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The Complex-Step Derivative Approximation on
Matrix Lie Groups

Charles Champagne Cossette1, Alex Walsh2, and James Richard Forbes3

Abstract—The complex-step derivative approximation is a
numerical differentiation technique that can achieve analytical
accuracy, to machine precision, with a single function evaluation.
In this paper, the complex-step derivative approximation is
extended to be compatible with elements of matrix Lie groups.
As with the standard complex-step derivative, the method is still
able to achieve analytical accuracy, up to machine precision, with
a single function evaluation. Compared to a central-difference
scheme, the proposed complex-step approach is shown to have
superior accuracy. The approach is applied to two different pose
estimation problems, and is able to recover the same results as
an analytical method when available.

Index Terms—optimization and optimal control, localization

I. INTRODUCTION

ATTITUDE and pose, ubiquitous entities of interest in
robotics problems, are most naturally represented as

elements of matrix Lie groups. Path planning, state estimation,
and control algorithms often require Jacobian computations
with respect to attitude and pose. Often these Jacobians are
computed analytically, by hand, via a Taylor-series expansion
while adhering to the matrix Lie group structure of the
problem [1]. However, in some cases analytical computation of
Jacobians may be impractical, necessitating a numerical pro-
cedure. Numerical computation of Jacobians is also useful for
quickly comparing algorithms that require Jacobians, before
investing effort into one specific algorithm and the associated
analytically derived Jacobians. Numerical Jacobians can also
be used to verify Jacobians that are derived by hand.

A variety of numerical differentiation techniques appropri-
ate for matrix Lie groups can be found in the literature. In [2]
a forward-difference method is described for general matrix
manifolds, a method that is used in the open-source software
MANOPT [3]. A central-difference method is employed in the
open-source software GTSAM [4], and algorithmic differenti-
ation methods are presented in [5, 6]. The Python-based soft-
ware PYMANOPT [7] is an open-source optimization toolbox
for matrix manifolds that employs algorithmic differentiation.
SOPHUS [8] is another open-source C++ package that exploits
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the automatic differentiation functionality available in CERES
[9], a nonlinear least-squares library developed by Google.
However, algorithmic differentiation can be time consuming
to implement and finite-differencing is prone to subtractive
cancellation errors, thus limiting precision [10]. The complex-
step derivative approximation is a numerical method for com-
puting first derivatives that does not suffer from subtractive
cancellation errors [10]. One of the earlier appearances of
the complex-step derivative can be found in [11], where the
derivatives of scalar functions of real variables are evaluated.
In [10], the complex-step derivative is investigated further,
along with its use in Fortran, C/C++, and other languages. An
application to a multidisciplinary design optimization problem
is also shown. This method has gained popularity due to
its ability to realize machine-precision accuracy of derivative
computations, and doing so without tuning the step size, since
it can be reduced to an arbitrarily small value. The complex-
step derivative also requires only one complex function eval-
uation, which is beneficial compared to central-differencing
when the function is expensive to evaluate. The complex-
step derivative is straight-forward to implement, especially in
MATLAB, where the default variable type is complex.

This paper considers the formulation and application of the
complex-step derivative approximation to functions of matrix
Lie group elements. The aforementioned advantages of the
standard complex-step derivative remain present, while the
proposed method can be used to compute both left and right
Jacobians. Various examples are presented, demonstrating the
utility and advantages of the matrix Lie group version of
the complex-step derivative. In particular, pose estimation
problems are considered, one using the ETH Zürich EuRoC
dataset [12], where analytical Jacobians are available for com-
parison, and one using the ‘Lost in the Woods’ dataset [13],
where computation of analytical Jacobians is possible, but
time consuming. When solving for the maximum a posteriori
(MAP) estimate of the pose using a Gauss-Newton algorithm,
it is shown that computing the Jacobians using the complex-
step derivative realizes the same accuracy and convergence
properties as when analytical Jacobians are used.

II. PRELIMINARIES

A. Matrix Lie Groups
A matrix Lie group G is a Lie group that consists of the

set of m ×m invertible matrices, where the group operation
is matrix multiplication [14, Ch. 10.2]. From the definition of
a group, a matrix Lie group is closed under matrix multipli-
cation. That is, given X,Y ∈ G, it follows that XY ∈ G. A
matrix Lie group is a closed subgroup of the general linear
group defined by [15, Ch. 1.1]

GL(m,C) = {X ∈ Cm×m | det(X) 6= 0},
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which is also a matrix Lie group. The matrix Lie algebra of
G is denoted g, and is defined as [15, Ch. 3.3],

g = {Ξ | exp(tΞ) ∈ G,∀t ∈ R}. (1)

It can be shown that the matrix Lie algebra defined by (1)
is a valid Lie algebra [15, Ch. 3.1], and is a vector space
closed under the operation of the Lie bracket [·, ·], which can
be computed by [A,B] = AB − BA ∈ g, for all A,B ∈ g.
The wedge operator (·)∧ : Rn → g maps a column matrix to
the matrix Lie algebra. The exponential map exp(·) : g → G
maps an element of the matrix Lie algebra to the matrix Lie
group, and is computed using the matrix exponential. The only
matrix Lie group elements X ∈ G that are considered in this
paper are those that can be written as

X = exp(ξ∧),

where ξ ∈ Rn. The “vee” operator (·)∨ : g→ Rn maps an
element of the matrix Lie algebra to a column matrix. The
logarithmic map ln(·) : G → g maps an element of the matrix
Lie group to the matrix Lie algebra, and is computed by the
matrix logarithm. A parameterization of the group G can be
retrieved from X via

ξ = ln(X)∨,

when the matrix logarithm is well defined. The ad-
joint representation of X is denoted Ad(X), such that
(Ad(X)ζ)∧ = Xζ∧X−1, ζ ∈ Rn. This leads to the identity

exp((Ad(X)ζ)∧) = X exp(ζ∧)X−1.

The Baker-Campbell-Hausdorff (BCH) formula is the solution
to

z = ln(exp(ξ∧1 ) exp(ξ∧2 )),

and the exact solution is an infinite sum [1, Ch. 7.1.5]. A
first-order approximation to the BCH formula is

ln(exp(ξ∧1 ) exp(ξ∧2 )) = ξ∧1 + ξ∧2 ,

which is exact in the event that [ξ∧1 , ξ
∧
2 ] = 0. Such an approx-

imation is typically used when both ξ1 and ξ2 are assumed to
be small. The details of the special Euclidean groups SE(2),
SE(3), and the group of double direct isometries SE2(3) can
be found in the appendix.

B. Gauss-Newton Algorithm

The Gauss-Newton algorithm is an optimization algorithm
appropriate for nonlinear least-squares functions of the form

J(x) =
1

2
e(x)TWe(x), (2)

where W ∈ Rq×q is a symmetric positive definite weight
matrix and e : Rp → Rq is some error function. Employing
Newton’s method directly on (2) requires the Hessian of J(x),
which is potentially difficult to obtain. An alternate strategy
is to substitute a first-order approximation of e(x) about some
nominal x̄, given by [1, Ch. 4.3]

e(x̄ + δx) ≈ e(x̄) +
∂e(x)

∂x

∣∣∣∣
x=x̄

δx,

into (2), thus yielding the Jacobian and a Hessian approxima-
tion of J(x),

J(x) ≈ 1

2
e(x̄)TWe(x̄)

+ e(x̄)TW
∂e(x)

∂x︸ ︷︷ ︸
∂J(x)
∂x |̄x

δx +
1

2
δxT

(
∂e(x)

∂x

)T

W
(
∂e(x)

∂x

)
︸ ︷︷ ︸

∂J(x)
∂x∂xT |̄x

δx.

The Gauss-Newton algorithm then proceeds identically to
Newton’s method, where the nominal point is iterated by
x̄` = x̄`−1 + δx`−1. The step δx`−1 is calculated as

δx`−1 = −

(
∂J(x)

∂x∂xT

∣∣∣∣
x̄`−1

)−1(
∂J(x)

∂x

∣∣∣∣
x̄`−1

)T

.

III. THE COMPLEX-STEP DERIVATIVE APPROXIMATION

A. Review

Consider the complex-differentiable function f : C→ C
perturbed about the nominal point x̄ by jh where x̄, h ∈ R
and j =

√
−1. A Taylor series expansion yields

f(x̄+ jh) = f(x̄) +
∂f(z)

∂z

∣∣∣∣
z=x̄

jh

− 1

2

∂2f(z)

∂z2

∣∣∣∣
z=x̄

h2 − 1

3!

∂3f(z)

∂z3

∣∣∣∣
z=x̄

jh3 . . . (3)

If f(x̄) is assumed to be real for all real x̄, then, to first order,
taking the imaginary portion of (3) yields [11]

∂f(z)

∂z

∣∣∣∣
z=x̄

=
Im{f(x̄+ jh)}

h
+O(h2).

This is valid as long as f(x̄) ∈ R for all x̄ ∈ R, and
that derivatives are evaluated at strictly real nominal points.
From a practical standpoint, a user is often attempting to find
derivatives of f : R→ R. Providing that this can be extended
to f : C → C such that f is complex-differentiable, then
with a minor abuse of notation, this can construct a derivative
approximation for f(x) as written in [10, 11],

∂f(x)

∂x
≈ Im{f(x+ jh)}

h
.

Since there are no subtractive cancellation errors, the complex-
step derivative approximation can produce machine-precision
approximations by reducing h to an arbitrarily small step size.

B. The Complex-Step Derivative on Matrix Lie Groups

Consider a complex-differentiable function f : G → C
where G ⊂ GL(m,C), X(εR) = X̄ exp(εR

∧
) is parametriz-

able by a perturbation εR = [εR1 εR2 . . . ε
R
n ]T ∈ Cn on the right,

and X̄ ∈ Rm×m is some nominal value of X. Consider
perturbing f(X(εR)) by εR = 0 + jh1i, where 1i is the
ith column of the appropriately-dimensioned identity matrix
1. The composition f(X(εR)) has essentially recast f as
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Fig. 1. Variation of relative error in gradient of f : SE(3) → R with step
size, for both complex-step and central-difference methods. Machine precision
is achievable with a sufficient reduction in step size.

f : Cn → C, from which a Taylor series expansion yields
[14, Ch. 11.3]

f
(
X̄ exp((jh1i)∧)

)
= f(X̄) +

∂f(X(εR))

∂εRi

∣∣∣∣
εR=0

jh

− 1

2

∂2f(X(εR))

∂εR
2

i

∣∣∣∣
εR=0

h2 +O(h3). (4)

Since it is assumed that f(X̄) ∈ R, taking the imaginary
component of (4) yields an approximation for the derivative

∂f(X(εR))

∂εRi
≈

Im{f
(
X̄ exp((jh1i)∧)

)
}

h
. (5)

The right Jacobian ∂f(X(εR))/∂εR can be obtained by
individually computing the derivatives using (5) with
i = 1, 2, . . . , n. The left Jacobian can identically be obtained
by instead parametrizing X with X(εL) = exp(εL

∧
)X̄. This

leads to

∂f(X(εL))

∂εLi
≈

Im{f
(
exp((jh1i)∧)X̄

)
}

h
. (6)

Note that the superscripts on εR and εL are simply labels
that correspond to right and left perturbations, respectively, as
opposed to exponents.

Example 1: Consider the function

f(T) = vTTy,

where T ∈ SE(3) and v, y ∈ R4. The left Jacobian can
be determined analytically using the first-order approximation
T = exp(εL

∧
)T̄ ≈ (1 + εL

∧
)T̄ and a Taylor series expansion.

To this end,

f(exp(εL
∧

)T̄) = vT exp(εL
∧

)T̄y

≈ vT(1 + εL
∧

)T̄y
= vTT̄y + vT(T̄y)�︸ ︷︷ ︸

∂f(T(εL))

∂εL

∣∣∣
εL=0

εL, (7)

0 1 2
10-20

10-15

10-10

10-5

100

105

Analytical Jacobians
Complex-Step Jacobians

Fig. 2. Convergence history of a Gauss-Newton optimization algorithm on
a simple nonlinear least-squares problem. The analytical Jacobians require
an approximation to be tractable. The complex-step can calculate Jacobians
down to machine precision, hence providing a more accurate first step.

where the (·)� operator is defined in the appendix. The
elements of ∂f(T(εL))/∂εL are computed using (6) with
varying step sizes h, and the results are compared with a
central-difference scheme in Fig. 1. The error is computed
by taking the relative 2-norm of the difference between
the analytical and numerical solutions. Like the standard
complex-step derivative, the complex-step derivative tailored
to the matrix Lie group SE(3) is able to achieve analytic
accuracy, up to machine precision, for small enough h, while
the central-difference derivative is not.

Example 2: Consider the nonlinear least-squares function

J(T) =
1

2
e(T)TWe(T), (8)

where T = exp(εL
∧

)T̄ ∈ SE(3), W ∈ R6×6 is a symmetric
positive definite weight matrix, and the error is given by

e(T) = ln(T−1Tref)∨.

The matrix Tref ∈ SE(3) is some reference point used
to construct the error. The Jacobian ∂e(T(εL))/∂εL can be
used to construct Jacobian and Hessian approximations of
J(x), which are used in the Gauss-Newton algorithm. Like
in Example 1, the analytical left Jacobian can be determined
by perturbing T on the left,

e(exp(εL
∧

)T̄) = ln(T̄−1 exp(−εL
∧

)Tref)∨

= ln(exp((−Ad(T̄−1)εL)∧) T̄−1Tref︸ ︷︷ ︸
exp(e(T̄)∧)

)∨

≈ e(T̄) + (−Ad(T̄−1))︸ ︷︷ ︸
∂e(T(εL))

∂εL

∣∣∣
εL=0

εL,

where, in the last line, a first-order approximation to the BCH
formula has been used.

The elements of the Jacobian ∂e(T(εL))/∂εL were also
calculated using (6) with a step size of h = 10−20. An
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optimization was performed with both Jacobian calculation
methods, where the Gauss-Newton step δε`−1 is is determined
from

δε`−1 =

[(
∂e
∂εL

)T

W
(
∂e
∂εL

)]−1 [
−
(
∂e
∂εL

)T

We(T̄)

]
,

and the argument of e(T(εL)) is dropped for conciseness. The
point is updated by

T̄` = exp(δε∧`−1)T̄`−1.

As shown in Fig. 2 using both an analytic Jacobian or a
complex-step Jacobian results in an optimum being reached
in a single step. Note that calculating Jacobians using the
complex-step is shown to have a minor improvement in cost
function reduction as compared to the analytical method. The
reason is that the analytical method uses a first-order BCH
approximation, which is ultimately slightly less accurate than
the machine-precision complex-step Jacobian calculations.

IV. BATCH ESTIMATION

The methodology of Example 2 is now applied to a practical
state estimation problem. Consider the task of estimating the
position and attitude of a rigid body at different points in time
t0, t1, . . . , tK using various measurements. The state of the
rigid body at a discrete point in time tk can be represented by
the matrix Lie group element Tk ∈ G, where G will depend
on the estimation task.

A. Maximum A Posteriori Estimation

The MAP approach [1, Ch. 8.2.5] to estimate the states in
a batch framework results in the minimization of the least-
squares cost function shown in (8), where the errors to be
minimized are

e(T0,T1, . . . ,TK) =



eu,0
eu,1

...
eu,K
ey,0

...
ey,K


.

The error term eu,0 represents an error between the known
initial state Ť0, with uncertainty, and the estimated initial state
T0. This term is computed as

eu,0 = ln(T−1
0 Ť0)∨.

The process error terms eu,1, . . . , eu,K are a func-
tion of a discrete-time process model of the form
Tk = F(Tk−1,uk−1,wk−1) where uk−1 and wk−1 are the
input and zero-mean process noise at time tk−1, respectively.
These error terms are calculated as

eu,k = ln(T−1
k F(Tk−1,uk−1, 0))∨.

Finally, the terms ey,0, . . . , ey,K correspond to the errors
between measurements, and a measurement model of the form
yk = g(Tk,νk), where νk is zero-mean measurement noise.
Hence, the measurement errors are

ey,k = yk − g(Tk, 0).

Following the MAP formulation the weight in (8) is

W = diag(P−1
0 ,Q−1

1 , . . . ,Q−1
K ,R−1

0 , . . . ,R−1
K ),

where the matrix P0 is a covariance matrix associated with
the uncertainty in the initial state, Ť0. The matrices Qk and
Rk are covariance matrices associated with the process and
measurement noises, respectively.

The goal is to find T0, . . . ,TK that minimize the least-
squares cost function given by (8). To use a Gauss-Newton
algorithm, the right (or left) Jacobian ∂e(T(εR))/∂εR is
needed, where εR = [εR

T

0 . . . εR
T

K ]T is a matrix that consists of
perturbations to the individual estimated states. Since the error
e(T0, . . . ,TK) is a function of K different Lie group elements,
it is worth mentioning a simple technique that allows a user
to treat the same function as a function of a single matrix Lie
group element, as shown next in Section IV-B. The Jacobians
can then be computed using (5) or (6).

B. Recasting f(X0, . . . ,XK) as f(X)

Consider a function f(X0, . . . ,XK) ∈ R where
X0, . . . ,XK ∈ G. Let Xi = X̄i exp(εR

∧

i ). Define

1.2

1.4

1.6

1.8

-2
2.5-1 21.510 0.50-0.5-11 -1.5-2-2.5

Fig. 3. Trajectory visualization of a batch-estimation solution from the EuRoC Dataset.
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Fig. 4. Convergence history of a Gauss-Newton algorithm on EuRoC Dataset.
Virtually identical performance is achieved to the analytical solution, and
using a central-difference method. However, the complex-step requires only
1 function evaluation, and no step-size tuning was needed.

X 4
= diag(X0, . . . ,XK), thus leading to

X =

 X̄0

. . .
X̄K


 exp(εR

∧

0 )
. . .

exp(εR
∧

K )



=

 X̄0

. . .
X̄K

 exp

 εR
∧

0

. . .
εR
∧

K

 . (9)

By defining εR 4
=
[
εR

T

0 . . . εR
T

K

]T
, X̄ 4

= diag(X̄0, . . . , X̄K)

along with a new operator (·)4 such that
ε4

4
= diag(ε∧0 , . . . , ε

∧
K), equation (9) becomes

X = X̄ exp(εR
4

).

Therefore, a collection of matrix Lie group elements can be
packaged into a single element of a new group. This can be
done similarly with left perturbations.

C. The EuRoC Dataset

The EuRoC micro aerial vehicle dataset collected by the
Autonomous Systems Laboratory at ETH Zürich, Switzerland
[12] includes accelerometer and gyroscope measurements,
as well as ground truth position data. To simulate position
measurements akin to GPS or UWB measurements, normally
distributed random noise is added to the provided ground
position data. The state of the rigid body can be represented
by the matrix Lie group element Tk ∈ SE2(3), and as such
the velocity is also estimated. The accelerometer measure-
ments uacc

k and gyroscope measurements ugyro
k are treated as

process-model inputs uk = [uaccT

k ugyroT

k ]T, while the position
measurements ypos

k are treated as measurement-model outputs.
For this problem, the analytical expression for the Jacobian

∂e(T)/∂εR can be obtained, and the details of the derivation
can be found in [16, Ch. 5]. Henceforth, the arguments

60 62 64 66 68 70 72 74 76 78 80
0

0.05

0.1

60 62 64 66 68 70 72 74 76 78 80
0

0.1

0.2

0.3

60 62 64 66 68 70 72 74 76 78 80
0

0.02

0.04

Fig. 5. Magnitude of errors in position, velocity, and attitude resulting from
the optimal batch-estimation solution using the complex-step.

of functions of multiple matrix Lie group elements will be
consolidated under T, as described in Section IV-B. The right
Jacobian is

∂e(T)

∂εR
≈



−1

F0
. . .
. . .

−1
FK

H0

. . .
HK


,

where

Fk = Ad(T−1
k Fop

k−1)B,

Fop
k−1 =

 Ck−1 vk−1 + Tg rk−1 + Tvk−1

1
1

 ,
B =

 1
1
T1 1

 ,
Hk =

[
1 0 0

]
Tkp�,

where T = tk − tk−1, p = [0 1]T, and g is the gravity vector
resolved in the datum frame. These expressions require first-
order approximations to the BCH formula, similar to Example
2. This is common procedure, as the approximation becomes
more accurate as errors become small [1, 16].

A Gauss-Newton optimization is performed on the
MH_03_medium dataset. For simplicity, the accelerometer
and gyroscope measurements are downsampled from the orig-
inal 200 Hz in order to reduce the amount of variables in
the optimization procedure. An alternative to downsampling
is to perform IMU preintegration as described in [17], but this
is beyond the scope of this paper. The specifications of the
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batch-estimation problem are shown in Table I. The process
covariance matrix was set to,

Qk = diag(1.6 · 10−7 · 1 , 2 · 10−6 · 1 , 10−101). (10)

TABLE I
EUROC ESTIMATION SCENARIO SPECIFICATIONS

Specification Value Units
Accelerometer meas. freq. 25 Hz

Gyroscope meas. freq. 25 Hz
Position meas. freq. 10 Hz

Data time span 60 - 80 s
Number of states estimated 500 -

Std. deviation of position meas. 0.1 m
Initial state guess covariance P0 10−10 · 1 [rad2, (m/s)2, m2]

Process covariance Qk See eqn. (10) [rad2, (m/s)2, m2]
Measurement covariance Rk 0.12 · 1 m2

Complex-step der. step size h 10−20 -

The initial state, Ť0, is set to the ground truth, and hence
the diagonal of P0 is given arbitrarily small numbers. The
matrix Qk was further tuned to yield better performance,
after obtaining the nominal noise values provided in the
EuRoC dataset. Using the initial state, the process model
is directly integrated using the accelerometer and gyroscope
measurements, which then provides an initial guess for the
poses at all the discrete time points. This dead reckoning
solution is then used to initialize the Gauss-Newton algorithm.

Figure 3 shows a visualization of the trajectory once the
optimization procedure has converged. Figure 4 shows the
value of the cost function J(T) across the iterations of the
Gauss-Newton algorithm. Since the initial guess for the states
is obtained by dead reckoning, this sets all the process errors
eu,1, . . . , eu,K to zero. The first iteration attempts to decrease
the measurement errors, resulting in an increase in process
errors, and hence an increase in the overall cost function.

In this example, BCH approximations in the analytical
Jacobians did not create any difference in the convergence
history since the errors are initialized to be small in the the
dead reckoning step. A central-difference scheme was also
used to calculate Jacobians, and after multiple trial-and-error
attempts with different step sizes, an identical convergence
history to what is shown in Fig. 4 was obtained. However,
the central-difference method requires twice as many function
evaluations as the complex-step method, and therefore re-
quired approximately twice the total computing time. Finally,
Fig. 5 shows the 2-norm of the difference between the batch-
estimation solution and the ground truth. The errors are small,
indicating the MAP framework has converged close to the
ground truth.

D. The ‘Lost in the Woods’ Dataset

The ‘Lost in the Woods’ dataset consists of a mobile
wheeled robot navigating through a “forest” of tubes [13], as
seen in Figure 6. The robot is equipped with wheel odometry
providing forward velocity measurements, denoted uvel

k , and
angular velocity measurements, denoted uang

k . Furthermore,
the robot has a laser range finder that provides range and bear-
ing measurements to pre-identified landmarks (the tubes shown
in Figure 6), denoted r`k, φ

`
k for landmark ` at tk, respectively.

The positions of the landmarks in a datum reference frame are

Fig. 6. Experimental setup of the ‘Lost in the Woods’ dataset, courtesy of
[13]. Truth measurements are obtained from a motion capture system.

known in advance, and are denoted r`. The state of the robot
can be represented by Tk ∈ SE(2).

TABLE II
‘LOST IN THE WOODS’ ESTIMATION SCENARIO SPECIFICATIONS

Specification Value Units
Wheel odometry freq. 5 Hz

Laser range finder freq. 5 Hz
Data time span 500 - 620 s

Number of states estimated 600 -
Initial state guess covariance P0 1 [rad2, m2, m2]

Complex-step der. step size h 10−20 -

The process model consists of the nonholonomic vehicle
kinematics. Written in the form Tk = F(Tk−1,uk−1,wk−1),

Tk = Tk−1Ψk−1,

where

Ψk−1 =

[
exp(T (uang

k−1 + wang
k−1)∧) T (uvel

k−1 + wvel
k−1)11

0 1

]
,

T = tk − tk−1, and wvel
k−1, w

ang
k−1 are zero-mean normally

distributed noises associated with the velocity and angular
velocity measurements, respectively. The measurement model
consists of the range and bearing measurements for each
landmark. Written as y = g(Tk,νk), the measurement model
is[
r`k
φ`k

]
=

 √
(r` − DTkp)T(r` − DTkp)(

atan2
(
1T2 (r` − DTkp), 1T

1 (r` − DTkp)
)

−1T1 ln(Tk)∨
)
+ νk,

where νk is zero-mean normally distributed measurement
noise, D = [1 0], p = [d 0 1]T, and d is the distance between
the laser range finder and the reference point on the robot.

Computing the Jacobians associated with the measurement
model by hand is, although not impossible, laborious due to
the atan2(·, ·) term. Hence, the complex-step derivative is used
to directly evaluate the right Jacobian ∂e(T)/∂εR for use in
the Gauss-Newton optimization.

Dead reckoning was performed using wheel odometry in
order to generate an initial guess for the Gauss-Newton
optimization. All measurements were downsampled from the
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Fig. 7. 2D trajectory trace for the ‘Lost in the Woods’ dataset. The solution
using the complex-step derivative shows excellent agreement with the ground
truth data.

original 10 Hz to 5 Hz in order to limit the number of variables
in the optimization procedure. The Qk and Rk matrices were
directly formed from the discrete-time covariances provided
in the dataset [13]. The initial state T0 was set to be a random
perturbation from the ground truth.

The algorithm converged in 6 iterations, and produced a
trajectory visualizable in Figure 7. The errors are shown in
Figure 8, which show good performance when compared to
the ground truth position and attitude data. This can also be
achieved with central-difference, but again, the computation
time is significantly longer, and the step sized must be tuned.

V. CONCLUSION

This paper has shown that the complex-step derivative can
successfully be used to obtain Jacobians of functions that have
matrix Lie group elements as arguments. Machine-precision
can be achieved with a single complex function evaluation. To
use the complex-step, functions must be programmed to accept
complex numbers, which is occasionally time consuming. In
MATLAB, it is critical to use the (.’) transpose operator as
opposed to the (’) conjugate transpose, and also to redefine
the abs(), max(), and min() functions. A guide to proper
implementation in various other programming languages can
be found in [18].

There is a multitude of other potential applications for this
tool, such as numerical linearization of high-fidelity dynamics
models, real-time state estimation and Kalman filtering [19],
and the training of matrix Lie group-based neural networks
[20]. For second derivatives, the complex-step is unfortunately
unable to realize machine-precision accuracy. However, meth-
ods are available to improve the accuracy [21], which are
likely extendible to matrix Lie groups. Furthermore, if an
analytical Jacobian is known, the Hessian can be determined
with machine precision using the complex-step [10].
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500 520 540 560 580 600

-0.1

0

0.1

500 520 540 560 580 600

-0.1

0

0.1

Fig. 8. Error in position x, y and attitude θ between estimated solution and
ground truth (blue), along with ±3 standard deviation bounds (black). There
is less than 10 cm of position error, and less than 0.1 rad of attitude error.

APPENDIX

A. The Special Euclidean Group SE(2)

The group SE(2) is defined as [14],

SE(2) =

{
T =

[
C r
0 1

]
∈ R3×3

∣∣∣∣ C ∈ SO(2) , r ∈ R2

}
,

where SO(n) refers to the Special Orthogonal Group consist-
ing of orthonormal matrices with unit determinant. The matrix
Lie algebra associated with SE(2) is

se(2) = {Ξ = ξ∧ ∈ R3×3 | ξ ∈ R3},

where

ξ∧ =

 ξφ

ξr1
ξr2

∧ =

 0 −ξφ ξr1
ξφ 0 ξr2
0 0 0

 .
The closed-form expression for the exponential map
exp : se(2)→ SE(2) is

exp(ξ∧) =

[
C J`ξr

0 1

]
,

where ξr = [ξr1 ξ
r
2 ]T and

J` =
1

ξφ

[
sin(ξφ) −(1− cos(ξφ))

(1− cos(ξφ)) sin(ξφ)

]
.

B. The Special Euclidean Group SE(3)

The matrix Lie group SE(3) is defined as [1, Ch. 7.1.2]

SE(3) =

{
T =

[
C r
0 1

]
∈ R4×4

∣∣∣∣ C ∈ SO(3) , r ∈ R3

}
.

The matrix Lie algebra associated with SE(3) is

se(3) = {Ξ = ξ∧ ∈ R4×4 | ξ ∈ R6},

where

ξ∧ =

[
ξφ

ξr

]∧
=

[
ξφ
×

ξr

0 0

]
, ξφ, ξr ∈ R3,
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and

ξφ
×

=

 ξφ1
ξφ2
ξφ3

× =

 0 −ξφ3 ξφ2
ξφ3 0 −ξφ1
−ξφ2 ξφ1 0

 .
The closed-form expression for the exponential map
exp : se(3)→ SE(3) is

exp(ξ∧) =

[
exp(ξφ

×
) J`ξr

0 1

]
,

where

J` =
sin(φ)

φ
1 +

(
1− sin(φ)

φ

)
aaT +

1− cos(φ)

φ
a×,

exp(ξφ
×

) = cos(φ)1 + (1− cos(φ))aaT + sin(φ)a×,

and φ =
∥∥∥ξφ∥∥∥ and a = ξφ/φ. The matrix J` is known as the

left Jacobian of the group SO(3). It is also useful to define
the operator [1, Ch. 7.1.8]

p� =

[
ε
η

]�
=

[
−ε× η1

0 0

]
, ε ∈ R3, η ∈ R,

such that x∧p = p�x holds.

C. The Group of Double Direct Isometries SE2(3)

The matrix Lie group SE2(3) is defined as

SE2(3) =

T =

 C v r
0 1 0
0 0 1

 ∣∣∣∣ C ∈ SO(3), v, r ∈ R3

 .

The matrix Lie algebra associated with SE2(3) is

se2(3) = {Ξ = ξ∧ ∈ R5×5 | ξ ∈ R9},

where

ξ∧ =

 ξφ

ξv

ξr

∧ =

 ξφ
×

ξv ξr

0 0 0
0 0 0

 , ξφ, ξv, ξr ∈ R3.

The closed-form expression for the exponential map
exp : se2(3)→ SE2(3) is

exp(ξ∧) =

 exp(ξφ
×

) J`ξv J`ξr

0 1 0
0 0 1

 .
It is also useful to define the operator

p� =

 ε
η1

η2

� =

[
−ε× η11 η21

0 0 0

]
,

where ε ∈ R3 and η1, η2 ∈ R, such that x∧p = p�x holds.
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