic
variables from x which correlate as much as possible with the
given attitude y. We compute the correlation of z; with each
robot command y; through the cross-correlation coefficient

Y o (Xi[m] — px, ) (Yi[m] — py;)
O'XiO'yj

6]

where X;[m)] is the m—th sample of X;. Note that Kx, y; is
computed for a time ¢ = 0 because we previously compensated
for eventual time shifts. Also, px, = py; = 0 and ox,

I' N = 27: 3 Euler angles for 9 rigid bodies
M = 2 : roll and pitch values
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Fig. 3: Data acquisition scenario. The drone trajectory is given to the
user as a visual input through the HMD, and they are free to move
arbitrarily to follow the trajectory. The user’s movements (X) and
the roll and pitch values for the simulated drone (Y') are acquired
synchronously. During this phase, the user’s motion has no effect on
the robot’s trajectory.

oy, = 1 by normalization, yielding:

Kx,v, = Y _ Xi[m]Y;[m] 2)
m
equivalent to the dot product “-”. The total cross-correlation
value for z; is computed by summing its absolute correlation
coefficient over all outputs:

M
Kx.y =) |X:-Yj| 3)
j=1
Secondly, in order to take into account noise in the quality
metric, we assume that X; can be expressed as X; = S; + V;
where N; represents the noise, assumed to be fully caused
by quantization, thus uniform and .S; is computed with a
moving average Low-Pass FIR filter computed on 50 samples
on X;. Therefore, we denote with SINR; the signal-to-noise
ratio of the time series X;. Then, the desired quality metric

A; associated to a time series X; can be expressed as:
Ai=Kx,y SNR; “4)

In summary, the quality metric \; is proportional to the amount
of information relevant for the mapping definition which is
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carried by each kinematic variable x;. The selection of the
most informative kinematic variables is based on )\; and done
by conducting a Z-value outlier analysis with a threshold of
0.5. Since our goal is to define a function transforming the
kinematic variables into drone commands of pitch and roll,
we need to select at least M variables. Thus, if the feature
selection produces less than M kinematic variables the M with
the highest Z-values are selected. Therefore, let * denote the
selected kinematic variables which are the most correlated to
the drone’s attitude and the ones mainly employed by the user.
Thus, x* represents the best subset to consider to transform
into drone commands.

Motion synergy identification: in this step, both to simplify
regression and to extract significant data, we run an additional
data compression step to extract the user’s motion synergies.
Since PCA considers the correlation between the features
and does not account for the robot behaviour we want to
associate them with, we implemented a Canonical Components
Analysis (CCA)[34]. The CCA provides M projections gy
of the selected features x*, representing the functional motion
synergies associated to roll and pitch commands.

Regression: finally, the identified motion synergies Tgy p,
and the robot commands y are fed to a regression algorithm
in order to define a mapping between the two, in a standard
supervised learning problem. We investigated both linear and
nonlinear solutions in order to compensate for the systematic
motion errors made by humans. For the nonlinear mapping,
we used Support Vector Regression (SVR) [35]], implemented
using the SKLearn Python library [36]. Hyperparameter opti-
mization was run on each subject independently through grid
search, with bounds limiting the estimator’s variance, to allow
a good interpolation between the sporadic data provided to the
regression algorithm. The optimization is run through 10-fold
cross-validation on the training dataset, down-sampled by a
factor 10 to prevent overfitting.

III. RESULTS

In this section, the experimental protocols and results ob-
tained through the study are summarize(ﬂ First, we present
a preliminary study conducted on pilot subjects used to
validate the proposed architecture and quantify the effects of
personalization and nonlinear methods in term of regression
error. After, we describe the experiments conducted following
the protocol summarized in Fig. [5} A first phase consisted in
generating user-adapted mappings for a set of 16 participants,
using the method outlined in Sect. [[Il Here we provide a study
on the recognized motion patterns and synergies. In a second
phase, we asked our subjects to control a simulated fixed-
wing UAV using their personalized mapping and compared
with state-of-art interfaces: a remote controller and a non-
personalized BoMI. Finally, we used the same mappings to
conduct hardware experiments with a subset of the subjects
controlling a real quadrotor mimicking the dynamics of a
fixed-wing drone.

2The experiments were approved by the Ecole Polytechnique Fédérale de
Lausanne Human Research Ethics Committee.
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Fig. 4: Normalized regression error from pilot subjects. (B) and (D)
show average values in (A) and (C) respectively. P and NP represent,
respectively, personalized and non-personalized methods. In (A,B)
only the 4 pilot subjects moving torso are considered. In (C,D), we
include the outlier moving their right hand. Personalization shows
clear advantage in terms of error, more importantly when all subject
are included in the analysis. Nonlinear regressor shows similar effects
in both cases, further improving the results.

Preliminary pilot study: we analyzed data collected on five
pilot subjects to preliminarily assess the importance of per-
sonalization and nonlinearity on the definition of body-robot
mapping. The two considered regression algorithms described
in Sect. [lI| were compared in terms of regression error. This
metric allows estimating a nonlinearity score for motion data
(the more difference between the two methods on a single
dataset, the more nonlinear the observed system). Additionally,
the effect of personalization was observed. We extrapolated
a personalized mapping on each subject and compared its
performance on the same subject and on all the remaining
ones, in a leave-one-out logic. In Fig. 4] the regression error
for both linear and nonlinear, personalized (P) and non-
personalized (NP) approaches is shown. The minimal error
is normalized to unit value. We made no prior assumptions
on the subject’s instinctive behavior. The framework aims to
guarantee versatility for each individual, preventing the need
for additional data analysis or parameter hand-tuning. For
instance, a person may move the torso according to the drone’s
attitude, observed in [6] as a dominant behavior, while another
may intuitively prefer to do it with one, or both hands. Both
patterns should be equivalently decoded. During this phase of
the experiment, four out of five subjects mimicked the drone’s
attitude using the torso, while one of them used only their right
hand. For this reason, the figure is split into two parts: in Fig. d
(A,B) only the four subjects moving the torso were included in
the analysis, and the remaining one is considered an outlier.
Contrarily, in Fig. 4| (C,D) the totality of the population is
included. We see that, if only subjects using torso motion are
taken into account, regressing on each individual lowers the
average error by 78% as shown in Fig. 4| (B). Instead, if the
subject who employed hand motion is included, the error drops
by 96%, Fig. ] (D). This difference is expected: including all
subjects, we test a personalized mapping based on hand motion
on subjects who did not focus on the movements of their
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Fig. 5: Experimental design adopted for the validation of the proposed method: during Phase I, the framework is trained on the subject’s
instinctive motion strategy and translates it into robot controls. This procedure provides a mapping personalized on the user. Subsequently,
teleoperation tests are performed in order to assess the learning curve of the given interface in simulation (Phase II) and a real quadrotor

(Phase III).

right hand, resulting in big errors. In both cases, a nonlinear
approach further reduced the error by more than 3 times, Fig. 4]
(AC).

Phase I - personalized mapping definition: 20 participants
were recruited to verify the proposed algorithm. Each partic-
ipant took part in the data acquisition procedure described in
Sect. [l and our framework defined personalized mappings
for each of them. First, we analyzed the quality metric. In
Fig. |§| (A,B), we show the normalized cross-correlation Ky, y
and SN R;, defined in Sect. [[I] for each considered kinematic
variable over all the subjects, in percentual value. Data show
a statistical preponderance in the use of torso, as suggested in
[6]]. In total, 71.33% of the total cross-correlation, and 73.16%
of the total SN R score is associated with torso angles. Fig. [f]
(C) summarizes the presence of each kinematic variable in
the identified selected subset z*, as a result of the feature
selection procedure for the totality of the experiments. For
all participants (20,100%) torso pitch (frontal flexion) was
selected for the mapping. A large subset employed torso roll
(lateral flexion), and a minority used torso yaw (rotation).
Forearm motion was selected only for two subjects. For each
participant, our framework was able to provide a mapping
that was later used for teleoperation. This results proofs the
versatility of the proposed method for subjects moving in
different fashions.

Phase II - control of a simulated drone: we run between-
groups experiments to validate our method. 40 participants
performed a teleoperation task in the simulator described in
Sect. [lIl flying the fixed-wing UAV model through a 3D path
consisting of 42 subsequent waypoints. The participants took
part in this experiment directly after Phase I. The subjects
were split into four groups, each using a different HRI:

e Group 1: a standard remote controller with a non-
personalized mapping.

e Group 2: a BoMI implementing our previous non-
personalized mapping described in [6].

¢ Group 3: a BoMI implementing the linear version of the
proposed personalized method.

o Group 4: a BoMI implementing the nonlinear version of
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Fig. 6: The two components (A,B) of the quality metric for each
feature show a statistical preponderance in the use of torso motion as
a preferred motion behavior. (C) shows the features selected through
the quality metric (@). Torso roll and pitch angles are chosen as as
relevant for most subjects, while torso yaw and forearms are selected
only for a subset.

the proposed personalized method.

Note that Groups 3 and 4 correspond to the subjects
mentioned in Phase I. Fig. 3] shows a schematic of the
validation phases regarding both the simulated fixed-wing
UAV and the real quadrotor UAV. All subjects were shown
the simulation video and were let free to use their interface
in an arbitrary way, as if they were controlling the flight of
the fixed-wing UAYV, but having no control over the drone’s
trajectory. No further instructions were provided. This phase
is the same for all subjects to ensure coherent experimental
conditions. Participants belonging to Groups 3 and 4 used their
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personalized mapping interface, provided as an output of Phase
I (see Fig.[5), to control the UAV in simulation. Afterwards,
between Phase I and II, the participants belonging to Groups
1 and 2 were instructed how to use their interface, while the
ones in Groups 3 and 4 were only asked to move coherently
to Phase 1.

All the 32 subjects were able to teleoperate the UAV in
simulation through the waypoints. Each waypoint, visualized
as a round cloud in the air (Fig. E]), is located at a fixed distance
from the previous one, and a vertical or lateral displacement
corresponding to an up, down, right or left turn. The turns are
alternated in pseudo-random fashion in order for all subjects
to perform the same amount of each. An accuracy score was
computed to assess their ability. The distance from the n—th
waypoint center, computed on the plane passing through it
and perpendicular to the line crossing the (n—1)—th and the
(n+1)—th waypoint, is used as a measure of the error. The
distance is computed at the moment in which the UAV crosses
the aforementioned plane.

A N
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151 —— proposed (linear)

proposed (nonlinear)
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20 1 x 7
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Fig. 7: (A) Error evolution during the teleoperation of the simulated
drone. Dotted lines indicate the mean score across subjects in each
group, continuous lines correspond to an exponential fit. Vertical
dashed lines delimit respectively the end of initial phase and the
start of the final phase. (B) Within-group initial error (left), final
error (center) and learning score (right). Subjects provided with a
personalized mapping have a better initial performance and less
learning is required to them to reach the final performance plateau
(xp < 0.05, **xp < 0.01).

We let each participant teleoperate the simulated robot for
two runs over the 42 waypoints, corresponding to a time of
about five minutes, until they reached a performance plateau.
In Fig. [/] (A), the evolution of the error throughout the two
runs is shown as an estimate of the HRI learning curve.
After the end of the second run, corresponding to waypoint
84, performance is stable for all groups. The first minute is
where the most difference between groups happens, and it
corresponds to the phase of maximal learning (i.e., maximal
variation in the learning curve). We consider the error in
this phase, considering the average number of waypoints

crossed during the first minute of teleoperation. For Groups
1 and 2, the error in this phase corresponds to 7.23 £ 3.71m
and 8.97 + 4.57m, respectively. For Group 3, the error
was reduced (3.17 &= 1.90m, p; 3=0.019, p23<0.01), as for
Group 4 (2.98 £ 1.56m, p;4=0.012, p; 4<0.01), proving
the effectiveness of the proposed personalized method in the
initial learning phase. Groups 3 and 4 show no significant
difference, contrarily to our initial hypotheses and the pilot
study (p=0.88). Data about this phase are shown in Fig.
(B, left). Likewise, Fig. [/| (B, center) shows performance
in the final phase, defined as the last minute of teleopera-
tion. No significant difference is observed among methods,
excluding the pair non-personalized - proposed (nonlinear).
We also evaluated the learning effects throughout the whole
experiment. In Fig. [/| (B, right) we display the learning score,
defined as the ratio between the performance error in the
first and the last minute of the test. This score represents
how much the subjects had to improve their performance to
reach the final plateau. While this score is higher for Groups
1 (3.32 &+ 2.15m) and 2 (2.87 4+ 1.93m), it remains lower
in Groups 3 and 4 (1.18 £ 0.52m, p;3<0.01, ps3=0.028
and 1.29 £ 0.53m,, p1,4<0.01, p24=0.049, respectively).
Results show that the subjects using a personalized interface
improved less (i.e., had to learn less) with respect to the ones
using a remote or a wearable non-personalized ones. Statistical
significance is tested with by Kruskal-Wallis test, due to the
limited size of the participants pool.

After the experiment, we asked each subject personal feed-
back about the flight experience. In particular, we collected
information about how tired (Q1) and disturbed by motion
sickness (Q2) they felt at the end of the run, in a scale from 1
to 5. Data are shown in table[l} and suggest that the participants
using the BoMI, in average, did not feel significantly more
tired and experienced less motion sickness than participants
using a remote controller.

Group 1 Group 2 Group 3 Group 4
Q1 | 2.00£+1.07 | 2.16 +£1.07 2.0 £0.82 1.33 £ 0.66
Q2 | 2.864+0.99 | 2.33+1.49 1.83 £1.21 1.67 £1.25

TABLE I: Subjective feedback from the participants on experienced
fatigue (Q1) and motion sickness (Q2) during Phase II in the form
[mean = std], scale 1 to 5.

Phase III - control of a real drone: as a final step, we
assessed the ability of transferring the teleoperation skills ac-
quired during the simulation test to hardware implementation.
This phase follows the same protocol as in the real-world
experiments performed in [6]. 5 subjects from Group 1 and
5 subjects from Group 3 controlled the flight of a quadrotor
through a path consisting in four obstacles for a total of three
runs. The test was performed one week later than the Phase
II study. The quadrotor controls were set to mimic fixed-wing
dynamics and fly at constant speed of 0.3m/s in a controlled
environment. The user was allowed, through the same mapping
provided during the previous phase, to issue roll and pitch
commands, translated respectively into vertical velocity and a
combination of roll and yaw rate in the quadrotor body frame.

The experiments were performed with a Parrot Bebop 2.0



MACCHINI et al.: PERSONALIZED TELEROBOTICS BY FAST MACHINE LEARNING OF BODY-MACHINE INTERFACES 7

quadrotor connected through ROS to a ground control station.
The subjects were provided with the same motion capture
markerset as described previously. Their motion, converted
into roll and pitch controls through their personalized mapping,
was transmitted at a frequency of 10H z to the drone. A safety
fence was installed in the tracked volume to separate the zone
dedicated to the user from the flight area.

All the subjects from Group 3 were able to control the
robot’s trajectory (Fig. [8) through the path with a total of
92.5 + 6.13% obstacle avoidance success, confirming the
transferability of the learned teleoperation skills in a real-world
environment.

End position Start position

Fig. 8: 3D reconstruction of the hardware test scenario. In blue, the
trajectory of the real drone for a sample subject.

IV. DISCUSSION

In this paper, we describe the implementation and validation
of a framework able to learn relevant motion patterns and
mapping functions for a body-machine interface. We applied
it to the case of teleoperation of a fixed-wing drone. More-
over, through preliminary tests, we showed that the proposed
method can analogously be applied to the control of a real
quadcopter. A quantitative analysis of subjects’ performance
regarding the teleoperation of a real drone is out of the scope
of this letter and it will be addressed in future work. The
mapping results thus optimized for the specific user, taking
into account their instinctive motion when asked to behave
as if they were controlling a drone’s motion in FPV. We
demonstrate by preliminary experiments that personalization
and nonlinearity are effective features for the implementation
of an improved BoMI, as in Fig. ] Based on this, both
linear and nonlinear regression methods have been validated.
Through the extraction of functional motion synergies specific
to the task, the proposed architecture is able to provide
insights on humans’ preferred motor actions for teleoperation.
Specifically, the torso has been identified by our framework
as the dominant body segment instinctively adopted by users
for robot control (Fig. [6), confirming the results shown in a
previous study [6]].

In addition, we observed that participants using a standard
remote controller and a non-personalized BoMI took several
minutes to reach stable performance. Instead, naive users pro-
vided with a personalized body-machine mapping showed no
significant learning patterns throughout the whole experiment,
reaching a comparable proficiency plateau from the start. In the

first phase of the test, where a significant portion of learning
takes place, the subjects using a personalized body-machine
mapping performed 57% better than the ones using a remote
controller and 65% better than non-personalized BoMI users
(see Fig. [7). These results suggest that the personalization of
the interface mitigated for the initial learning effort, effect
typically achieved with the adoption of augmented feedback
to the user.

However, participants provided with linear and nonlinear
mapping functions achieved very similar performance. It is im-
portant to remark that our preliminary study (Fig. @) provides
an estimation of the motion nonlinearity through regression
error assessment, but our performance measure is not directly
related to this error: small nonlinearities might still be easy to
correct for a user. Indeed, most of the previous studies in the
field [16], [17], [[18] focus on reaching arm movements, while
experimental subjects employed mainly torso motion. Being
the torso a larger body segment than arms, and belonging to
a less peripheral area, it could be able to provide stronger
proprioceptive and vestibular feedback, and thus be easier to
control in a more linear manner. Moreover, torso movements
directly affect head motion, where most of the human sen-
sory organs are situated. Additionally, the limited amount of
controllable degrees of freedom of the robot allowed all users
to reach low error levels, especially with personalization and
training. We can interpret this as a ’saturation’ effect, which
cannot be further improved by acting solely on the interface.

Our experiments were conducted in a motion capture system
to track the participant’s body. However, our method is not
limited to be used in such environments. Conversely, the
recognized motion synergies and relevant body segments can
help its adaptation for outdoor implementation, for instance,
by means of IMUs as in [32]. They can also be used for
optimal sensor placement. Such application could facilitate the
deployment of body-controlled robotic systems on the field,
providing at the same time a minimal volume to be transported
for the wearable instrumentation.

The results of this work open several interesting future
research directions. It is important to remark that the frame-
work’s mathematical formulation makes no specific assump-
tions on the nature of either the source of the commands (here,
upper body motion) nor the morphology of the controlled
robotic system (here, a fixed-wing UAV). Extending to a
different body configuration, for instance adapted for impaired
individuals, or a different input device, or to more complex
robotic morphologies is an exciting future research direction
to be investigated. Additionally, investigating online learning
techniques for real-time adaptation of the mapping could be a
viable option to cope with a user’s change in preferences, or
with their improvements with experience. Moreover, although
our method was able to provide a subject-adapted mapping
for all the observed motion patterns, we individuated a small
diversity in the users’ behaviors. Therefore, testing our ap-
proach on a larger population will undoubtedly add value to
our work.
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V. CONCLUSIONS

This study represents a significant contribution in the do-
main of human-robot interfaces applied to teleoperation. The
use of remote controllers is an established method to control
mobile robots. Nonetheless, They provide a limited capabil-
ity of adaptation, requiring a significant amount of training
time and cognitive effort to be proficiently mastered. The
exploitation of natural body motion and the implementation
of an intelligent framework capable of translating intuitive
movements into robot commands could make the control of
complex robotic systems a user-friendly experience also for
novices. Furthermore, the generality of this method could
allow to extend it to a broader population and different robot
morphologies.
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