
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2019 1

Constrained-Space Optimization and Reinforcement
Learning for Complex Tasks

Ya-Yen Tsai†, Bo Xiao† Member, IEEE, Edward Johns and Guang-Zhong Yang, Fellow, IEEE

Abstract—Learning from Demonstration is increasingly used
for transferring operator manipulation skills to robots. In prac-
tice, it is important to cater for limited data and imperfect human
demonstrations, as well as underlying safety constraints. This pa-
per presents a constrained-space optimization and reinforcement
learning scheme for managing complex tasks. Through interac-
tions within the constrained space, the reinforcement learning
agent is trained to optimize the manipulation skills according
to a defined reward function. After learning, the optimal policy
is derived from the well-trained reinforcement learning agent,
which is then implemented to guide the robot to conduct tasks
that are similar to the experts’ demonstrations. The effectiveness
of the proposed method is verified with a robotic suturing
task, demonstrating that the learned policy outperformed the
experts’ demonstrations in terms of the smoothness of the joint
motion and end-effector trajectories, as well as the overall task
completion time.

Index Terms—Medical robotics, Learn from Demonstration
(LfD), Reinforcement Learning (RL), Robot learning, Robotic
suturing.

I. INTRODUCTION

ROBOT learning has facilitated the programming of a
robot using Learning from Demonstrations (LfD) and

therefore has gained its popularity in the past decades [1],
[2]. One objective of robot learning is to endow the robot
with the ability to learn tasks through its own observations.
By performing a task by a teacher, a robot can learn, and
thus replicate what has been demonstrated. Compared to
approaches that learn from scratch, higher learning efficiency
can be realized through this approach. Provision of human
demonstration transfers the knowledge/skills from the teacher
to the learner, avoiding the robot to relearn those already
acquired by and can be transferred from the demonstrator.

However, providing a high quality demonstration can be
expensive and may not always be possible, not to mention the
necessity of large number of demonstrations required to cover
enough state-action pairs for policy learning. LfD implies that
the robot policy may inherit the underlying motion character-
istics of the teacher and as such, the poor demonstrations may
affect the final performance of the robot. Besides, due to the
difference in the morphological structure between the teacher

Manuscript received: September, 9, 2019; Revised December, 1, 2019;
Accepted December, 23, 2019.

This paper was recommended for publication by Editor Pietro Valdastri
upon evaluation of the Associate Editor and Reviewers’ comments. This
work was supported by Engineering and Physical Sciences Research Council
(EPSRC) under Grant (EP/L020688/1).

† indicates equal contribution. Y.-Y. Tsai, B. Xiao and G.-Z. Yang are
with the Hamlyn Centre for Robotic Surgery and E. Johns is with the Robot
Learning Lab, Imperial College London, SW7 2AZ, London, UK (e-mail:
{y.tsai17, b.xiao, g.z.yang, e.johns}@imperial.ac.uk). G.-Z. Yang is also with
the Institute of Medical Robotics, Shanghai Jiao Tong University, China.

Digital Object Identifier (DOI): 10.1109/LRA.2020.2965392

Fig. 1: An overview of the proposed framework illustring how
trajectory modelling is discretized and learned through an RL
agent.

and the learner, direct replication of the demonstrated task by
the robot may not be efficient and sometimes not feasible.
Hence, with the advances in robot learning, many researches
have moved from simply teaching the robot, to exceeding the
performance of human [3].

Improving the learning performance from imperfect demon-
stration can be formulated as an optimization problem. Rein-
forcement Learning (RL) can be a good candidate to serve
for this purpose. By defining a reward function, the learning
agent can find the optimal policy such that it maximizes the
cumulative rewards received. However, a typical problem is
to find a good balance between exploitation and exploration
during the learning process. A good exploitation of data may
not be possible without sufficient exploration while too much
exploration may degrade the learning efficiency. Furthermore,
for a surgical robot, as an example, improper or too wild
exploration may raise in safety concerns. Therefore, in this
context, we propose a framework that can learn from sub-
optimal demonstrations using RL and performs policy learning
within a bounded discretized space, which is constrained by
variance of the human demonstrated trajectory. This is shown
to shorten the exploration time and enhance the policy learning
performance.

II. RELATED WORK

In robot learning, LfD has been used in an intuitive way to
transfer human knowledge to a robot. For example, Mueller
et. al [4] proposed an approach to repair errors in acquired
skills through additional demonstrations while Osa et. al [5]
incorporated human demonstrated trajectories in addition to
hand-crafted constraints to avoid the need for motion planning
from scratch. In this way, not only the learning process through

c© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

ar
X

iv
:2

00
4.

00
71

6v
1

 [
cs

.R
O

]
 1

 A
pr

 2
02

0

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2019

LfD can be made more efficient, but also the robot has the
potential to perform a task with quality that is on par with
that of an expert.

A general technique for policy derivation is to train a
classifier or regressor on a set of state-action pairs obtained
from the demonstrated examples [2]. Taking the state as
training input and the action as the output label, this approach
aims to approximate a mapping function directly from a
state to an action. Gaussian Mixture Models and Gaussian
Mixture Regression (GMM/GMR) derive the approximation
by first encoding each motion primitive using GMM then
applying GMR to concatenate models and generate smooth
trajectories [6], [7]. Dynamic Movement Primitives (DMP)
proposed by Ijspeert et al. [8], on the other hand, use a set
of differential equations and a nonlinear term to model each
motion primitive as a nonlinear dynamical system. Multiple
equations describing motion primitives are combined to form a
smooth trajectory [9], [10]. Other work used variations of local
regression based on k-Nearest Neighbors, locally weighted
regression [11], receptive field weighted regression [12] and
locally weighted projection regression [13] to map nonlinear
high dimensional problems. These approximators attempt to
model and learn the demonstrator’s behaviour to a state from
the demonstrations, so they could carry out an action similar to
that of the teacher. However, to fully capture a demonstrator’s
motion characteristics, an approximator would have to rely
heavily on multiple critical demonstrations, which in practice,
are hard to obtain.

Various application problems in robotics can be formed
and solved in the realm of RL [14], [15]. Through iterative
interaction with an environment, different states, actions and
the associated rewards can be explored, and hence, an optimal
policy can be learned by solving the corresponding Markov
Decision Process (MDP) [16]. Without the need for excessive
demonstrations, RL has shown its potential in finding an
optimal policy in many applications [17], [18], [19], [20].
Vecerik et. al [21] leveraged this concept and proposed
a Deep Deterministic Policy Gradient from Demonstrations
(DDPGfD). The framework incorporated the experience of
demonstrations to its replay buffer and prioritized it such that
the more important transitions are sampled more frequently.
Similar work proposed by Nair et. al [22], also included the
experience of demonstrations in replay buffer, but addition-
ally, introduced an auxiliary loss and Q-filter to enhance the
learning performance. An introduction of RL avoids the need
for large scale demonstrations, but to some extent, it still
requires sufficient high quality demonstrations in order to find
the optimal policy.

Instead of using the demonstrations to initialize the policy,
Kim et. al [23], on the other hand, proposed Approximate
Policy Iteration with Demonstration (APID) using the in-
formation from a few and/or sub-optimal demonstrations as
imposed constraints to an optimization problem, making it
less prone to noisy demonstrations. Kang et. al [24] proposed
a Policy Optimization from Demonstration (POfD), which
utilized the scarce and imperfect demonstrations to limit the
exploration region to be around that of the expert policy.
By including the demonstration-guided exploration term to

its learning objective, the author has shown that a better
policy could be achieved. Considering the merits of RL and
taking the idea of imposed constraints [5] from the scarce
and sub-optimal demonstrations, we proposed in this paper
a framework based on Deep Reinforcement Learning (DRL)
approach to find an optimal policy from these demonstrations
without losing the safety guarantees. The contributions of the
proposed DRL approach are summarized as follows:

1) The proposed DRL framework learns an optimal skill
for a sewing task from scarce and imperfect human
demonstrations

2) The statistical distributions of the multiple human
demonstrations are utilized to construct the confined
space that satisfies the safety requirement for optimiza-
tion.

3) The RL agent is trained within the constrained space to
improve the learning performance and efficiency.

The organization of the rest of the paper is as follows.
In Section III and IV, the preliminaries and the methodology
of the proposed framework are introduced. The experimental
setup, the validation of the method and the discussion are then
presented in Section V followed by the conclusions and future
works in Section VI.

III. PRELIMINARIES

In this section, the preliminaries of MDPs, Q-learning and
deep Q-learning will be presented.

A. Markov Decision Processes

A MDP is a mathematical framework based on state set S
associated with finite action set A. If and only if state s in
S captures all the relative information from history, state s
is Markovian. The transition function between two Markov
states can be defined as: f : S × A → S. In addition,
an Markov Reward Process (MRP) is defined as the tuple
< S, f, r, γ >, where r is a scalar reward function and γ
is a discount factor. The scalar reward function is defined
as r : S × A × S → R. Parameter γ ∈ [0, 1] determines
how one values the importance of current reward and future
rewards. Besides, γ also stabilizes the total return in infinite
time-step case. An MRP with control input/action is defined
as an MDP: < S,A, f, r, γ >. The objective of an RL agent
is to find the optimal policy that maximizes the accumulated
rewards (return) R. Considering the observed states s ∈ S
and admissible control input a ∈ A, the overall learning
problem can be formed into MDPs. To evaluate the value
function of the policy, the RL agent will try to solve the MDP.
When the value function is obtained, the RL agent can make
the optimal decisions according to it, and thus to fulfill the
decision-making objective.

B. Q-learning

In RL, the behavior of the RL agent is determined by the
policy defined as π(a|s) = P (aω = a|sω = s). The policy
π(a|s) represents the probability distribution of the action
picking aω according to the observed system state sω . rω is

TSAI et al.: CONSTRAINED-SPACE OPTIMIZATION AND REINFORCEMENT LEARNING FOR COMPLEX TASKS 3

the reward obtained after yielding the action during the ω-
th time-step. The RL agent takes the observed state sω as
input and gives out the action aω , at the same time, receives
the reward rω at time-step ω. Associated with the reward
function, the state-action value Q(sω,aω) in RL is defined
as the expectation of return Rω which starting with state sω
and action aω . The state-action value function under policy π
can be calculated as follows:

Qπ(s,a) = Eπ[Rω|sω = s,aω = a]

= Eπ[rω + γrω+1 + γ2rω+2 + . . . |sω = s,aω = a]

= Eπ[

∞∑
k=0

γkrω+k|sω = s,aω = a] (1)

and the state-action value function can be also rewritten as
the Bellman Equation (BE):

Qπ(sω,aω) = Eπ[rω + γEπ[Qπ(sω+1,aω+1)]]. (2)

The goal of Q-learning is to find the optimal decision-
making policy π, which maximizes the state-action value func-
tion. The optimal state-action value function can be defined as:

Q∗(s,a) = max
π

Eπ[rω + γrω+1 + γ2rω+2

+ . . . |sω = s,aω = a]. (3)

To maximize the return obtained by the RL agent, the Q-
learning algorithm updates the state-action values according
to the reward function in an off-policy style as:

Q(sω,aω)← (1− α)Q(sω,aω)

+ α(rω + γmax
ak

{Q(sω+1,ak)}), (4)

where α ∈ (0, 1] is the learning rate, which determines the
learning speed of Q-learning.

To ensure that Q-learning explores extensively without
diverging, the adaptive ε-greedy policy is adopted in this paper.
To change the value of the exploration rate ε in an adaptive
way, we start from large value of ε and then reduce it gradually
after episodes being completed.

aω =

{
arg max

ak

{Q(sω,ak)}, with probability: 1− ε,

random ak, with probability: ε.
(5)

To summarize, the Q-learning algorithm can be viewed in
Algorithm 1.

C. Deep Q-learning

When the state set S and action set A are too large or
continuous, calculation of the exact state-action value function
Q(s,a) becomes difficult and may be impossible in many
cases. One alternative is to use a function approximator to
replace the exact state-action value function. As an universal
approximator, neural networks with nonlinear activation func-
tions can be used for the Q-network to approximate Q(s,a)
[25]. When the state-action value function is approximated,
RL now becomes approximate reinforcement learning.

Algorithm 1 Algorithm for Q-learning

1: Set the state-action values randomly
2: for Every episode do
3: Initialize state s0
4: for Current timestep ω do
5: Pick action aω through ε-greedy policy and ob-

serve the next state sω+1

6: Update Q(sω,aω)← (1− α)Q(sω,aω) + α(rω +
γmax

ak

{Q(sω+1,ak)})
7: sω ← sω+1

8: end for
9: end for

In the above algorithm, the observed state s is the input of
the deep neural network while the output Q̂(s,ak) approxi-
mates the exact state-action value Q(s,ak), k = 1, 2, . . ., m.
By choosing the action according to the largest state-action
value Q̂(s,ak), the RL agent is able to make the optimal
decision.

To simplify the notations, the set of all parameters (in-
cluding all the weights and biases) in the deep Q-network
will be written as θD in the rest of this paper. The deep Q-
network implicitly determines the policy, in which the action
ak is picked according to the observation sω at time-step ω.
The chosen action drives the current state sω to the next
state sω+1, and the reward rω will be received from the
environment according to the reward function. Then the target
network takes the state sω+1 and the control input set A as
the input to calculate the output max

ak

{Q̂(sω+1,aω|θD)} to es-
timate largest state-action value for the next state sω+1. When
max
ak

{Q̂(sω+1,aω|θD)} and rω are available, the state-action

value Q̂(sω,aω|θD) of the current state-action pair can be
updated according to the target network and obtained reward.
Considering the importance of experience replay during the
training of the RL agent [26], the state transitions associated
with rewards are store in the experience buffer as the tuple
< si,ai, s

′
i, ri >. si is the current state, ai is the chosen action

according to the current state, s′i is the next state and ri is the
reward received. The algorithm for updating of the weights of
the deep Q-network is presented in detail in Algorithm 2.

IV. METHODOLOGY
Based on the DRL algorithm presented above, we propose

a framework that extends from the existing LfD approach to
enhance the overall robot performance. From a small set of
human demonstrations, the modelling is done at the trajectory
level to capture the underlying characteristics and distribu-
tions of human motions. To further refine the skill learned
from human demonstrations, the DRL approach mentioned
above is adopted for the optimization. Considering the safety
requirement on the robot, the mean and the variance of the
trajectory serve as the constraints to the unexplored state space
within which the optimal trajectory will be found. The RL
agent is then trained and the corresponding policy is optimized
through interaction with the physical simulator based on the
pre-modelled trajectories from the previous step.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2019

Algorithm 2 Update of the parameters in the deep Q-network

1: Initialize the parameters in the deep Q-network θD:

θD ← θD0

2: Create the experience buffer (EB)
3: Define the constants in the training: Num Episode,

Num Time Step, Num Replay Times
4: for Episode = 1:Num_Episode do
5: Choose the initial state s randomly
6: for j_time = 1:Num_Time_Step do
7: Generate action aω through policy π determined

by the current deep Q-network
8: Transmit to the next state sω+1 and observe the

reward rω = r(sω,aω, sω+1)
9: Store the tuple < sω,aω, sω+1, rω > in the EB

10: sω ← sω+1

11: Randomly sample a mini-batch of N transition
tuples < si,ai, s

′
i, ri >, i = 1, 2, . . . , N from the EB

12: Obtain the Q-target as:

Q̄i = ri + γmax
ak

{Q(s′i,ak|θD)}

13: Calculate the cost function:

J(θD) =
1

2N

N∑
i=1

(Q̄i −Q(si,ai)|θD)2

14: Calculate the mini-batch gradient of θD:

∇θDJ(θD) = − 1

N

N∑
i=1

(Q̄i−Q(xi,ai)|θD)
∂Q(si,ai|θD)

∂θD

15: Update the weights of the deep Q-network through
gradient descent:

θD ← θD − αD∇θDJ(θD),

16: end for
17: end for

Fig. 2: (a) The setup of the human demonstration, that uses
the stereo camera to track the markers attach to a device (b)
The hand held suturing device and (c) The mandrel device.

(a) Continuous 3D trajectory (b) Discretized 3D trajectory

Fig. 3: Comparison of (a) continuous and the (b) (top view of
the) discretized task space computed from the mean and the
variance of the demonstrated trajectories. The solid circle and
the cross represent the starting and the end points respectively.

Fig. 4: 10 aligned demonstrated trajectories from the 6 DoF.
The mean trajectory is shown using the red line and the
variance is labelled using the shaded region.

A. Human Demonstration and Problem Formulation

For this paper, the setup of human demonstration emulates
a robot manufacturing task for stent graft [27], [28], which
consists of three components: a stereo camera, a suturing
device [29] and a mandrel device as illustrated in Fig. 2.
The stereo camera is to capture the motions of the suturing
device and the mandrel device during the demonstration. The
suturing device is a hand held device, that facilitates single-
handed stitching by passing its needle between two ends at the
tip. The mandrel device consists of a cylindrical supporting
structure, covered by a piece of fabric and a metal stent, with
slot windows to allow for needle piercing.

The task is to teach a robot to stitch on a specified slot
such that it binds the stent and the fabric tightly. A human
demonstration manipulates the suturing device around the
desire location while its motion is tracked using an ArUco
marker and the stereo camera. The stitching process consists
of three motion primitives, approach the stitch slot, pierce in
and pass the needle, and return back to the initial pose. The
overall trajectory is illustrated in Fig. 3.

The recording of demonstrations was done at a fixed sam-

TSAI et al.: CONSTRAINED-SPACE OPTIMIZATION AND REINFORCEMENT LEARNING FOR COMPLEX TASKS 5

pling rate and it captured the movements of the suturing
device and the mandrel device. As the mandrel is subject to
movements under the camera frame, by capturing its motion
allows finding the relative pose between the two devices.

Each demonstration records the trajectory, S = {γm, γs},
which forms from the poses of the mandrel and the suturing
device under the camera frame. The action performs a stitch
on the same location of the mandrel over time. γ ∈ R6 is a 6
DoF trajectory, which consists of the translation component,
T = [x, y, z] and the rotation component, R = [θx, θy, θz],
in Euler-Rodrigues representation. A collection of human
demonstrations is recorded and used to capture the underlying
characteristics of demonstrator’s hand motions.

B. Trajectory Modelling

Multiple trajectories are pre-processed before modelling.
The first part of the pre-processing is to filter the noises and
sudden hand movements through smoothing the trajectories.
Then, the trajectory of the suturing device is transformed to
the mandrel frame. A suturing device’s trajectory is oriented
around the mandrel and is subject to changes if the pose
of the mandrel changes in the camera frame. Therefore, for
modelling, the trajectory of interest is the device’ trajectory
with respect to that of the mandrel device. This forms a 6
DoF trajectory γms ∈ R6 consists of the translation com-
ponent, Tms = [xms, yms, zms] and the rotation component,
Rms = [θxms, θyms, θzms], in Euler-Rodrigues representation
for each demonstration.

Trajectory modelling is done temporally and the purpose is
to find the mean and variance throughout all the demonstrated
data. Multiple trajectories possess different temporal length
resulted from variations in device’s manipulation. They are
aligned temporally using Dynamic Time Warping (DTW) and
all the DoF. DTW is a commonly used distance-based method
to compute similarity among data set and perform temporal
sequences alignment such that the distance score is minimized.
After which, the mean and standard deviation is found at each
temporal point throughout the aligned trajectories. This forms
a 3D space bounded by a standard deviation and within which
the optimal trajectory will be found.

C. Trajectory Optimization

In practice, motion redundancy in a human demonstrated
trajectory and the morphological differences between the
demonstrator as well as the learner make the demonstration
sub-optimal and prevent it from direct replay on a robot. Mo-
tion redundancy is unnecessary movement from tracking errors
or human factors that can result in sudden unexpected motion
or longer trajectory execution duration. The morphological dif-
ference, on the other hand, is the imperfect mapping between
the performer and the learner, hence without optimization,
the demonstrated trajectory may result in unsmoothed joint
movements in a robot even if the demonstration was perfect,
which may raise safety and collision concern.

The simulation shown in Fig. 5 is the replicate setup of the
real environment where the demonstrated trajectory will be ap-
plied after the optimization. The simulation provides collision

Fig. 5: The simulation used to simulate the physics and
visualize the robot movement.

detection in addition to visualization and inverse kinematic
computation. For a given pose, the simulation computes the
associated joint movement and detects potential collisions if
the action was to be carried out. This information will be used
to determine the optimal policy.

The modelled trajectory is first used to create a 3D dis-
cretized space within which encloses all the demonstrated
trajectories. The discretization is defined by a user-specified
step size, δ, and it represents the unit length for each grid in
space. This creates a 3D space of size L, W, and H in x, y
and z directions respectively, where {L,W,H} ∈ R3.

The mean and variance of the trajectory are adopted to
construct the constrained space for the optimization problem.
Motion primitives with larger variance imply multiple possible
trajectories and therefore the policy will aim to find the
optimal path within the bounded space. On the other hand,
the ones with smaller variance imply movement with higher
precision, hence the policy should deviate less from the mean
trajectory. By constraining the search area within the variance
and applying a teacher’s understanding of the subtrajectory to
the learning policy, it can avoid the exploration of sub-optimal
region and action and thus improving the learning efficiency.

The goal of the RL agent is to find the optimal path such
that it can complete a demonstrated task with minimal overall
joint and end-effectors movements and without collision while
ensuring the smoothness of the trajectory. To this end, the
RL agent is trained under the guidance of the defined reward
function as follows

r(s, s′) = −∆Φ

7
− |s′ − s|
|(s′mean − smean)|

− ∠(s, s′) + 10

The reward function consists of 4 terms. The first term is
the average of ∆Φ which is the sum of the 7 joint angle
difference of the robot between the current state and the next
state. The second term compares the pose length between
the current state, s, and the next states, s′, to that of the
mean trajectory, |s′mean − smean|. The third term, ∠(s, s′), is
the angle between two vectors, obtained from the previous

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2019

state, the current state and the next state. As the optimal
trajectory is defined based on its overall trajectory length
in both the joint space and the end-effector as well as the
smoothness of the end-effector. The first two terms aim to
penalize for action that resulted in higher joint changes and
larger displacement between two consecutive states. The third
term penalizes actions that resulted in sharp turn between
states. The last term was determined heuristically to facilitate
the convergence of the agent.

The RL agent is represented by a deep neural network which
takes the current state as the input and outputs the 126 possible
actions. The state considered is only the translation term.
The inclusion of orientation in the optimization will largely
increase the number of possible states and the complexity of
the policy and thus will be addressed in the future work. Each
action corresponds to a point in space around the mean of
the next point. 125 of them are uniformly sampled within the
standard deviations of axes around the next mean point and
the additional action represents the current state, i.e. stationary.
For each step, the RL agent either takes a random valid action
or the optimal action according the current policy. The rotation
component is realized by finding the closest position on the
mean trajectory to the next state and using the corresponding
orientation as its rotation component. The location and the
orientation are the pose which is used to calculate the inverse
kinematics for the robot, before running in simulation for
visualization and collision detection. Episode begins from the
starting pose and ends at the terminal pose of the mean
trajectory. The RL agent is trained at every step through mini-
batch of samples from the experience buffer. When collision
is detected, the current iteration is restarted.

After training, the optimal trajectory is generated by contin-
uously taking the optimal action of the current state from the
start point to the end of the mean trajectory. The corresponding
joint trajectory is determined through inverse kinematics.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

To validate the proposed framework, we first collected a set
of human demonstrated trajectories on single-handed stitching.
During the demonstration, suturing was performed multiple
times on the same location of the mandrel while the entire
motion was recorded through stereo camera as described in the
previous context. In total, 10 demonstrations were performed,
each of which contained 6 DoF temporal poses of the mandrel
and the suture device. A simple moving average smoothing
with a window size of 10 was applied to smooth out sudden
hand movements and/or vision misdetection.

Demonstrations were first transformed to the mandrel frame
of reference, and the DTW was performed to align temporally
all the trajectories. The mean and variance of the trajectories
were computed to construct a constrained space for explo-
ration and exploitation during optimization. After which, the
modelled mean trajectory was served as the basis for the
optimization while the variance was used as the constraints
for exploration.

(a)

(b)

Fig. 7: Comparison of the end-effector trajectories between
the 3 best human demonstrations from the testing dataset and
the optimized one. (a) shows the comparison in the Cartesian
space and (b) compares temporally the differences in each DoF
between the trajectories.

The optimization process was done using Gazebo simulation
and visualizing using Rviz on the Robotics Operating System
(ROS). The physical properties and location of different com-
ponents in the simulation were mimicked to the real world
setting. Gazebo was used to simulate the physical properties
of the systems. In specific, it was mainly used to simulate
the interaction between objects, i.e. collision. The robot used
to carry out the single handed task was chosen as the ABB
IRB14000 YuMi robot. For a given trajectory in the frame
of its end-effectors, the inverse kinematic of the suturing hand
was computed and the joint movement and objects interactions
were visualized through Rviz.

During optimization, the RL training algorithm started from
the mean trajectory, and the RL agent interacted with the
simulation world to learn the policy at every step based on
the reward function defined earlier. It identified the optimal
path by exploring within the space where the variance was
large while strictly following the mean of all the demonstrated

TSAI et al.: CONSTRAINED-SPACE OPTIMIZATION AND REINFORCEMENT LEARNING FOR COMPLEX TASKS 7

Fig. 6: Comparisons of trajectory length among different human demonstrations and the optimal trajectory. The first 10 data
are the training data, used to form the bounded space, while the 11 to 13 are the best human demonstrations from the testing
dataset used for trajectory comparisons.

trajectory when the variance was small.
There were a few hyperparameters to be determined for

tuning purpose during policy learning, in which the process
was done mostly through trial and error and with some
experience. This included, the learning rate, discount factor,
mini-batch size, number of episodes and number of time-steps
in one episode. The parameters of the neural network are
summarized in Tab. I. During policy learning, if a collision
occurred, or the boundary condition, i.e. the variance, was
met, the simulation would restart. The whole learning process
stopped until convergence.

The RL agent was represented by a deep neural network
to map between states and actions. It consisted of 2 fully-
connected hidden layers with 400 neurons in the first layer
and 200 in the second, both with ReLU activation functions.
The input to the agent was the current state, while the outputs
were the Q-values of all possible actions. The update of the
parameters in the neural network was done through mini-batch
gradient fashion. A mini-batch of training data was randomly
selected from the experience buffer to update the network until
convergence. The reward and the target Q-value was given and
estimated based on its current state and the defined reward
function. At the end of the process, the optimal path was
generated by continuously taking the action with the highest
Q-value until the end pose was reached. The start and the end
pose were mainly given such that they corresponded to the
first and the last poses of the mean trajectory.

B. Results and Discussion

To validate the performance of the proposed framework,
we performed quantitatively analyses on two spaces, one in
the Cartesian space and the other in the joint space, in terms
of the overall trajectory length and the smoothness. The target
robot was the ABB IRB14000 YuMi robot and we utilized the
Gazebo simulation to detect for collision during the execution.

We compared the pose and joint trajectories of the optimal
one with all demonstrations from the training set and the
three best human demonstrations from the testing dataset as

TABLE I: A summary of parameters used to train the RL
agent.

Parameter Symbol Values
Step Size δ 0.002

Discount Factor γ 0.99
Episode Episode 200

Steps Step 284
Exploration Rate ε 0.75Num Episode−Episode

Num Episode
Mini-Batch Size N 32

well as the mean trajectory. The results are shown in Fig. 6.
The optimized trajectory showed the best results among all
the demonstrations. The optimized had trajectory lengths of
0.21m in Pose and 796.98◦ in the joint, while the best human
demonstration had that of 0.24m in Pose and 814.68◦ in joint
angle.

In addition to the trajectory length, we also compared the
smoothness of a pose trajectory. The smoothness of a pose
trajectory was found by computing the mean of the change in
the angle between three consecutive points along a trajectory.
From the definition, the lower the changes, the smoother a
trajectory is. We also compared the smoothness with the three
best demonstrations. The results for the them were 27.19◦,
27.56◦ and 28.68◦ respectively while the optimized one was
22.55◦.

The visual comparisons between the best demonstrations
and the optimized trajectory are shown in Fig. 7. As clearly
shown, the optimized trajectory not only appeared to have
shorter trajectory, but also appeared to be smoother among
the three. The quantitative analysis has validated the proposed
framework is capable of learning an optimal trajectory from
the sub-optimal trajectories. In the results, it has shown that the
learned trajectory outperforms any of the demonstrated ones in
terms of the trajectory length and the smoothness. The shorter
length and the smoother trajectory in the optimized trajectory
implied shorter and smoother execution of the learned task.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2019

VI. CONCLUSIONS

In summary, we proposed a framework that extends from the
general LfD to teach a robot to perform a task using scarce and
sub-optimal demonstrations. In this paper, we wanted a robot
to learn a task from human demonstrated trajectories. Instead
of directly learn the state-action mapping from them, the
demonstrations were served as constraints to our optimization
framework. During the training process, the RL agent inter-
acted with the simulation environment. The training of the RL
agent was guided by a carefully engineered reward function. In
our experiments, we have shown that the proposed framework
was able to find the optimal trajectory that outperformed any of
the human demonstrated trajectory in terms of trajectory length
and smoothness. In addition, the trajectory also took into
account the collision when performed joint trajectory planning
which would not be generally considered if the conventional
mapping method was adopted to the learn a trajectory.

Using only a limited amount of demonstrations, not only we
avoided the need to learn from scratch, but also shortened the
amount of time needed for RL agent training by constraining
the unexplored space. The current work can be served as a
basis for a range of potential extensions. We validated the
framework on a suturing task, which involves fine movement,
but this could be easily extended to other domain. Besides,
the robot adopted was the ABB YuMi robot and the proposed
framework has shown its applicability to work on other types
of robots.

In this work, we used a discretized approach to perform
the optimization and we only considered the positional in-
formation during training. Finer discretization and taking the
orientation into consideration would result in longer training
time. Therefore, in the future work, it is necessary to consider
continuous RL approaches such as DDPG, using the orienta-
tion information for training and incorporating bimanual task
execution.

REFERENCES

[1] C. G. Atkeson and S. Schaal, “Robot learning from demonstration,” in
ICML, vol. 97. Citeseer, 1997, pp. 12–20.

[2] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robotics and autonomous systems,
vol. 57, no. 5, pp. 469–483, 2009.

[3] J. Van Den Berg, S. Miller, D. Duckworth, H. Hu, A. Wan, X.-Y. Fu,
K. Goldberg, and P. Abbeel, “Superhuman performance of surgical tasks
by robots using iterative learning from human-guided demonstrations,”
in 2010 IEEE International Conference on Robotics and Automation.
IEEE, 2010, pp. 2074–2081.

[4] C. Mueller, J. Venicx, and B. Hayes, “Robust robot learning from
demonstration and skill repair using conceptual constraints,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 6029–6036.

[5] T. Osa, A. M. G. Esfahani, R. Stolkin, R. Lioutikov, J. Peters, and
G. Neumann, “Guiding trajectory optimization by demonstrated distri-
butions,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 819–
826, 2017.

[6] C. E. Reiley, E. Plaku, and G. D. Hager, “Motion generation of robotic
surgical tasks: Learning from expert demonstrations,” in 2010 Annual
International Conference of the IEEE Engineering in Medicine and
Biology. IEEE, 2010, pp. 967–970.

[7] Y. Lin, S. Ren, M. Clevenger, and Y. Sun, “Learning grasping force from
demonstration,” in 2012 IEEE International Conference on Robotics and
Automation. IEEE, 2012, pp. 1526–1531.

[8] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” in Proceedings 2002
IEEE International Conference on Robotics and Automation (Cat. No.
02CH37292), vol. 2. IEEE, 2002, pp. 1398–1403.

[9] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” in 2009
IEEE International Conference on Robotics and Automation. IEEE,
2009, pp. 763–768.

[10] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors,” Neural computation, vol. 25, no. 2, pp. 328–373, 2013.

[11] C. G. Atkeson, “Using locally weighted regression for robot learning,”
in Proceedings. 1991 IEEE International Conference on Robotics and
Automation. IEEE, 1991, pp. 958–963.

[12] S. Schaal and C. G. Atkeson, “Receptive field weighted regression,”
ATR Human Information Processing Laboratories, Tech. Rep. TR-H-
209, 1997.

[13] S. Vijayakumar and S. Schaal, “Locally weighted projection regression:
An o (n) algorithm for incremental real time learning in high dimensional
space,” in Proceedings of the Seventeenth International Conference on
Machine Learning (ICML 2000), vol. 1, 2000, pp. 288–293.

[14] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[15] A. A. Rusu, M. Vecerik, T. Rothörl, N. Heess, R. Pascanu, and
R. Hadsell, “Sim-to-real robot learning from pixels with progressive
nets,” arXiv preprint arXiv:1610.04286, 2016.

[16] R. S. Sutton, A. G. Barto, et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 2, no. 4.

[17] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[18] S. Ebrahimi, A. Rohrbach, and T. Darrell, “Gradient-free policy archi-
tecture search and adaptation,” arXiv preprint arXiv:1710.05958, 2017.

[19] Y. Gao, J. Lin, F. Yu, S. Levine, T. Darrell, et al., “Reinforcement learn-
ing from imperfect demonstrations,” arXiv preprint arXiv:1802.05313,
2018.

[20] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, I. Osband, et al., “Deep q-learning
from demonstrations,” in Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[21] M. Večerı́k, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess,
T. Rothörl, T. Lampe, and M. Riedmiller, “Leveraging demonstrations
for deep reinforcement learning on robotics problems with sparse
rewards,” arXiv preprint arXiv:1707.08817, 2017.

[22] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Overcoming exploration in reinforcement learning with demonstra-
tions,” in 2018 IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE, 2018, pp. 6292–6299.

[23] B. Kim, A.-m. Farahmand, J. Pineau, and D. Precup, “Learning from
limited demonstrations,” in Advances in Neural Information Processing
Systems, 2013, pp. 2859–2867.

[24] B. Kang, Z. Jie, and J. Feng, “Policy optimization with demonstrations,”
in International Conference on Machine Learning, 2018, pp. 2474–2483.

[25] K. Hornik, M. Stinchcombe, and H. White, “Universal approximation of
an unknown mapping and its derivatives using multilayer feedforward
networks,” Neural Netw., vol. 3, no. 5, pp. 551–560, 1990.

[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[27] B. Huang, M. Ye, S.-L. Lee, and G.-Z. Yang, “A vision-guided multi-
robot cooperation framework for learning-by-demonstration and task
reproduction,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2017, pp. 4797–4804.

[28] Y.-Y. Tsai, B. Huang, Y. Guo, and G.-Z. Yang, “Transfer learning
for surgical task segmentation,” in 2019 International Conference on
Robotics and Automation (ICRA). IEEE, 2019, pp. 9166–9172.

[29] Y. Hu, L. Zhang, C. A. Seneci, W. Li, M. E. Abdelaziz, and G.-Z.
Yang, “Design, fabrication, and testing a semiautomatic sewing device
for personalized stent graft manufacturing,” IEEE/ASME Transactions
on Mechatronics, vol. 24, no. 2, pp. 517–526, 2019.

	I INTRODUCTION
	II RELATED WORK
	III PRELIMINARIES
	III-A Markov Decision Processes
	III-B Q-learning
	III-C Deep Q-learning

	IV METHODOLOGY
	IV-A Human Demonstration and Problem Formulation
	IV-B Trajectory Modelling
	IV-C Trajectory Optimization

	V EXPERIMENTS AND RESULTS
	V-A Experimental Setup
	V-B Results and Discussion

	VI CONCLUSIONS
	References

