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Learning to Optimally Segment Point Clouds
Peiyun Hu , David Held , and Deva Ramanan

Abstract—We focus on the problem of class-agnostic instance
segmentation of LiDAR point clouds. We propose an approach
that combines graph-theoretic search with data-driven learning:
it searches over a set of candidate segmentations and returns one
where individual segments score well according to a data-driven
point-based model of “objectness”. We prove that if we score a seg-
mentation by the worst objectness among its individual segments,
there is an efficient algorithm that finds the optimal worst-case
segmentation among an exponentially large number of candidate
segmentations. We also present an efficient algorithm for the
average-case. For evaluation, we repurpose KITTI 3D detection as
a segmentation benchmark and empirically demonstrate that our
algorithms significantly outperform past bottom-up segmentation
approaches and top-down object-based algorithms on segmenting
point clouds.

Index Terms—Computer vision for automation, deep learning
in robotics and automation, object detection, segmentation and
categorization, semantic scene understanding.

I. INTRODUCTION

P ERCEPTION for autonomous robots presents a collection
of compelling challenges for computer vision. We focus on

the application of autonomous vehicles. This domain has three
notable properties that tend not to surface in traditional vision
applications: (1) 3D sensing in the form of LiDAR technology,
which exhibits different properties than traditional 3D vision
captured through stereo or structured light. Despite significant
work in this area, the right representation for such sparse 3D
signals still remains an open question. (2) Contemporary ap-
proaches to object detection and scene understanding tend to
be closed-world, where the task is predicting 1-of-N possible
labels. But autonomous systems require the ability to recog-
nize all possible obstacles and movers - e.g., a piece of road
debris must be avoided regardless of what name it has. Such
understanding is crucial from a safety perspective. Historically,
this has been formulated as a perceptual grouping or bottom-up
segmentation task, which is typically addressed with different
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Fig. 1. Our proposed algorithm takes a pre-processed LiDAR point cloud
with background removed (top) and produces a class-agnostic instance-level
segmentation over all foreground points (bottom). For visualization, we use a
different color for each segment and plot an extruded polygon to show the spatial
extent.

approaches. (3) Finally, practical autonomous robotics makes
heavy use of perceptual priors in the forms of geometric maps
and assumptions on LiDAR geometry. Indeed, prior map was a
crucial component among finishing entries in the DARPA Urban
Grand Challenge [1], [2].

Motivation: In this work, we focus on the problem of class-
agnostic instance segmentation of LiDAR point clouds (Fig-
ure 1) in an open-world setting. We carefully mix graph-theoretic
algorithms with data-driven learning. Data-driven learning has
made an undeniable impact on computer vision, but it is dif-
ficult to make guarantees about performance when processing
out-of-sample data from an open world. Geometric graph-based
approaches for segmentation tend not to require training and so
are less-like to overfit, but also tend to be brittle.

Approach: Our approach searches over an exponentially-large
space of candidate segmentations and returns one where individ-
ual segments score well according to a data-driven point-based
model of “objectness” [3]. We demonstrate that one can repur-
pose existing closed-world point networks [4] for bottom-up
perceptual grouping tasks that generalize to objects rarely seen
during training.

Optimality: We prove that our approach produces optimal
segmentations according to a specific definition. First, we restrict
the search into a subset of segmentations that are consistent
with a hierarchical grouping of a point cloud sweep. Such
hierarchical groups can be readily produced with agglomera-
tive clustering [5], HDBSCAN [6], or hierarchical graph-based
algorithms [7].
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Fig. 2. On the left, we visualize a set with 6 points. According to Bell number,
one will find 203 unique segmentations (partitions). Most of these are arbitrary
and do not respect local geometry, e.g. {{1, 2, 5}, {3, 4, 6}}. On the right, we
implement geometric constraints with a tree formed by hierarchical grouping.
Every vertex cut of this tree is automatically a segmentation that respects local
geometry encoded by the tree, e.g. {{1}, {2, 3}, {4, 5, 6}}.

Naive methods for producing a segmentation might apply
a global threshold over the whole hierarchy. It turns out that
one can produce an exponentially-large set of segmentations by
applying different thresholds at different branches. We introduce
efficient algorithms that search over this space of tree-consistent
segmentations (Figure 2) and return the one that maximizes a
global segmentation score that is computed by aggregating local
objectness scores of individual segments.

Evaluation: We demonstrate empirical results on KITTI, a
benchmark originally designed for closed-world object detec-
tion. Following past work, we repurpose it for open-world
3D segmentation [8]. We compare to existing bottom-up ap-
proaches [9] and state-of-the-art LiDAR-based object detectors
after converting their output 3D bounding boxes to a point cloud
segmentation. We demonstrate that our approaches outperform
both baselines on less common classes.

II. RELATED WORK

Robust 3D object detection is crucial for downstream appli-
cations such as semantic understanding [10] and tracking [11].
Comparing to monocular 3D detection [12], we focus on
LiDAR-based solutions in this letter.

LiDAR segmentation: Classic LiDAR segmentation algo-
rithms use bottom-up grouping such as flood-filling [13],
connected components [14], or density-based clustering [6].
Bottom-up strategies can also be applied on LiDAR sequences,
allowing for motion as an additional cue [15]–[17]. Oftentimes
such approaches are tuned for particular object categories such
as cars. Our work differs in its use of static, single-frame cues
that are not object-specific.

LiDAR object detection: There is an ever-increasing literature
on data-driven object detection with LiDAR point clouds. Early
approaches include fusion-based models that combine LiDAR
and imagery [18], tracking-based detectors [19] and voxel-based
classifiers [20]–[22]. We have seen approaches built upon raw
point clouds such as PointRCNN [23]. Our approach is most
related to Frustum PointNet [24] in the way we use pooled point
cloud representation [4]. Our work differs in that we do not make
use of camera input, and most notably, focus on all possible
objects in an open world. Specifically, we compare to [18], [21],
[22], [25] as a representative sample of the literature.

Perceptual grouping: Our graph-based approach is inspired
by a long line of classic work on graph-theoretic perceptual

grouping, dating back to normalized cuts [23], graph cuts [26],
and spanning-tree approaches [27]. Such methods are typically
used with hand-designed features, while we make use of data-
driven techniques for learning a shape-based segment classifier.

Image segmentation: The idea of searching for an optimal
image segmentation given a hierarchical image segmentation
tree has been explored. [28] formulates neuron segmentation
on electron microscopy images as a maximum a posteriori
(MAP) labeling task on a tree-structured graph. It can be made
equivalent to our search under certain conditions. [29] tackles
the problem of class-agnostic instance segmentation in image
space by exploiting visual appearance and motion. We discuss
more in Sections III and IV-B.

III. APPROACH

For 3D object point segmentation, the input is a 3D point
cloud, which contains an unknown number of objects. The goal
is to produce a point segmentation, in which every segment
contains points from one and only one object.

Segmentation: A global segmentation PX is a partition of
a set of points X = {xi}Ni=1 into subsets of points, i.e. PX =
{Ci}Mi=1, where M denotes the number of segments and Ci ⊂
X . We refer to each Ci as a local segment. Importantly, every
point exists in one and only one segment, meaning∪Mi=1Ci = X
and ∀i �= j, Ci ∩ Cj = ∅.

Tree-consistent segmentations: Let us use SX to denote the
set of all possible global segmentations on X , i.e. all possible
PX . Without constraints, the size of SX is exponential in N
(i.e. the Bell number). In practice, we can reduce the number of
candidates by enforcing geometric constraints. In this work, we
implement the constraints by grouping all points hierarchically
into a tree structure TX . We will discuss how to build such a
tree structure based on local geometric cues in Section III-D.
For now let us assume the tree is given.

Once we specify the tree, we can focus on a strictly smaller
set of segmentations that respect local geometry. We denote
such set as SX,T and call them tree-consistent segmentations.
As a reference, the size of SX,T is still exponential in N ,
when TX is a balanced binary tree.1 We further illustrate the
relationship between SX and SX,T with an example in Figure 2.
Any tree-consistent segmentation from SX,T corresponds to a
vertex cut set of the tree T , i.e. a set of tree nodes, which satisfy
the following constraints: (1) for each node in the vertex cut, its
ancestor and itself cannot both be in the cut and (2) each leaf
node must have itself or its ancestor in the cut. Such relationship
allows us to design efficient tree searching algorithms, as we
will see later.

Segment score: Before we discuss how to score a global
segmentation, we first introduce how to score a local segment.
Given a local segment C ⊂ X , we define a function f(C; θ) :
C �→ [0, 1] that predicts a given segment’s “objectness,” where

1One can derive recurrence on the number of segmentations between depth
d+1 and d asKd+1 = K2

d + 1withK1 = 2. SinceKd > 22(d−1),Kd/Nd >

2d−2, where Nd = 2d represents the number of leaves, it suggests the number
of segmentations at least outgrow the number of leaves exponentially.



HU et al.: LEARNING TO OPTIMALLY SEGMENT POINT CLOUDS 877

θ represents the parameters. One can implement such a func-
tion with a PointNet++, where θ would represent weights of
the PointNet++. We will discuss how to learn this function in
Section III-C. For now let us assume it is given.

Segmentation score: We now introduce how to score a global
segmentation. Given a global segmentation PX = {Ci}Mi=1, we
define its score F (PX ; θ) : PX �→ [0, 1] by aggregating over
local objectness of its individual segments. Specifically, we
introduce worst-case segmentation and average-case segmen-
tation. Note that our objective can be made equivalent to [28] if
we score a segmentation as the sum of its local segment scores.
As we see in Section IV-B, this objective produces much larger
oversegmentation error.

A. Worst-Case Segmentation

Worst-case segmentation scores a global segmentation as the
worst objectness among its local segments:

Fmin(PX ; θ) = min
i

f(Ci; θ), i ∈ 1 . . .M (1)

where PX ∈ SX,T , PX = {Ci}Mi=1, and Ci ⊂ X . We define
P ∗X,min as the optimal worst-case segmentation if

P ∗X,min = argmax
PX∈SX,T

Fmin(PX ; θ) (2)

It turns out the problem of finding optimal worst-case seg-
mentation has optimal substructure (Theorem 1), allowing us to
find the global optimum efficiently with dynamic programming
(Algorithm 1).

We briefly describe how the algorithm works. Given a set
of points X and a tree TX , OPTMINSEG(X , TX ) (Algorithm 1)
produces an optimal worst-case segmentationP ∗X,min with score
F ∗min(P

∗
X,min ; θ). For simplicity, we refer to a node in the tree by

the set of points it is associated with. The algorithm starts from
the root node X and chooses between a coarse segmentation
({X}) and a fine one. The fine segmentation will be the union
of all X‘s children’s optimal worst-case segmentation, which
can be computed recursively. The algorithm would first traverse
down to the leaf nodes, representing the finest segmentation.
Then it will make its way up, during which it finalizes opti-
mal segmentations for each intermediate node by making local
coarse vs. fine decisions. Eventually, it returns to the root node
and produces an optimal worst-case global segmentation.

Lemma 1: Given pairs of non-empty sets that contain real
numbers (X1, Y1), . . . , (Xn, Yn),

∀i, min
x∈Xi

x ≤ min
y∈Yi

y ⇒ min
x∈∪iXi

x ≤ min
y∈∪iYi

y (3)

Theorem 1: Given C and TC , Algorithm 1 finds the optimal
segmentation P ∗C,min = argmaxPC∈SC,T

Fmin(PC ; θ).
Proof: Proof by structural induction.
Base: When NC = ∅, meaning C corresponds to a leaf node

inTC , the algorithm returns {C}, which is the only segmentation
in SC,T and obviously is optimal.

Induction: WhenNC �= ∅, we need to show that the algorithm
will produce the optimal segmentation, i.e. P ∗C and F ∗C , if it has
access to the optimal segmentation for each of C’s child Ci, i.e.
P ∗Ci

and F ∗Ci
(optimal substructure).

Algorithm 1: Optimal Worst-Case Segmentation.
1: function OPTMINSEG(C, TC )

return a segmentation PC with a score of FC

2: PC ← {C}
3: FC ← f(C; θ)
4: NC ← set of C’s children nodes in TC

5: if NC �= ∅ then
6: for Ci in NC do
7: TCi

← subtree of TC rooted at Ci

8: PCi
, FCi

= OPTMINSEG(Ci, TCi
)

9: if FCi
≤ FC then return PC , FC

10: if mini FCi
> FC then

11: PC ← ∪iPCi

12: FC ← mini FCi

return PC , FC

Let PC be the segmentation that the algorithm produces for
C and let FC be its score. If PC were not optimal, there must
exist a different segmentation P ′′C with score F ′C , s.t. P ′C �= PC

and F ′C > FC . Moreover, P ′C is either a trivial segmentation,
i.e. P ′C = {C} or the union of segmentations over each of C’s
children nodes, i.e. P ′C = ∪i{P ′Ci

}.
First, P ′C is not a trivial segmentation. If we assume P ′C =
{C}, we will have F ′C = f(C; θ). Since PC �= P ′C , the algo-
rithm chooses PC over {C}, therefore, FC > f(C; θ). This
clearly contradicts with F ′C > FC .

Thus, P ′C has to be the union of segmentations over each
of C’s children node. According to the inductive hypothesis,
the algorithm has the optimal segmentation over each of C’s
children node, meaning ∀i, F ′Ci

≤ F ∗Ci
or concretely

∀i, min
z∈P ′Ci

f(z; θ) ≤ min
z∈P ∗Ci

f(z; θ) (4)

Here, z represents an arbitrary local segment from a segmenta-
tion over Ci. By applying Lemma 1, we have

min
z∈∪iP ′Ci

f(z; θ) ≤ min
z∈∪iP ∗Ci

f(z; θ) (5)

On one hand, P ′C = ∪i{P ′Ci
} has a score of F ′C =

minz∈∪iP ′Ci
f(z; θ). On the other hand, the algorithm by design

chooses the higher scoring one between PC = {C} with a
score of FC = f(C; θ) and PC = ∪iP ∗Ci

with a score of FC =
minz∈∪iP ∗Ci

f(z; θ), ensuring that FC ≥ minz∈∪iP ∗Ci
f(z; θ).

With these and (5), we conclude FC ≥ F ′C , which contradicts
the assumption F ′C > FC . �

Generality: Our analysis makes no assumptions about the
objectness function f(C; θ) except the fact that it cannot be
affected by the partitioning of other segments. In particular, this
would allow objectness to depend on contextual arrangement of
surrounding points outside C - e.g., f(C,X; θ).

Efficiency: Given points X and a tree TX with N leaf nodes,
Algorithm 1 guarantees to return the optimal worst-case segmen-
tation after visiting every node in the tree. In practice, it might
not visit all nodes. Instead, it skips the rest of sub-trees whenever
one sub-tree exhibits lower score than the coarse segmentation
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Fig. 3. We illustrate why average-case segmentation does not have optimal
substructure. We plot a tree on the left and show local objectness scores on the
right. In this case, the optimal average-case segmentation of the root node, i.e.
{{1,2,...,n},{n+1}} cannot be formed by the optimal average-case segmentations
of its children nodes, i.e. {{1},{2},...,{n}} and {{n+1}}.

(line 9 in Algorithm 1). The algorithm’s complexity is linear in
N despite the fact that the search space is exponential in N .

B. Average-Case Segmentation

Average-case segmentation scores a global segmentation as
the average objectness among its local segments:

Favg (PX ; θ) =
1

M

M∑

i=1

f(Ci; θ) (6)

where PX ∈ SX,T , PX = {C1, . . . , CM}, and Ci ⊂ X . We
define P ∗X,avg as an optimal average-case segmentation if

P ∗X,avg = argmax
PX∈SX,T

Favg (PX ; θ) (7)

It turns out that the problem of finding the optimal average-
case segmentation does not have optimal substructure, unlike
worst-case segmentation, meaning a locally optimal partitioning
might no longer be optimal when considering global partition-
ing. Formally speaking, Lemma 1 no longer holds once min is
changed to avg.

Despite without optimal substructure, we apply a similar
greedy searching algorithm. The main difference is how we
aggregate local scores. Though greedily averaging local scores
might lead to myopic decisions in certain situations (Figure 3),
it performs well in practice (Section IV).

C. Learning the Objectness Function

We have discussed segmentation algorithms under the as-
sumption that we already have access to an objectness function
f(C; θ), which predicts an objectness score for a given point
cloud. We now introduce how to learn this function. Despite
there has been a line of work that focuses on learning better
representation, including Kd-networks [30], PointCNN [31],
EdgeConv [32], PointConv [33], just to name a few, we choose a
simple PointNet++ to parameterize such an objectness function
as a proof of concept. Below, we talk about how to learn a
PointNet++ model as a regressor to predict objectness score.

Ground truth objectness: First, we must define regression
target, i.e. ground truth objectness, of a given segment C. Sup-
pose we have ground truth segmentationP gt = {Cgt

1 , . . . , Cgt
L },

where L is the number of ground truth segments. We can define
C’s target objectness as the largest point IoU between itself and

any ground truth segment Eq. (8).

Objectness(C,P gt) = max
l=1,...,L

|C ∩ Cgt
l |

|C ∪ Cgt
l |

(8)

Such a definition of objectness is only reasonable if points
are uniformly distributed in space. In practice, 3D sensors
(e.g. LiDAR) tend to produce denser points near the sensor.
In consequence, the objectness will be heavily influenced by
the partitioning of points closer to the sensor. For example,
imagine two objects are segmented into one segment. Suppose
one object has n1 points and the other has n2. If we use vanilla
IoU as objectness, this segment would score max(n1,n2)

n1+n2
. When

n1 � n2, the score could be really close to 1 despite it clearly
introduces an under-segmentation error. To compensate such
bias towards nearby objects, we propose a simple modification
to IoU as in Eq. (9).

Objectness(C,P gt) = max
l=1,...,L

∑
x∈C∩Cgt

l
xTx

∑
x∈C∪Cgt

l
xTx

(9)

where xTx represents a point x’s squared distance to sensor
origin. Eq. (8) is a special case, where xTx is replaced with 1.

Implementation: We train a PointNet++ w/ multi-scale group-
ing (MSG) [4] for learning the objectness function. Starting from
the off-the-shelf architecture, we replaced the classifier with a
regressor that produces a real-value given an input point cloud.
We applied a sigmoid function to convert the regression output to
numbers between [0, 1]. Finally, we compute the mean-squared
error between prediction and ground truth objectness and per-
form backprop. In terms of preprocessing, we follow [24] to
make sure the input cloud is centered at origin and rotated based
on the viewpoint. To facilitate batch processing, we follow the
standard practice for PointNet++ and re-sample each segment
to 1024 points.

D. Building Tree Hierarchies

We have discussed segmentation algorithms under the as-
sumption that we have access to a tree hierarchy. Now we
introduce how to build such a tree hierarchy given a set of points
X . One natural approach is agglomerative clustering. After we
define a metric (i.e. pairwise distance between two points) and
a linkage criteria (i.e. pairwise distance between two sets of
points), we can start from {{x1}, . . . , {xN}} and keep merging
the closest pair of point sets by taking the union over them, until
all points are merged into one set. Such an approach produces a
tree in a bottom-up fashion.

This approach tends to create tree hierarchies with very fine
granularity, e.g. one node may differ from another with only one
point of difference. As we have mentioned, our segmentation
algorithms need to evaluate the objectness of every node in the
tree. From an efficiency point of view, we would like to build a
coarser tree whose leaf nodes are segments rather than individual
points. Moreover, adjacent nodes should differ from each other
much more.

Implementation: We build tree hierarchies by applying
Euclidean Clustering [9] recursively in a top-down fashion
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with a list of decreasing ε. Since Euclidean Clustering finds
connected components w.r.t. a distance threshold ε, we start
with the largest ε that defines the most coarse connected
components. Then, we apply Euclidean Clustering with a
smaller ε within each connected component. This produces a
multiple-tree top-down hierarchy. In our experiments, we use
ε ∈ {2 m, 1 m, 0.5 m, 0.25 m} to build tree hierarchies for both
training and testing. During training, we extract segments out
of tree hierarchies built with the same parameters to form our
training set for learning the objectness function. During testing,
we apply the same learned objectness function in both worst-case
semgentation and average-case segmentation.

IV. EXPERIMENTS

For evaluation, we repurpose the KITTI object detection
benchmark for point cloud segmentation following the setup
in [8]. In our case, 3D objects do not physically overlap with
one another. Therefore, we use ground truth 3D bounding boxes
to produce ground truth segmentation. To do so, we first remove
all points outside ground truth 3D bounding boxes (Figure 1).
Then we treat points within one ground truth 3D bounding box
as the ground truth segment for the object. On KITTI, there exist
ground truth 3D bounding boxes that overlap with each other.
We ignore such segments during evaluation, since it is not clear
how to define the ground-truth for the points in such bounding
boxes [8]. We follow [34] for splitting data into training and
validation.

Evaluation protocol: We follow evaluation metrics intro-
duced by Held et al. [8], which consists of two errors, under-
segmentation error and over-segmentation error. Given ground
truth segmentation P gt = {Cgt

1 , . . . , Cgt
L }, we compute under-

segmentation error U and over-segmentation error O given an
output segmentation P = {C1, . . . , CM} as:

U =
1

L

L∑

l=1

1

(
|Ci∗ ∩ Cgt

l |
|Ci∗ | < τU

)
(10)

O =
1

L

L∑

l=1

1

(
|Ci∗ ∩ Cgt

l |
|Cgt

l |
< τO

)
(11)

with

i∗ = argmaxMi=1 |Ci ∩ Cgt
l | (12)

where 1(·) is an indicator function and τU , τO are both constant
thresholds. We set τU = 2/3 and τO = 1 following [8]. We
ignore objects with 0 points inside their 3D boxes (about 1%).
For objects with overlapping bounding boxes (about 2.5%),
we ignore points that fall into the overlapped region. Other
than these, we compute segmentation errors over objects at all
distance and also errors that focus on nearby objects (15 m).

A. Baselines

Euclidean clustering: We use Euclidean clustering with 4
different distance threshold {2 m, 1 m, 0.5 m, 0.25 m} to build
trees of segments, which defines the space of possible segmenta-
tions for our approach. Therefore, we include them as baselines
and see if a better solution can be found.

State-of-the-art 3D detectors: We compare our approach to
AVOD [18], PointPillars [21], PointRCNN [25], and SEC-
OND [22]. We follow the off-the-shelf training and testing set-
ting as closely as possible. For AVOD, we re-train a car detector
and a people detector (pedestrian and cyclist) with LiDAR as the
only input following the official implementation.2 For PointPil-
lars, we re-train a detector that simultaneously detects cars and
people (pedestrian and cyclist) following an author-endorsed
implementation.3 For PointRCNN, we evaluate the official pre-
trained car model as there are no available models or training
configurations for other classes within its official repository.4

For SECOND, since it is our best performing baseline, besides
re-training the off-the-shelf model, we also explore various ways
to improve its performance.

By design, these detectors output class-specific bounding box
detection. To produce class-agnostic segmentations, we ignore
the class label and follow a greedy procedure: We start with the
highest scoring bounding box and group all points within the box
as one segment. We then remove those points and move onto the
next highest scoring detection. We repeat until exhausting either
detections or 3D points. In the end, we might still not have every
point assigned to a segment. A simple fix is grouping leftover
points as a new segment. We discuss a much better alternative
approach below.

Detector++: A better approach to handling missed detection
is to fall back to clustering. Specifically, we apply Euclidean
Clustering (EC) with a fixed ε on all leftover points, producing
a set of leftover segments. For each leftover segment, we check
if it can merged into an existing detection segment, using the
criteria of whether the smallest pairwise distance between two
segments is smaller than the threshold ε. If so, we merge the
leftover segment into the detection segment. We refer to such
baselines as Detector++ (e.g. AVOD++ etc.).

SECOND++: To ensure an apples-to-apples comparison, we
re-train and re-evaluate the best baseline, i.e. SECOND, with
background removal. These baselines are marked with “+ BG
Removal”. In addition, we discover that, by extending SEC-
OND’s detection range from 50 m to 80 m, we significantly
improve SECOND’s performance. The affected baselines are
marked with “+ Ext. Range”. Finally, we re-train and re-evaluate
SECOND on all 8 classes. The new baselines are labeled as
“SECOND++(8)”. In contrast, off-the-shelf SECOND baselines
are labeled as “SECOND++(4)” as they are trained on 4 classes
(car, pedestrian, cyclist, and van).

B. Results

We first present qualitative examples of our approach seg-
menting rare objects on KITTI Val, as shown in Figure 4. For
quantitative evaluation, we present both per-class and overall
segmentation errors in Table I.

Ours(min) vs. Ours(avg): We label the optimal worst-case
segmentation as Ours(min) and the average-case segmentation
as Ours(avg). Ours(avg) consistently outperforms Ours(min)

2[Online]. Available: https://github.com/kujason/avod
3[Online]. Available: https://github.com/traveller59/second.pytorch
4[Online]. Available: https://github.com/sshaoshuai/pointrcnn

https://github.com/kujason/avod
https://github.com/traveller59/second.pytorch
https://github.com/sshaoshuai/pointrcnn
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Fig. 4. We visualize more qualitative results of the proposed algorithm Ours(avg) on KITTI. In (a), we show a common scenario where there are parked cars
on both sides of the road. In (b), we show a rare scenario where there is an oversized tank truck in the right lane. In (c), we show a scenario where a group of
pedestrians walking in front of the autonomous vehicle. In (d), we show a typical failure case where pedestrians walk closely side by side. For such cases, there is
often no perfect solution within the search space generated by EC.

TABLE I
SEGMENTATION ERRORS ON KITTI VAL. LEFT SHOWS UNDER-, OVER-SEGMENTATION, AND TOTAL ERROR. RIGHT SHOWS TOTAL ERROR ON A PER-CLASS BASIS

in terms of the total error. Ours(min) produces a much lower
over-segmentation error but a much higher under-segmentation
error, suggesting it makes more mistakes of grouping different
objects into one segment and less mistakes of splitting points
from one single object into multiple segments. The cause of such
behavior might be due to the risk-averse objective of optimal
worst-case segmentation. However, current evaluation does not
emphasize the worst-case performance, instead, it measures the
average performance over all objects. We observe that if we
evaluate the worst-case objectness (Section IV-C), Ours(min)
does outperform both Ours(avg) and AVOD++.

Ours vs. Euclidean Clustering: We label Euclidean Clustering
as “EC(ε),” where ε represents the distance threshold (meter). All
together, they define a segment hierarchy. We construct a pool of
segments that contains every node (segment) in the hierarchy and
call this “EC(all)*”. This serves as a unreachable upper-bound,

since segments from such a pool overlap with each other, which
violates the non-disjoint constraint of a valid partition. Nonethe-
less, it shows that there gap between our proposed method and
the upper bound is relatively small (3–4%), suggesting plenty
of room left for improvement in creating better hierarchies.

Detector++ vs. Detector: We focus on AVOD to demonstrate
the improvement of Detector++ over Detector. AVOD produces
much larger oversegmentation errors, likely due to imprecisely
localized 3D bounding boxes. For example, when a 3D bounding
box is predicted smaller than it should be, the resultant segment
might miss points on the edge, leading to oversegmentation.
AVOD++ is designed to fix this issue and dramatically improves
the oversegmentation error. The undersegmentation errors also
improves significantly from AVOD to AVOD++, likely due to
successfully segmenting objects that are completely missed by
detections.
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TABLE II
INSTANCE SEGMENTATION AP[@.5:.95:.05] ON KITTI VAL

Ours vs. Detector++: SECOND++ performs the best among
all Detector++ baselines and also achieves the lowest overall
total error among all methods. However, if we break down
total segmentation errors on a per-class basis, our approaches
perform much better than SECOND++. Such difference is due
to a skewed data distribution. For example, 68% objects are
labeled as car while only 3% are labeled as misc. SECOND++
performs better on common classes such as car and ours perform
better on rare ones such as misc.

Runtime analysis: Our algorithm requires running Point-
Net++ on every candidate segment in order to compute its
objectness. In practice, one frame from KITTI Val, which con-
tains 68(σ = 42) segments on average, takes about 0.19 s(σ =
0.06 s) to process on a single GTX 1080.

C. Additional Evaluation Protocols

Class-agnostic instance segmentation: The evaluation proto-
col we adopt comes from the robotics community [15]. It differs
from the standard evaluation in computer vision, i.e. per-voxel
instance segmentation in ScanNet [35]. One key difference
is that 3D instance segmentation does not require the output
segmentation to be a valid partition. Instead, it treats the task
as retrieval and evaluates the tradeoff between precision and
recall. Here we take a similar approach as ScanNet, but modify
the evaluation protocol to be class-agnostic and per-point instead
of per-voxel.

As we can see in Table II, the observations are consistent with
what we see in Table I: SECOND++(8) with both modifications
outperforms our segmentation approach on common classes
such as car, but falls short on rarer classes (such as person
sitting and tram) by a large margin. Overall, the best SECOND
approach outperforms the best variant of our approach by 1.6%
in mAP.

How objectness generalizes: To evaluate how well our
learned objectness model generalizes, we apply it onto ground
truth segments from the validation set. In Figure 5, we plot
the average objectness score for each class and the standard
deviation. We also show the percentage of objects for each class
within the training set. As the number of training data decreases

Fig. 5. How the learned objectness model generalizes in the tail.

TABLE III
SEGMENTATION ERRORS ON KITTI VAL

dramatically, the average score tends to drops slightly and the
variance tends to rise slightly.

Worst-case evaluation: In Tables I and II, we see Ours(avg)
outperforms Ours(min) despite the latter is provably optimal.
We have briefly discussed the reason: current protocols do not
evaluate worst-case performance. Here, we score the worst IoU
between a set of local segments and the ground truths, as Eq. (13)
shows, where {P1 . . . PN} and {P gt

1 . . . P gt
N } represents pre-

dicted and ground truth segmentation in each of the N frames.
We found Ours(min) scores a mean-worst IoU of 72.2%, 4.2%
higher than Ours(avg).

score =

N∑

i=1

1

N
min
C∈Pi

max
Cgt∈P gt

i

|C ∩ Cgt|
|C ∪ Cgt| (13)

D. Additional Diagnostics

Sensitivity analysis: Our objectness function is learned on seg-
ments from a EC hierarchy generated with 4 distance thresholds
{2 m, 1 m, 0.5 m, 0.25m}. To analyze how robust our algorithm
is to change of hyper-parameters, we test the learned objectness
function on different hierarchies. In Tables I and II, we find that
having a deeper hierarchy significantly reduces segmentation er-
rors. Comparing to hard-thresholded segmentation errors, there
are only slight changes in multi-threshold instance segmentation
mAP.

Weighted vs. vanilla IoU: Here, we empirically compare
weighted IoU and vanilla IoU in terms of defining the training
target for our objectness model. As we see in Table III, for
both worst-case and average-case segmentation, the objectness
model trained with weighted IoU perform slightly better than
the one trained with vanilla IoU. Note “Ours(min) - vanilla” and
“Ours(avg) - vanilla” share the exact same underlying objectness
model.
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V. CONCLUSION

We present an approach for class-agnostic point cloud seg-
mentation. The approach efficiently searches over an exponen-
tially large space of candidate segmentations and return one
where individual segments score well according to a data-driven
point-based model of “objectness”. We prove that our algorithm
is guaranteed to achieve optimality to a specific definition. On
KITTI, we demonstrate our approach significantly outperforms
past bottom-up approaches and top-down object-based algo-
rithms for segmenting point clouds.

APPENDIX

There is a video (https://www.cs.cmu.edu/∼peiyunh/seg/
slides.mp4link) that illustrates the main ideas of this letter. In
addition, there are more videos (links: https://www.cs.cmu.edu/
∼peiyunh/seg/kitti/2011_09_26_drive_0009.mp41, https://
www.cs.cmu.edu/∼peiyunh/seg/kitti/2011_09_26_drive_0035.
mp42, https://www.cs.cmu.edu/∼peiyunh/seg/kitti/2011_09_
28_drive_0021.mp43) that highlight the advantages and
limitations of our approach.
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