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Improving Visual Feature Extraction in Glacial
Environments

Steven D. Morad1,2, Jeremy Nash2, Shoya Higa2, Russell Smith2, Aaron Parness2, and Kobus Barnard3

Abstract—Glacial science could benefit tremendously from au-
tonomous robots, but previous glacial robots have had perception
issues in these colorless and featureless environments, specifically
with visual feature extraction. This translates to failures in visual
odometry and visual navigation. Glaciologists use near-infrared
imagery to reveal the underlying heterogeneous spatial structure
of snow and ice, and we theorize that this hidden near-infrared
structure could produce more and higher quality features than
available in visible light. We took a custom camera rig to Igloo
Cave at Mt. St. Helens to test our theory. The camera rig
contains two identical machine vision cameras, one which was
outfitted with multiple filters to see only near-infrared light. We
extracted features from short video clips taken inside Igloo Cave
at Mt. St. Helens, using three popular feature extractors (FAST,
SIFT, and SURF). We quantified the number of features and
their quality for visual navigation by comparing the resulting
orientation estimates to ground truth. Our main contribution
is the use of NIR longpass filters to improve the quantity and
quality of visual features in icy terrain, irrespective of the feature
extractor used.

Index Terms—Field robots, visual-based navigation, SLAM,
computer vision for automation

I. INTRODUCTION

SCIENTIFIC endeavors to many glaciers, such as Antarc-
tica, are difficult and time-consuming. Extreme cold and

lack of infrastructure restrict experiments. Some glaciers are
littered with deadly crevasses, hidden under a deceiving layer
of snow. Others break off or “calve” into the ocean, causing
seismic events that register on the Richter scale. Glaciers are
an environment ripe for automation.

Perception is a critical part of automation. Many machine
vision algorithms rely on image features to extract meaning
from an image. For navigation applications, these features
are usually based on corners, regions in an image with large
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(a) The ceiling entrance to Igloo Cave

(b) Left stereo picture without a
filter

(c) Right stereo picture with an
850nm filter (NIR-only)

Fig. 1: Pictures from Igloo Cave at Mt. St. Helens. Both stereo
pictures have contrast limited adaptive histogram equalization
applied. The NIR-only image produces more and higher qual-
ity features.

image gradients in two directions. Modern feature detectors
find features that are invariant to camera translations and in-
plane rotations. The motion of these features can inform a
robot on where it is going or how the environment around it
is changing – an integral part of robotics.

In our literature review, we found that a lack of visible
features hamstrings robots in glacial environments. In many
cases, successful glacial robots need to rely on other types
of sensors. Featureless layers of snow and ice do not provide
enough visual features for robotic decision making. However,
glaciologists have tools to help them analyze snow and ice
from afar. In particular, glaciologists make extensive use of
near-infrared (NIR) light to differentiate between types of
snow and ice. We leverage NIR light to improve the number
and quality of visual features for machine vision applications.
We investigate the optical properties of ice and snow to
understand why glaciologists use this tool, and how we can
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adapt it for machine vision applications.
To test our hypothesis, we build a camera rig that detects

both NIR and visible light, and use it to collect short video
clips of Igloo Cave at Mt. St. Helens (Fig. 1). Igloo Cave is
an ice cave that formed as the result of the volcanic activity
of St. Helens. Our analysis of the video clips shows that
filtered NIR vision generally outperforms unfiltered vision in
feature extraction and camera orientation estimation in glacial
environments such as Igloo Cave.

II. RELATED WORK

A. Glacial Robots and Vision

The NASA funded Nomad robot was the first autonomous
Antarctic robot. Its mission was to find meteorites in the
Elephant Moraine. It was equipped with stereo cameras, but,
as reported by Moorehead et al. [1]: “In all conditions, stereo
[vision] was not able to produce sufficiently dense disparity
maps to be useful for navigation” .

More recently, Paton et al. [2] mounted stereo cameras
on the MATS rover to explore the use of visual odometry
in polar environments. They found that feature-based visual
odometry performed poorly in icy environments: “From harsh
lighting conditions to deep snow, we show through a series
of field trials that there remain serious issues with navigation
in these environments, which must be addressed in order for
long-term, vision-based navigation to succeed ... Snow is an
especially difficult environment for vision-based systems as it
is practically contrast free, causing a lack of visual features”.

Similar to Paton et al., Williams and Howard [3] developed
and tested a 3D orientation estimation algorithm on the Juneau
Ice Field in Alaska. They wrote “When dealing with arctic
images, feature extraction is possibly the biggest challenge”.
They used contrast limited adaptive histogram equalization
(CLAHE) post-processing to enhance contrast and make fea-
tures stand out better. Their algorithm can extract many more
features than previously possible, but they still experience
significant pose drift.

To summarize, previous attempts at glacial robots have had
less-than-successful performance with vision in icy environ-
ments. By and large, this is mostly due to lack of visual
features in vast sheets of ice and snow.

B. Near-Infrared Filtering and Glaciology

Near-infrared (750-2500nm) imaging is a known tool in
glaciology. Champollion used NIR imaging to get better
images of hoarfrost in Antarctica [4]. NIR imagery from
the MODIS satellite has been used to calculate continent-
wide surface morphology and ice grain size measurements in
Antarctica [5]. Matzl and Schneebeli took NIR photographs
of roughly one square meter of ice and snow, generating a 1D
spatial map of grain structure within the snowpack [6]. They
found found that at meter-scales, differences in the snowpack
are visible in NIR .

C. Near-Infrared Feature Extraction

Relatively little work on feature extraction has been done
in the near-infrared. Kachurka et al. [7] evaluated standard

Fig. 2: NIR albedo depends much more on ice grain size than
visible light. For reference, the human eye is most receptive
at 0.56µm [14]. Adapted from [11].

ORB SLAM in the short-wave IR (SWIR), with the addition
of a small keyframe modification to reduce the occurrence
of reinitialization. Johannsen et al.[8] suggest that the ORB
feature extractor performed best in their thermal IR feature
extractor benchmark . Neither of these evaluate performance in
the NIR waveband. Additionally, glacial environments appear
drastically different than their urban test environments. Sima
and Buckley [9] and Ricaurte at al. [10] discuss optimizing
feature extractors in SWIR and thermal IR to enable matching
to features captured in visible light, but again, not for icy
evironments.

III. METHOD

A. Scattering Models

Wiscombe’s seminal work on the optics of snow and ice
utilizes Mie theory to describe scattering. Their model de-
scribes the optics of ice and snow from 300nm to 5000nm.
They find that the reflectance of ice grains between 750 and
1400nm is mostly dependent on the size of the grains [11]
(Fig. 2), thereby exposing structure invisible outside those
wavelengths. For reference, visible light ends at 740nm. Since
their work was published, several other papers have confirmed
that snow albedo (brightness) is sensitive to ice grain size in
NIR wavelengths [12] [13].

B. Specific Surface Area and Grain Size

Ice and snow are made up of small ice crystals called ice
grains that measure from tens to thousands of microns across
[5]. The term “grain size” refers to the diameter of these grains,
but is sometimes misleading. In optics, the grain size of ice
has two meanings: the true size of the grain or the optical size
of the grain. Thus far, we have referred to the optical grain
size. The optical size is used in idealized lighting models to
reconcile the error between modeled and observed values for
a specific true grain size.

The specific surface area (SSA) of snow and ice is defined as
the ratio between the surface area and volume of the ice. SSA
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is strongly coupled with optical grain size [15], but can also
effectively represent differences in grain shape. SSA has been
shown to better represent the optical bulk-properties of real-
world snow and ice [16]. The SSA can also represent spatially
varying properties of snow and ice, such as air content or ice
age [17]. While individual ice grains are usually too small to
resolve by camera, regions of snow and ice with differing SSA
are not. Varying SSA regions appear differently when viewed
in NIR light. These differences in NIR light produce more
numerous and distinct visual features than if viewed in visible
light.

IV. EXPERIMENT

We set out to compare the number and quality of features
extracted from NIR and visible light imagery. First, we define
the scenes where video is taken. Then, we discuss the camera
rig design and camera parameters. We go over the video
capture procedure and the metrics we use to evaluate each
scene.

A. Cave Scenes

We analyze video from four different scenes inside Igloo
Cave at Mt. St. Helens. The first scene is a featureless firn wall,
the second scene is a striated firn wall, and the third scene is
planar snow. The fourth scene is a walking tour around one
portion of the cave. Indirect sunlight illuminates all but the
planar snow scene, which is illuminated by the lamp on the
camera rig.

B. Camera Rig Design

A hand-held camera rig was built to collect NIR data and
compare it to visible light. We mount two identical PointGrey
FLEA-3 monochrome cameras to a 3D printed structure in
a stereo configuration with a 10cm baseline (Fig. 3). The
right camera has a filter wheel flush with the lens assembly.
The filter wheel contains five NIR longpass filters with cut-on
wavelengths of 800nm, 850nm, 900nm, 950nm, and 1000nm.
These filters block light below their cut-on wavelength. We
also attach a terrarium lamp on the underside of the rig,
centered between the two cameras. The terrarium lamp has
a ceramic reflector that reflects light in both visible and IR
spectrums. A 75W halogen-tungsten incandescent bulb sits in
the terrarium lamp to provide smooth, continuous illumination
over both the visible and infrared spectrums. Mounted between
the cameras is a VectorNav VN-200 inertial measurement unit
(IMU) that provides ground truth orientation data. The VN-
200 provides yaw to within 0.3° and pitch/roll to within 0.1°
RMS, and runs at 800Hz.

C. Camera Parameters

Varying lighting conditions and the differing transmissivity
of each filter made hand-setting camera parameters for each
scene very difficult. Due to the significant difference in light
received by the sensors, one set of parameters would not work
for both cameras. By setting camera parameters differently for
each camera, we could bias the results. For these reasons, we

Fig. 3: The camera rig and a firn wall at St. Helens

set the cameras to auto mode. Auto mode automatically sets
the analog gain, shutter speed, and sharpness of each camera.
Because the NIR camera receives less light, it has a higher
gain and prolonged exposure, which results in noisier and
blurrier video. This provides some advantage to the visible
light camera, but we did not attempt to quantify the extent of
the advantage. We set the camera to capture 20 frames per
second, but due to in-situ video compression the framerate
would sometimes drop as low as 15 frames per second.

D. Procedure
We hold the camera rig by hand and take short videos while

trying to keep the rig from moving too much. In all scenes, the
rig is between one and six feet from the region of interest. If
the scene is too dark for the unfiltered camera, the illuminator
is turned on. For each scene, we run the experiment five times,
each time cycling to the next NIR longpass filter on the right
camera. For the cave tour, the camera rig is held a few feet
from the cave wall as the operator walks about the cave. The
path is identical for all filters. In our videos, we observe only
snow and ice. Special care is taken to ensure that no rocks
or foliage appear in any of the videos. Videos that contained
enough volcanic ash to affect the results were discarded, except
for the cave tour.

E. Preprocessing
Each image frame goes through a preprocessing pipeline

before analysis. Lens distortion causes straight lines to appear
slightly curved in the image; images are rectified to remove
this effect. Next, we remove vignetting created by the filter
wheel. Hough circles are used to detect the vignette perimeter.
Once the perimeter is determined, we inscribe a bounding
square in the hough circle. On both cameras, we only use
data within the bounding square. Finally, the resulting image
goes through CLAHE to improve contrast, as Williams and
Howard suggest for icy environments [18] [3].

F. Metrics
We evaluate multiple feature detectors: SIFT [19], SURF

[20], and the slightly modified scale-space version of FAST
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used in the ORB paper [21]. All feature detectors we use are
scale-invariant by way of a scale-space pyramid. Each feature
detector, except for SURF, uses default OpenCV parameters
to reduce the chance of biasing parameters to improve NIR
imagery at the expense of visible light imagery. The minimum
Hessian threshold for SURF is raised to 500 to produce
features similar in quantity and quality to SIFT and FAST.

1) Feature Count: The most straightforward metric is
counting the number of features in each picture. Five features
is the practical lower bound for visual pose estimation [22].
With RANSAC, more features result in more samples for pose
estimation at the expense of some computational overhead
[23]. We take the median number of features per frame over
the entire video. Then, we take the mean over all feature
extractors.

2) Valid Orientation Percentage (VOP): Just counting the
raw number of extracted features can be misleading because
“false features” are counted. False features are features created
from camera noise or other sources that do not persist between
frames and are not useful for vision. The ultimate test for
feature extraction is whether the features are good enough to
provide valid visual odometry estimates.

We estimate the essential matrix E using our lab-estimated
intrinsics K. We feed the keypoints from a specific extractor
to OpenCV’s findEssentialMat function which uses
Nister’s five-point algorithm to determine E [22] [24]. Once
we have E, we decompose it into a rotation matrix and
translation vector. Due to the inherent noisiness caused by
double integration of accelerometer data, we cannot analyze
translation. We compare the relative difference in orientation
between two frames to the ground truth value recorded by
the IMU. If the relative 3D rotation is within five degrees of
the ground truth, we consider the estimate valid and invalid
otherwise. If for any reason we are unable to construct or
decompose E, we consider that estimate invalid. We provide
the percentage of frame pairs with a valid estimate out of
the total number of frame pairs. In other words, this metric
describes how often we are are able to accurately estimate
relative camera orientation from the extracted features. We
call this metric the Valid Orientation Percentage (VOP).

V. RESULTS

Although we used filters up to 1000nm, indirect lighting
conditions combined with reduced camera sensitivity results
in pitch black videos for longer wavelength filters. Even with
the lamp, some filter and scene combinations were too dark for
analysis. For this reason, we exclude the 950nm and 1000nm
filter results.

We provide our results in Fig. 4, 5. CLAHE modified
imagery always outperformed non-CLAHE imagery, so we
omit the non-CLAHE results. The overall best performing
filter is 850nm, beating visible light (no filter). The 800nm
filter performed almost as well as the 850nm filter, and still
beat unfiltered light. Filtered light outperformed unfiltered
light except in the cave tour scene, due to volcanic ash that
provided additional features in the visible spectrum. Looking
at performance arranged by feature extractor, filtered light

Fig. 4: Natural log of the feature count, broken down by scene.
NIR imagery produced orders of magnitude more features.

outperformed unfiltered light for all tested feature extractors
(Fig. 5c). This shows that the NIR performance gains are
extractor agnostic – NIR provides more visual information
for the feature extraction and visual odometry problems,
irrespective of the extractor used.

VI. DISCUSSION

A. Concrete Examples

We attempt to connect the results back to our SSA hypoth-
esis through qualitative means. The planar snow scene is the
best example of the spatially-varying SSA. When comparing
the visible light image (Fig. 1b) to the NIR image (Fig. 1c),
there is a stark difference. The NIR image almost looks like
a cloudy sky or a nebula. The darker regions are those with
smaller SSA. These are likely regions of older snow, where
dendritic grains transition to round grains [25]. The brighter
areas could be regions of new snow with higher SSA.

Also visibly interesting is the striated firn wall scene (Fig.
7). The striation in this scene is known as melt-freeze crust,
where melting snow or rain creates a layer of water, then
refreezes producing large ice grains [26]. These large ice
grains result in a small SSA and a dark streak in the NIR
image (Fig. 7b). Note that in the unfiltered image, the SSA
has little effect and the streak is barely visible (Fig. 7a).

B. Practical Considerations

While other light spectrums have interesting interactions
with ice crystals, NIR light is the most practical. Most silicon
CMOS and CCD camera sensors are sensitive to NIR light.
Many machine vision cameras come without a NIR-blocking
filter, allowing them to view NIR light out of the box.
Consumer cameras tend to have NIR blocking filters to restrict
the sensor to the human vision range. These filters can easily
be replaced with NIR longpass filters, allowing almost any
commercial camera to see in only NIR wavelengths.

While cameras sensitivities vary, the spectral sensitivity
of the Flea3 cameras is representative of other commercial
cameras. For most cameras, we expect that 800nm and 850nm
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(a) Results breakdown by filter wavelength

(b) Results breakdown by scene

(c) Results breakdown by feature extractor

Fig. 5: Comparisons of orientation validity broken down into
various buckets. For Fig. 5b, 5c, NIR corresponds to the best
performing filter for each scene.

Fig. 6: Ratio of inliers to total keypoints (inliers plus outliers),
broken down by extractor. NIR corresponds to the best per-
forming (VOP) filter for each scene. The ratio only considers
frames where the essential matrix is found.

(a) Left stereo picture without a
filter

(b) Right stereo picture with an
850nm filter

Fig. 7: Stereo imagery of a striated firn wall. The melt-freeze
crust near the top of the stereo images provides features in
NIR.

pass filters with CLAHE post-processing will produce the best
visual features. The noisy low-light photography produced by
the 900nm and higher filters combined with noise-sensitive
CLAHE results in many features created from noise. A sensor
that is more sensitive to NIR light would perform better in
longer wavelengths with CLAHE. Most of the testing occurred
inside a darkened cave, the darker filters will likely perform
better outside in direct sunlight.

C. Future Work

The cameras we used only touch the very beginning of
the NIR spectrum. With specialized NIR sensors, it may
be possible to extract even more features. Indium-Gallium-
Arsenide sensors are commercially available and span the full
NIR spectrum. Furthermore, other types of sensors such a
polarization sensors may provide additional benefits.

We evaluated the feature extractors without changing the
extractor default parameters to isolate light wavelength as
the independent variable. We have shown that NIR generally
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outperforms visible light in this task, the next step is to find
the optimal feature extractor and associated parameters.

All analyzed scenes are from inside Igloo Cave at St.
Helens, which means that all imagery is “indoors”. While this
is important for NASA’s future goals, future research should
strive to obtain test data from outdoor environments to test
far-field visual navigation as well.

Although we quantified orientation error between frames,
we did not explore how NIR imagery would perform long-
term in a SLAM scenario. We would have liked to test this, but
we had no way to correct IMU drift while collecting ground
truth data. Future experiments should focus on improving the
quality of ground truth data.

VII. CONCLUSION

Our experimental results from Igloo Cave suggest that NIR
light is an attractive alternative to visible light for feature
extraction and visual navigation in glacial environments. In
most of our cases, the NIR imagery outperformed visible
light imagery. We were able to accurately estimate camera
orientation much more often in NIR imagery than in visible
light imagery. The biggest disadvantage of using NIR pass
filters on a regular camera indoors is the reduced amount of
light that hits the sensor. Longer exposures and higher gain can
mitigate this this to an extent, but indoors, ensuring adequate
lighting is very important. Above 850nm, the light reduction
started to severely impact the image quality in the form of blur
or noise. With larger illuminators or more sensitive cameras,
it is likely that the optimal wavelength will be higher and
perhaps the performance even better.
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